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Abstract 

Circular RNAs (circRNAs) belong to a highly conserved subtype of non-coding RNAs, produced by the 
back-splicing of specific regions of pre-mRNA. CircRNAs have wide-ranging effects on eukaryotic 
physiology and pathology by acting as transcription regulators, miRNA sponges, protein sponges, and 
templates for translation. Skeletal and chondral disorders are the leading causes of pain and disability, 
especially for elders, affecting hundreds of millions of people worldwide. Plenty of evidence have shown 
that circRNAs are dysregulated and play vital roles in the occurrence and progression of skeletal and 
chondral disorders. Herein, we systematically summarize the emerging roles and underlying molecular 
mechanisms of hub circRNAs in the pathogenesis of several representative skeletal and chondral 
disorders. Our findings may provide further insight into the mechanistic details of the role of circRNA in 
bone or cartilage metabolism, and highlight the promising application of circRNAs in serving as potential 
diagnostic or therapeutic targets for the prevention and treatment of skeletal and chondral disorders. 

Key words: Circular RNAs, skeletal and chondral disorders, regulatory mechanism, biomarker, therapeutic 
target. 

Introduction 
Circular RNAs (circRNAs) are recently 

discovered non-coding RNAs (ncRNAs) that consist 
of a specially covalently closed ring structure and can 
be stably expressed in multiple cell lines [1, 2]. 
CircRNAs derive from canonical splice sites, upon 
suppression or slowing down of the splicing of 
pre-mRNA [3, 4]. CircRNAs are classified based on 
their sequence. There three types of circRNAs are 
exonic circRNAs (EcRNAs), intronic circRNAs 
(ciRNAs) and exon-intron circRNAs (EIcRNAs) 
(Figure 1A) [5, 6]. EcRNAs are mainly found in the 
cytoplasm, while ciRNAs and EIcRNAs are 
predominantly found in the nucleus. EcRNAs are the 
most abundant circRNAs and account for over 80% of 
the known circRNAs [1, 7, 8]. 

 CircRNAs were first discovered in pathogens in 
the 1970s [9] and were initially thought to be 

transcriptional splicing intermediates or byproducts 
of pre-mRNA splicing errors [10, 11]. Since then, due 
to the advancements in RNA sequencing technologies 
and bioinformatic analyses, thousands of circRNAs 
have been identified [12]. Multiple lines of evidence 
have highlighted the significant impact of circRNAs 
on various eukaryotic physiological and pathological 
processes [13]. CircRNAs in the nucleus (ciRNAs and 
EIcRNAs) play roles in host gene transcription 
regulation (Figure 1B) [5, 14, 15], while cytoplasmic 
circRNAs have been shown to function as miRNA 
sponges, thereby promoting the expression of 
downstream mRNAs (Figure 1C) [7, 16, 17]. Recently, 
several circRNAs have been implicated in the function 
and localization of proteins by serving as a decoy, and 
facilitating protein folding and recruitment (Figure 
1D) [7, 16-20]. Some studies have also shown that 
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coding circRNAs can play critical roles in human 
diseases (Figure 1E) [21-24]. 

CircRNAs function as pervasive regulators of 
cellular and physiological processes and have been 
proven to be vital in many diseases, such as skeletal 
and chondral disorders [25-27]. Skeletal and chondral 
disorders are among the leading debilitating factors 
and represent an increasing societal and economic 
burden in the context of aging population and 
increasing life expectancy. The most common of these 
diseases are osteoarthritis, osteonecrosis of the 
femoral head (ONFH), osteoporosis, and rheumatoid 
arthritis (RA), affecting hundreds of millions of 
people worldwide [28-31]. Several factors have been 
associated with the occurrence and progression of 
skeletal and chondral disorders, including 
inflammation, apoptosis, degradation of extracellular 
matrix (ECM), and an imbalance between 
osteogenesis and adipogenesis [30, 32-36]. However, 
the underlying molecular mechanisms of the 
pathology of these diseases still remains elusive, and 
an understanding of these mechanisms is essential for 
both the prevention and treatment of bone and 
cartilage disorders. Studies have begun to highlight 
the differential expression of circRNAs in bone and 
cartilage diseases as well as their regulatory roles [37]. 
Further characterizing the roles of circRNAs in the 
pathological processes of skeletal and chondral 

disorders could provide new avenues for both 
diagnosis and treatment. 

