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Abstract 

Breast cancer is the most commonly diagnosed and the most lethal cancer in females both in China and 
worldwide. Currently, the origin of cancer stem cells, the heterogeneity of cancer cells, the mechanism of 
cancer metastasis and drug resistance are the most important issues that need to be addressed. Chinese 
investigators have recently made new discoveries in basic breast cancer researches, especially regarding 
cancer stem cells, cancer metabolism, and microenvironments. These efforts have led to a deeper 
understanding of drug resistance and metastasis and have also indicated new biomarkers and therapeutic 
targets. These findings emphasized the importance of the cancer stem cells for targeted therapy. In this 
review, we summarized the latest important findings in this field in China. 
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Introduction 
Breast cancer is the most common malignant 

disease in women worldwide. According to the data 
released in 2019, breast cancer accounted for 30% of 
newly diagnosed malignant tumors in females, and 
led to 15% of female deaths from cancer [1]. The 
incidence and mortality of breast cancer are still 
rising, both in developing and developed countries 
[2]. In China, breast cancer morbidity and mortality 
rank first among malignant diseases in females. Death 
rate reached about 6.9% among all female malignant 
tumors [3]. The lack of early-stage screening and 
detection methods and cost-effective therapies makes 
breast cancer as one of the most severe disease burden 
globally [4]. According to the international consensus 
guideline, the current treatment for breast cancer 
mainly included chemotherapy, radiotherapy, 
targeted therapy, immunity therapy, and endocrine 
therapy before and after surgery [5]. Nowadays, 
therapies targeted to cancer stem cells have been a hot 
spot in breast cancer treatment, which is a supplement 
to the traditional chemotherapeutic drugs that are 
unable to eradicate tumor dissemination and 

metastasis [6, 7]. Great advances in cancer cell-of- 
origin, somatic mutation, epigenetic alteration, and 
tumor microenvironment were revealed in recent 
studies, both basic and clinical, leading to a better 
understanding of the mechanism, the pathogenesis, 
the diagnosis, and the treatment of breast cancer. 
Particularly, Chinese investigators have made great 
achievements in cancer stem cells, microenvironment, 
metastasis, drug resistance, tumor biomarkers, and 
new targets, as well as drugs for breast cancer 
therapy. In this review, we summarized the important 
findings on breast cancer basic research in China from 
2019 to 2020. 

Cancer stem cells (CSCs) 
CSCs are defined as a group of undifferentiated 

cells that possess properties of self-renewal and 
pluripotent differentiation. Although breast cancer 
stem cells (BCSCs) make up only a small 
subpopulation within tumors, they are responsible for 
tumor initiation, recurrence, metastasis, and therapy 
resistance [8]. Previous studies revealed a panel of 
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biomarkers for BCSCs identification, among which 
CD44high, CD24low and aldehyde dehydrogenase 1 
(ALDH1)+ were the most commonly used biomarkers 
[9]. Triple-negative breast cancer (TNBC) contains 
more BCSCs than other subtypes, which is associated 
with worse outcomes [10, 11]. In 2019, protein C 
receptor (PROCR) was identified as a novel marker 
for BCSCs, which could stratify TNBC into clinically 
relevant subgroups and be a therapeutic target (Fig. 1) 
[12]. NOTCH4 receptor was not only implicated in the 
regulation of BCSCs in TNBC, but also regarded as a 
better marker for BCSCs than CD24-CD44+ in 2020 
(Fig. 1). Mechanistically, NOTCH4 drives 
mesenchymal-like BCSCs into a quiescent state and 
induces epithelial-mesenchymal transition (EMT) via 
upregulating GAS1 and SLUG, respectively. Zhou et 
al. also demonstrated the importance of NOTCH4- 
SLUG-GAS1 circuit in maintaining mesenchymal-like 
BCSCs [13]. 

Tumor microenvironment (TME) plays an 
essential role in regulating the activity of BCSCs [14]. 
Tumor-associated macrophages (TAMs) with 
elevated LSECtin expression interacts with its 
receptor BTN3A3, expressed in cancer cells, to 

promote the stemness of breast cancer cells in a 
cell-cell contact dependent manner (Fig. 1) [15]. In 
addition, the Jag1 expression in endothelial cells 
activates Notch 1 to upregulate Zeb1 expression and 
to increase vascular endothelial growth factor A 
(VEGFA) production. In turn, VEGFA induces Jag1 
expression in endothelial cells. Thus, the positive 
feedback loop in the tumor perivascular niche 
promotes the stemness of breast cancer cells [16]. 

There are other pathways to enhance the 
stemness of BCSC. Activated interleukin-1 receptor 
type 2 (IL1R2) interacts with deubiquitinase USP15 
(ubiquitin-specific protease 15) to induce 
deubiquitination and stabilization of BMI1, which 
facilitates the self-renewal of BCSCs (Fig. 1) [17]. 
BCSCs were also promoted by SGCE via an 
interaction with c-Cbl and the inhibition of c-Cbl- 
mediated epidermal growth factor receptor (EGFR) 
lysosomal degradation (Fig. 1) [18]. The elevated 
stress sensor in response to hypoxia, Tribble 3 (TRIB3) 
promoted BCSCs through AKT1-FOXO1 (forkhead 
box O1)-SOX2 (sry-related high mobility box 2) axis 
[19]. Phospholipid scramblase 1 (PLSCR1) enhanced 
stem cell-like properties through upregulating signal 

 

 
Figure 1. Schematic diagram of BCSCs and TME. (1) PROCR is a marker of BCSCs for stratifying TNBC into subgroups. (2) NOTCH4 is also a marker for BCSCs, driving 
ML-BCBCs into a quiescent state via GAS1 and inducing EMT via SLUG. (3) TAMs with elevated LSECtin expression interacts with BTN3A3, promoting the stemness of breast 
cancer cells. (4) The following pathways increase cell stemness. IL1R2 interacts with USP15 to induce deubiquitination and stabilization of BMI1. SGCE stabilizes EGFR. TSPAN-8 
enhances stemness genes, including NANOG, OCT4, and ALDHA1. SH3RF3 activates PTX3 via the JNK-JUN pathway. (5) BCSCs are divided into e-BCSCs and q-BCSCs. 
SETD4 is important in the maintenance of qBCSCs. (6) A positive feedback loop between CCL5-CCR5 and CCL18-PIPTNM3 is shown. TAMs secret CCL18, binding to 
PIPTNM3 on breast cancer cells. Then breast cancer cells secret CCL5, inducing macrophages to a TAM-like phenotype CCR5. (7) Alisertib eliminates tumor-promoting MDSCs 
and TAMs to reshape the immune microenvironment. 
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transducer as well as activator of transcription 1 
(STAT1) expression in basal-like breast cancer (BLBC) 
[20]. Additionally, loss of SIRT4 promoted 
self-renewal and expansion of BCSCs through 
suppressing glutamine metabolism in mitochondrial 
and SIRT1-mediated BRCA1 transcription in nucleus, 
which provided a novel cross-talk between 
mitochondrial and nuclear sirtuins [21]. 

Signaling pathways activated in BCSCs mainly 
include Wnt, Notch, and Hedgedog (Hh) [22]. The Hh 
signaling pathway is activated by the binding of Hh 
ligands, such as Sonic Hedgehog (SHH), and their 
cognate receptors, such as Ptch1. Tetraspanin-8 
(TSPAN-8) recruits the ATXN3 deubiquitinating 
enzyme to reduce the ubiquitination of PTCH1 and to 
inhibit the degradation of the SHH/PTCH1 complex 
(Fig. 1). Therefore, TSPAN8 enhances the Hh pathway 
and breast cancer cell stemness [23]. In addition, SH3 
domain containing ring finger 3 (SH3RF3) promotes 
BCSCs by activating the JNK (c-Jun N-terminal 
kinase)-JUN pathway, as well as the expression of 
pentraxin 3 (PTX3) (Fig. 1) [24]. 

BCSCs are divided into two categories according 
to the cell cycle rate: energetic BCSCs (e-BCSCs) [25] 
and quiescent BCSCs (q-BCSCs) [26]. Q-BCSCs play 
critical roles in resistance to chemoradiotherapy and 
disease relapse. SET domain-containing protein 4 
(SETD4) is important in the maintenance of qBCSCs 
(Fig. 1). SETD4 facilitates heterochromatin formation 
via H4K20me3 (trimethylation of lysine 20 of histone 
4) catalysis on certain promoter regions which leads to 
the silencing of qBCSCs-suppressing genes. Notably, 
SETD4-defined qBCSCs maintain quiescent state by 
asymmetric division, producing a small qBCSC and a 
big active daughter cell; the latter generates normal 
cancer cells [27]. These findings on stem cell status 
expanded our knowledge on the epigenetic 
determinants of q-BCSCs and provided new 
therapeutic targets for drug-resistant q-BCSCs. 

Metabolism 
Altered metabolism is an emerging hallmark of 

cancer. Unlike normal cells, cancer cells prefer aerobic 
glycolysis, which is accompanied by increased lactate 
production, also known as the Warburg effect [28]. 
Based on the law of conservation of electrons in 
chemical reactions, Li et al. built up an electron 
balance model to outline metabolic plasticity under 
hypoxia. According to the model, both proline 
biosynthesis and lipogenesis can act as alternative 
electron acceptor. Blocking them synergistically 
suppresses tumor growth [29]. Moreover, tumor 
associated macrophages (TAMs) enhance aerobic 
glycolysis and induce apoptosis resistance of breast 
cancer cells via extracellular vesicle (EV) transmission 

of HIF-1α-stabilizing long noncoding RNA (HISLA). 
Reciprocally, lactate released from glycolytic cancer 
cells upregulates HISLA in TAMs, constituting a feed- 
forward loop between TAMs and cancer cells [30]. 