In this review, we summarize recent studies of 
circRNAs involved in common skeletal and chondral 
disorders, such as osteoarthritis, ONFH, osteoporosis, 
and RA, and highlight the potential applications of 
these circRNAs in the prevention and treatment of 
these disorders. 

CircRNA and osteoarthritis 
Osteoarthritis is recognized as the most common 

disease of the musculoskeletal system, with up to 250 
million cases globally [38]. Cartilage damage 
associated with osteoarthritis can be caused by 
mechanical, inflammatory, or metabolic stresses that 
alter cartilage properties [39-41]. As a result, 
hypertrophic chondrocytes attempt to repair eroded 
cartilage, but in turn release more matrix degradation 
products and proinflammatory factors, which then 
leads to structural alterations in articular cartilage, 
subchondral bone, synovium, capsule, ligaments, and 
periarticular muscles [42-44]. Here, we discuss 
osteoarthritis-related circRNAs and their regulatory 
effects on inflammatory and matrix metabolic factors 
in osteoarthritis-related cells. Understanding the role 
of these circRNAs can reveal new strategies for 
intervening the progression of osteoarthritis.  

 

 
Figure 1. Biogenesis and molecular functions of circRNAs. CircRNAs are generated by back-splicing (A) and regulate gene expression at the level of transcription (B), 
sponging miRNAs (C), interacting with proteins (D), or encoding peptides (E). 
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Diagnostic circRNAs of osteoarthritis 
CircRNAs have been widely recognized as stable 

biomarkers due to their resistance from degradation 
by RNases [45]. The use of diagnostic circRNAs in 
peripheral blood and synovial fluid could have a 
significant impact on osteoarthritis diagnosis. Studies 
have indicated that hsa_circ_0104873, hsa_circ_ 
0104595, and hsa_circ_0101251 are steadily expressed 
in synovial fluid, while hsa_circ_0032131_CBC1 is 
significantly over-expressed in the blood samples of 
osteoarthritis patients (Table 1) [46, 47]. Further 
investigation of these circRNAs could set the 
groundwork for the advancement of minimally 
invasive, highly specific, easily accessible, and rapid 
diagnostic biomarkers.  

Regulatory circRNAs of osteoarthritis 
Articular cartilage degeneration is the vital 

process in the pathogenesis of osteoarthritis [48]. The 
imbalance of cell proliferation and apoptosis of 
chondrocytes finally results in the increased 
catabolism and decreased anabolism of ECM, thereby 
leading to the inflammation and degeneration of 
cartilage [48].  

 

Table 1. CircRNAs as potential biomarkers of skeletal and 
chondral disorders. 

Diseases CircRNAs Samples Expression Methods Ref. 
OA Hsa_circ_0104873 synovial 

fluid 
up CircRNA-array [46] 

OA Hsa_circ_ 0104595 synovial 
fluid 

up CircRNA-array [46] 

OA Hsa_circ_0101251 synovial 
fluid 

up CircRNA-array [46] 

OA Hsa_circ_0032131 peripheral 
blood 

up CircRNA-array [47] 

OP Hsa_circ_0002060 serum and 
plasma 

up CircRNA-array [86] 

OP Hsa_circ_0001445 plasma down qRT-PCR [87] 
RA Hsa_circ_0044235 peripheral 

blood 
down qRT-PCR [106] 

RA Hsa_circ_102594 PBMSs down CircRNA-array [107] 
RA Hsa_circ_104194 PBMSs up CircRNA-array [107] 
RA Hsa_circ_104593 PBMSs up CircRNA-array [107] 
RA Hsa_circ_103334 PBMSs up CircRNA-array [107] 
RA Hsa_circ_101407 PBMSs up CircRNA-array [107] 
RA Has_circ_0008360 PBMSs down RNA-seq [108] 
RA Has_circ_0001200, PBMSs up RNA-seq [108] 
RA Has_circ_0001566 PBMSs up RNA-seq [108] 
RA Has_circ_0003972 PBMSs up RNA-seq [108] 
RA Hsa_circ_0002715 peripheral 

blood 
up qRT–PCR [109] 

RA Hsa_circ_0035197 peripheral 
blood 

up qRT–PCR [109] 

RA Hsa_circ_0000175 PBMSs down qRT–PCR [110] 
RA Hsa_circ_0008410 PBMSs up qRT–PCR [110] 
RA circRNA_104871 PBMSs up CircRNA-array  [111] 
RA circRNA_003524 PBMSs up CircRNA-array [111] 
RA circRNA_101873 PBMSs up CircRNA-array [111] 
RA circRNA_103047 PBMSs up CircRNA-array [111] 
OA: osteoarthritis; OP: osteoporosis; RA: rheumatoid arthritis. 

 

Increasing evidence indicates that some 
circRNAs plays pivotal roles in the development of 
osteoarthritis. We summarized the circRNAs 
dysregulated in articular cartilage and synovium 
(Table 2). Furthermore, the downstream pathways 
caused by these dysregulated circRNAs finally result 
in inflammation, the imbalance between anabolism 
and catabolism of ECM, inhibition of cells 
proliferation, or apoptosis. Studies have shown that 
CDR1as [49], circ-0005105 [50], circ-33186 [51], 
circ-0136474 [52], circ-100226 [32], circ-CER [53], 
circ-PSM3 [54], circ-Atp9b [55], circ-UBE2G1 [56], 
circ-0092516 [57], circ-CDH13 [58], circ-TMBIM6 [59], 
circ-RNF121 [60], circ-VCAN [61], and circ-HIPK3 
[62], which were found over-expressed in cartilage of 
osteoarthritis, could significantly promote the 
expression of osteoarthritis-related genes including 
MMP13, PTEN, FGF2, NAMPT, TNFα, TLR4, HIFα, 
MYD88, and SOX8, thereby accelerating the progress 
osteoarthritis. While circ-SERPINE2 [63, 64], 
circ-CDK14 [65], circ-ANKRD36 [66], circ-PDE4D [67] 
circ-0045714 [68], and circ-9119 [69] were found 
down-expressed and have positive effects on 
alleviating the progress of osteogenesis (Figure 2A). 

Additionally, synovitis is the main cause of joint 
pain in osteoarthritis [70]. CircGCN1L1 was found 
upregulated in the synovium and play its roles by 
promoting synoviocyte proliferation and chondrocyte 
apoptosis in osteoarthritis. Silencing of circGCN1L1 
attenuates the loss of condylar cartilage and 
subchondral bone via the circGCN1L1–miR-330-3p–
TNF axis (Figure 2B) [71].  

These osteoarthritis-related circRNAs may 
function as novel therapeutic targets for the treatment 
and prevention of osteoarthritis. Future work 
exploring the upstream regulation of aberrantly 
expressed circRNAs in osteoarthritis, as well as the 
molecular details of circRNA-protein interactions in 
osteoarthritis, will be required to further understand 
the therapeutic potential of osteoarthritis -related 
circRNAs. 

CircRNAs and ONFH 
Osteonecrosis is a class of orthopedic diseases 

that is caused by the interruption of blood flow, 
affecting over 20 million people worldwide [72-74]. 
Due to its anatomical structure, the femoral head is 
particularly likely to undergo osteonecrosis [75]. 
Common risk factors of ONFH include excessive use 
of steroids or alcohol, trauma, or sickle cell anemia 
[76], all of which reduce blood supply to the femoral 
head, thus resulting in bone necrosis and alteration 
[77]. Important to the prevention of bone necrosis is 
bone regeneration via the differentiation and 
proliferation of bone marrow stromal cells (BMSCs) 
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[78]. However, an imbalance of osteogenesis and 
adipogenesis of BMSCs has been observed to disrupt 
bone remodeling. Studies have revealed that 
circRNAs are dysregulated during osteogenesis. Here, 
we review circRNAs that have been shown to play 
critical roles in regulating osteogenesis and 
adipogenesis, to shed light on a regulatory 
mechanism for steroid-induced osteonecrosis of the 
femoral head (SONFH). 

The correlation between circRNAs and ONFH is 
still in its infancy. To date, studies of the 
ONFH-related circRNAs have mainly highlighted 
their roles in osteogenesis or adipogenesis of BMSCs, 
the imbalance of which has a critical role in the 
progression of ONFH (Table 2) [36, 79, 80]. By 
screening the circRNA expression profiles in BMSCs 
from patients with SONFH, and using bioinformatics 
and functional characterization assays, CDR1as was 

found up-regulated in SONFH-BMSCs, and thus 
could play a critical role in osteogenic/adipogenic 
differentiation disorders via the miR-7-5p/WNT5B 
axis of regulation (Figure 3) [36]. Kuang et al. 
identified circUSP45 as an upregulated circRNA in 
BMSCs isolated from SONFH patients [80]. RNA 
pull-down and dual luciferase reporter assays were 
performed to confirm that circUSP45 mainly localizes 
in the cytoplasm and directly interacts with 
miR-127-5p. Further experiments verified that 
circUSP45 upregulates the expression of PTEN and 
inhibits AKT pathway by sponging miR-127-5p, 
thereby suppressing the expression of osteogenic 
genes, such as bone morphogenetic protein-2 (BMP2) 
and runt-related transcription factor 2 (RUNX2). 
Additionally, the anti-bone metabolism function of 
circUSP45 was verified in vivo by a SONFH rat model.  

 

 
Figure 2. A summary diagram of circRNAs in regulating osteoarthritis. (A) CircRNAs CDR1as, circ-0005105, circ-33186, circ-0136474, circ-100226, circ-CER, 
circ-PSM3, circ-Atp9b, circ-UBE2G1, circ-0092516, circ-CDH13, circ-TMBIM6, circ-RNF121, circ-VCAN, and circ-HIPK3 could significantly promote the progress of 
osteoarthritis by stimulating ECM catabolism, apoptosis, inflammation, but suppressing cell proliferation and ECM anabolism of chondrocytes thereby aggravating the progress of 
osteoarthritis. While circ-SERPINE2, circ-CDK14, circ-ANKRD36, circ-PDE4D, circ-0045714, and circ-9119 could inhibit the progress of osteogenesis by stimulating cell 
proliferation, ECM anabolism, but suppressing ECM catabolism, apoptosis, inflammation of chondrocytes thereby hindering the progress of osteoarthritis. (B) CircGCN1L1 
could promote synoviocyte proliferation and chondrocyte apoptosis in osteoarthritis thereby aggravating the progress of osteoarthritis. 
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Table 2. Regulatory circRNAs and their roles in skeletal and chondral disorders. 

Disease CircRNA Tissue Expression miRNA/gene Roles Ref. 
OA circ-100226 cartilage up miR-875/TNFα ECM catabolism ↑ [32] 
OA CDR1as cartilage up miR-641/FGF2 inflammation ↑, ECM catabolism ↑ [49] 
OA circ-0005105 cartilage up  miR-26a/NAMPT ECM catabolism ↑ [50] 
OA circ-33186 cartilage up miR-217-5p/MMP13 cell proliferation ↓ [51] 
OA circ-0136474 cartilage up miR-217-5p/MMP13 ECM catabolism ↑, apoptosis ↑ [52] 
OA circ-CER cartilage up miR-136/MMP13 ECM catabolism ↑ [53] 
OA circ-PSM3 cartilage up miR-296-5p cell proliferation ↓ [54] 
OA circ-Atp9b cartilage up miR-138-5p/TLR4 inflammation ↑ [55] 
OA circ-UBE2G1 cartilage up miR-373/HIFα inflammation ↑, apoptosis ↑ [56] 
OA circ-0092516 cartilage up miR-337-3p/PTEN apoptosis ↑, cell proliferation ↓ [57] 
OA circ-CDH13 cartilage up miR-296-3p/PTEN ECM catabolism ↑, apoptosis ↑ [58] 
OA circ-TMBIM6 cartilage up miR-27a/MMP13 ECM catabolism ↑ [59] 
OA circ-RNF121 cartilage up miR-665/MYD88 ECM catabolism ↑, apoptosis ↑, cell proliferation ↓ [60] 
OA circ-VCAN cartilage up NF-κB apoptosis ↑, cell proliferation ↓ [61] 
OA circ-HIPK3 cartilage up miR-124/SOX8 apoptosis ↑ [62] 
OA circ-SERPINE2 cartilage down miR-1271-5p/ERG ECM anabolism ↑ [63] 

cartilage down miR-495/ TGFBR2 apoptosis ↓ [64] 
OA circ-CDK14 cartilage down miR-125a-5p/SMAD2 apoptosis ↓, cell proliferation ↑ [65] 
OA circ-ANKRD36 cartilage down miR-599/CAS21 inflammation ↓, apoptosis ↓ [66] 
OA circ-PDE4D cartilage down miR-103a-3p/FGF18 ECM catabolism ↓ [67] 
OA circ-0045714 cartilage down miR-1936/IGF1R cell proliferation ↑, ECM anabolism ↑ [68] 
OA circ-9119 cartilage down miR-127-5p/PTEN apoptosis ↓ [69] 
OA circ-GCN1L1 synovium up miR-330-3p/TNFα inflammation ↑, ECM catabolism ↑ [71] 
ONFH CDR1as BMSCs up miR-7-5p/WNT5B osteogenesis ↓, adipogenesis ↑ [36] 
ONFH circ-USP45 BMSCs up miR-127-5p/PTEN osteogenesis ↓ [80] 
OP circ-RUNX2 bone down miR-203/RUNX2 osteogenesis ↑ [88] 
OP circ-VCNGL1 serum down miR-217-5p/RUNX2 osteogenesis ↑ [89] 
OP circ-0011269 serum down miR-122/RUNX2 osteogenesis ↑ [90] 
OP circ-0076906 serum/bone down miR-1305/OGN osteogenesis ↑ [91] 
OP circ-0016624 serum down miR-98/BMP2 osteogenesis ↑ [92] 
OP circ-0006393 BMSCs down miR-145-5p/FOXO1 osteogenesis ↑ [93] 
OP circ-0048211 BMSCs down miR-93-5p/BMP2 osteogenesis ↑ [94] 
OP circ-SLC8A1 Bone down miR-516b-5p/APAK2 osteogenesis ↑ [95] 
OP circ-YAP1 BMSCs down miR-376b-3p/YAP1 osteogenesis ↑ [96] 
OP circ-0076690 serum down miR-152/RUNX2 osteogenesis ↑ [97] 
OP circ-RTN4 exosome  down miR-1446a/TNFα osteogenesis ↑ [101] 
OP circ-0026827 DPSCs down miR-188-3p/RUNX1 osteogenesis ↑ [102] 
OP circ-FOXP1 ADMSCs down miR-330-5P/FOXP1 osteogenesis ↑ [103] 
OP circ-28313 BMM up miR-195a/ CSF1 osteoclastogenesis ↑ [104] 
RA CDR1as PBMCs up miR-7-5p/ mTOR inflammation ↑ [116] 
RA circ-FADS2 cartilage down miR-498/mTOR apoptosis↓, inflammation ↓ [117] 
RA circ-09505 PBMCs up miR-6089/AKT1 inflammation ↑ [118] 
RA circ-0001859 synovium up miR-204/211/ATF2 inflammation ↑ [119] 
RA circ-0088036 synovium up miR-140-3p/SIRT1 inflammation ↑ [120] 
OA: osteoarthritis; ONFH: osteonecrosis of the femoral head; OP: osteoporosis; RA: rheumatoid arthritis. 

 

 
Figure 3. A summary diagram of circRNAs in regulating ONFH. CircUSP45 and CDR1as could promote the progress of ONFH by inhibiting osteogenesis but 
enhancing adipogenesis in BMSCs, thereby aggravating the progress of ONFH. 
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Therefore, silencing CDR1as and circUSP45 may 
promote bone metabolism and improve bone mass in 
SONFH progression. However, future work is 
required to understand more mechanistic details of 
regulatory circRNAs and their roles in the 
pathogenesis of ONFH (Figure 3). 

CircRNAs and osteoporosis 
Osteoporosis is a systemic and metabolic skeletal 

disorder affecting with more than 200 million 
individuals affected worldwide [81, 82]. Osteoblastic 
bone formation and osteoclastic bone resorption 
dynamically maintain bone homeostasis [83]. 
Osteoporosis is typically characterized by decreased 
osteoblastic activity and increased osteoclastic activity 
[84]. During osteoporosis, BMSCs, which are 
precursors to osteoblasts, have been shown to have a 
lower osteogenic differentiation potential [85]. 
Regulatory mechanisms underlying osteoporosis are 
complex and involve a number of pathways, 
including circRNA mediation pathway.  

Diagnostic circRNAs of osteoporosis 
Here, we summarized circRNAs that are 

abnormally expressed in human bodily fluids from 
osteoporosis patients. These circRNAs may be 
promising candidates for clinical diagnosis of 
osteoporosis. In particular, circ_0002060 was shown 
by Huang et al. via microarray and bioinformatic 
analyses, to be upregulated in clinical samples, 
suggesting its use as a potential biomarker (Table 1) 
[86, 87]. 

Regulatory circRNAs of osteoporosis 
CircRNAs participate in the regulation of 

osteoporosis via several ways (Table 2). Recent 
researches have screened the circRNAs expression 
profile in bone and serum of patients with 
osteoporosis. The majority of osteoporosis -related 
circRNAs are involved in regulating osteogenesis by 
sponging miRNAs and consequently regulating the 
expression or activity of downstream osteogenesis 
genes. Circ-RUNX2 [88], circ-VANGL1 [89], 
circ-0011269 [90], circ-0076906 [91], circRNA-0016624 
[92], circ-0006393 [93], circRNA-0048211 [94], 
circ-SLC8A1 [95], circ-YAP1 [96] and circ-0076690 [97] 
are found down-regulated in osteoporosis and could 
enhance osteogenesis of BMSCs by sponging miRNAs 
and subsequently upregulating the expression and 
activities of osteogenetic genes (such as RUNX2, 
BMP2, OPN, OCN, OGN, FOXO1, APAK2 or ALP) 
(Figure 4A). Exosomes of BMSCs (BMSCs-Exos) have 
also been shown to function in bone regeneration 
[98-100], while exosomes-derived from circ-Rtn4 have 
been shown to promote osteogenesis by targeting 

miR-146a [101]. Studies performed by Cao et al. 
revealed that the expression of miR-146a is positively 
correlated with TNF-α, a cytokine that serves as a key 
regulator of osteoporosis pathology. Additionally, 
they showed that circ-Rtn4 attenuates TNF-α-induced 
cytotoxicity and apoptosis in MC3T3-E1 cells by 
acting as a sponge for miR-146a, implicating 
Rtn4-Exos as a promising therapeutic candidate for 
osteoporosis (Figure 4A) [101]. 

Some studies have also shown the regulatory 
mechanism of circRNAs in other types of stem cells. 
The effect of circ_0026827 on human dental pulp stem 
cells (DPSCs) during osteogenesis has been examined 
by Ji et al. [102] to seek novel therapeutics for 
osteoporosis. These studies showed that circ_0026827 
function as a sponge of miR-188-3p to promote 
osteoblastic differentiation of DPSCs via the 
upregulation of Beclin-1-mediated autophagy and 
RUNX1 signaling pathways. CircFOXP1 were found 
to play critical roles in promoting osteogenic 
differentiation of adipose-derived mesenchymal stem 
cells (ADMSCs) in osteoporosis by targeting 
miR-33a-5p. In vivo and in vitro evidence indicates 
circFOXP1 could enhance the expression of FOXP1, 
thereby promote the osteogenic differentiation of 
ADMSCs and bone formation in osteoporosis (Figure 
4A) [103]. 

To date, circRNA_28313 is the only circRNA that 
has been shown to be a regulator of osteoclast 
resorption. Recent studies by Chen et al. [104] have 
examined mechanisms, involving circRNA 
regulation, of excessive bone resorption caused by 
osteoclasts during their differentiation. The authors 
used RANKL+CSF1-treated bone marrow monocyte/ 
macrophage (BMM) cells to mimic osteoclasts during 
the progression of osteoporosis. Their results showed 
that circRNA_28313 is dramatically overexpressed 
upon RANKL+CSF1 stimulation, while miR-195a is 
down-expressed. Further bioinformatics and 
experimental validation both in vitro and in vivo 
showed that circRNA_28313 interacts with miR-195a 
and consequently regulates the colony-stimulating 
factor (CSF1) gene. High expression level of CSF1 in 
turn, promotes the expression of downstream 
proteins such as PU.1 (a factor related to osteoclast 
differentiation), nuclear factor of activated T cells c1 
(NF-ATc1), tartrate-resistant acid phosphatase 
(TRAP), and Cathepsin K (CTSK), thereby enhancing 
osteoclast-induced bone absorption (Figure 4B).  

Thus, circRNAs can serve as powerful 
therapeutic candidates to promote bone regeneration 
and thus reverse the progression of osteoporosis. 
Moreover, a deeper understanding of these circRNAs 
can shed light on the mechanisms underlying 
regulation of circRNAs in bone metabolism. 
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CircRNAs and rheumatoid arthritis 
Rheumatoid arthritis (RA) is a common chronic 

autoimmune disease characterized by inflammatory 
destruction that can cause serious cartilage and bone 
damage, affecting approximately 1% of the 
population worldwide [30]. Several non-coding RNAs 
have been identified as regulators of RA via different 
pathways, but the exact mechanisms underlying the 
role of circRNAs in RA remain to be understood. 

Diagnostic circRNAs of rheumatoid arthritis 
Early diagnosis is critical to optimal therapeutic 

success for rheumatoid arthritis (RA). Existing studies 
have identified a several circRNAs that could serve as 
diagnostic biomarkers of RA, partially due to their 
increased stability in plasma, serum, or other 
biofluids [105]. Here, we summarizes potential 
biomarkers identified by various studies (Table 1) 
[106-111]. 

Regulatory circRNAs of rheumatoid arthritis 
The main pathological features of RA are 

autoimmune response and inflammation [112]. 

Recently, a number of circRNAs have been implicated 
in RA pathogenesis (Table 2), but their function and 
hidden molecular mechanism in immune and 
inflammation regulation still remains little known 
[30]. 

Given that the phosphatidylinositol-3-kinase/ 
AKT/mTOR (PI3K/AKT/mTOR) signaling pathway 
plays a crucial role in cellular proliferation and 
inflammatory responses [113, 114], circFADS2 and 
ciRS-7 have been implicated in the initiation and 
progression of RA by regulating these pathways. 
CiRS-7 promotes the inflammation of PBMCs by 
sponging miR-7 to upregulate mTOR while 
circFADS2 protects LPS-treated chondrocytes (RA 
model cells) from apoptosis by mediating mTOR 
expression via sponging miR-498 (Figure 5A and B) 
[115-117]. CircRNA_09505 is an up-regulated 
circRNA which can promote AKT1 expression via 
miR-6089/IκBα/NFκB signaling pathway in 
macrophages, thereby aggravating inflammation and 
joint damage in RA (Figure 5B) [118].  

 

 
Figure 4. A summary diagram of circRNAs in regulating osteoporosis. (A) CircRNAs circ-RUNX2, circ-VANGL1, circ-0011269, circ-0076906, circRNA-0016624, 
circ-0006393, circRNA-0048211, circ-SLC8A1, circ-YAP1, circ-0076690, and circ-Rtn4 (exosomes) could promote the osteogenesis of BMSCs thereby hindering the progress 
of osteoporosis. Circ_0026827 could promote the osteogenesis of human dental pulp stem cells (DPSCs) thereby hindering the progress of osteoporosis. CircFOXP1 could 
promote the osteogenesis of adipose-derived mesenchymal stem cells (ADMSCs) thereby hindering the progress of osteoporosis. (B) While circ-28313 could promote the 
osteoclastogenesis of bone marrow monocyte /macrophage (BMM) thereby aggravating the progress of osteoporosis. 
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Figure 5. A summary diagram of circRNAs in regulating RA. (A) CircRNA circFADS2 could protect the chondrocytes from apoptosis and inflammation thereby 
hindering the progress of rheumatoid arthritis. (B) CDR1as and circ-09505 could enhance the inflammation of PBMCs thereby promoting the progress of rheumatoid arthritis. 
(C) Circ-0001859 and circ-0088036 could promote the inflammation of synovium in rheumatoid arthritis. 

 
Joint swelling and pain reflect synovial 

membrane inflammation in RA, resulting from the 
immune activation and infiltration of leucocyte. Li 
and colleagues examined the expression of circRNAs 
in synovial tissues and screened out circ-0001859 as a 
critical RA-related circRNA [119]. Their further 
studies indicated that circ-0001859 could up-regulate 
ATF2 via sponging miR-204/211 in synovial sarcoma 
cells (SW982 cells). Silencing circ_0001859 reduced the 
hyper inflammatory activity in the synovial tissue and 
alleviates the pathogenesis of RA (Figure 5C). 
Circ-0088036 was found to be aberrantly upregulated 
in fibroblast-like synoviocytes (FLSs) in RA [120]. 
Circ-0088036 could promote the proliferation and 
migration of RA-FLSs via miR-140-3p/SIRT1 axis, 
subsequently promoting RA progression (Figure 5C). 

The studies described above highlight the effects 
of circRNAs on RA, but a great deal remains to be 
understood. Future studies are required to further 
understand the underlying mechanisms of regulation 
of RA progression by circRNAs. 

Conclusions and future perspective 
CircRNA is a class of noncoding RNA molecules 

with a closed loop structure formed by covalent 
bonds, which can protect them from degradation by 
most RNases [121]. Emerging studies have exploited 
highly-accurate circRNA biomarkers in human body 
fluids for diagnosis and prognosis of some diseases, 
such as cancer and cardiovascular diseases [122, 123]. 
In recent years, studies have also revealed the 
potential value of circRNAs in clinical treatment of 
various diseases, including skeletal and chondral 



Int. J. Biol. Sci. 2021, Vol. 17 
 

 
http://www.ijbs.com 

1436 

disorders. In this review, we have reviewed the 
regulatory role of circRNA in skeletal and chondral 
disorders and summarized findings of several 
circRNAs that play critical roles in the process of 
osteoarthritis, ONFH, osteoporosis, or RA. These 
findings may provide further insight into the 
mechanistic details of the role of circRNAs in bone or 
cartilage metabolism, and highlight potential targets 
for the clinical treatment of orthopedic diseases. 
Nevertheless, the molecular functions of circRNAs in 
skeletal and chondral disorders still remain largely 
enigmatic. Their regulatory mechanism in skeletal 
and chondral disorders by regulating transcription, 
binding protein, and encoding protein or peptides still 
remains unknown, which is worth to be further 
explored in later research on skeletal and chondral 
disorders. 

Despite recent discoveries summarized above, 
many challenges remain to be overcome. The 
functional verification of circRNAs implicated in 
skeletal and chondral disorders, has been mostly in 
vitro. In vivo studies are a greater challenge due to the 
lack of stable and specific delivery vehicles. Recent 
studies have discovered some biological vehicle that 
can be loaded with circRNA (or si-circRNA) for in vivo 
therapy, including extracellular vesicles (EVs) and 
adeno-associated viral (AAV) vectors. EVs are a 
heterogeneous group of lipid bilayer-enclosed 
nanosized vesicles releasing from various types of 
cells [124]. Many studies have highlighted the 
application of EVs in transporting circRNA to specific 
tissues by modification [125, 126]. AAV is a 
non-pathogenic member of the Parvovirus family 
which can deliver circRNA producing transgenes 
[127]. Studies have also revealed the potential value of 
recombinant AAV in targeting therapy via genetic 
modification [128]. These advances may shed new 
lights on the application of circRNA in the treatment 
of skeletal and chondral disorders. We believe that an 
in-depth understanding and correct application of 
circRNAs in clinical practice will make a giant 
progress in the treatment of skeletal and chondral 
disorders in the near future. 
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