Psychological factors induced metabolic 
alterations was revealed to cancer progression. 
Lactate dehydrogenase A (LDHA) executes the final 
step of the Warburg effect by converting pyruvate to 
lactate. Breast cancer stem-like properties can be 
promoted by chronic stress-induced epinephrine via 
LDHA-dependent metabolic rewiring. Interestingly, 
vitamin C may reverse the chronic stress-induced 
cancer stem-like phenotype [31]. 

Tumor microenvironment (TME) 
The TME of breast cancer is composed of 

multiple stromal cells, soluble factors, and physical 
properties, including intratumor and metastatic 
microenvironment representing local and distant 
lesions, respectively [32]. 

In malignant phyllodes tumors (PT), TAMs 
promote malignant progression by secreting large 
amount of CCL18, which then binds to its receptor 
PIPTNM3 on myofibroblasts [33]. Reciprocally, 
malignant PT recruits and induces macrophages to a 
TAM-like phenotype by secreting CCL5. Thus, a 
positive feedback loop between CCL5-CCR5 and 
CCL18-PIPTNM3 is constituted, which represents the 
communication of myofibroblasts with TAMs and 
plays a central role in tumorigenesis of PT (Fig. 1) [34]. 

Tumor development is accompanied by the 
occurrence and persistence of immunosuppressive 
microenvironment. Myeloid-derived suppressor cells 
(MDSCs) and TAMs interact with CD4+ and CD8+ T 
lymphocytes and subsequently attenuate the 
anti-tumor immunity response, which is one of the 
factors that most responsible for immune evasion. 
Alisertib, a selective Aurora A kinase inhibitor, could 
reshape the immune microenvironment through 
selectively eliminating tumor-promoting myeloid 
cells, including MDSCs and TAMs, as well as 
restoring the anti-tumor immunity of T lymphocytes 
(Fig. 1). Intriguingly, combining alisertib with anti- 
programmed cell death-ligand 1 (PD-L1) therapy 
showed a synergistic efficacy in the treatment of 
advanced breast cancer [35]. 

According to the “seed and soil” theory, 
premetastatic niches in destination organs are key 
driving force for tumor dissemination and 
colonization [36]. Additionally, primary tumor is 
capable of inducing B cell accumulation in draining 
lymph nodes. These tumor-educated B cells produce 
pathogenic IgG that targets the tumor membrane 
antigen HSPA4 (heat shock protein family A member 
4) to activate the HSPA4-binding protein ITGB5 
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(integrin β5) and the downstream Src/NF-κB 
pathway. These findings illustrated the role of B cells 
in promoting the establishment of premetastatic 
niches in draining lymph nodes and accelerating 
breast cancer lymph node metastasis [37]. 

Tumor metastasis 
Distant metastasis is the main cause of breast 

cancer related death. A recent study deepened our 
understanding of EMT in metastasis by revealing that 
breast cancer cells were capable of recapitulating 
various epithelial and mesenchymal phenotypes. 
Epithelial-type circulating tumor cells (CTCs) and 
disseminated tumor cells (DTCs) with a restricted 
mesenchymal transition show the most metastatic 
traits, whereas mesenchymal-type CTCs and DTCs 
display limited metastatic ability [34]. Bone is the 
most common site of distant metastasis. To further 
explain the mechanisms underlying the predilection 
of bone metastasis has always been a focus of breast 
cancer research. It was proved that Forkhead box F2 
(FOXF2) regulated the epithelium-to-osteomimicry 
transition (EOT) via pleiotropic transactivation of the 
BMP4/SMAD1 signaling pathway and bone-related 
genes (BRGs), thus giving the metastatic tendency to 
bone (Fig. 2) [38]. The same group also revealed that 

FOXF2 deficiency BLBC tended to transdifferentiate 
to a myofibroblast/cancer associated fibroblast 
(CAF)-like phenotype and metastasized to visceral 
organs. The underlying mechanism involves the 
reciprocal repression loop between FOXF2 and 
transforming growth factor-β (TGF-β) (Fig. 2) [39]. 
These groundbreaking studies provided theoretical 
basis for preventing breast cancer metastasis. 

Metastasis-initiating cells (MIC) are a tiny 
population of cells, estimated less than 0.02% of 
disseminated tumor cells, and are responsible for 
forming secondary tumors. Yang et al found 
platelet-derived growth factor receptor (PDGFR) 
inhibition blocked AKT activation but not serum and 
glucocorticoid induced kinase 1 (SGK1) signaling in 
MIC, which resulted in suppressing lung metastasis of 
breast cancer; however, primary tumor burden was 
not affected. Co-targeting PDGFR and SGK1 showed 
synergistic anti-cancer effects and led to further 
inhibition of pulmonary metastases and primary 
breast tumors [40]. Reduction of cell–cell adhesion is 
crucial for cancer cells departing from the primary 
tumor. AMP-activated protein kinase (AMPK) is well 
known for maintaining energy homeostasis. A recent 
study revealed that PI3K and HER2 activation 
transcriptionally downregulated AMPKα1 expression 

 

 
Figure 2. Schematic diagram of metastasis. (1) Mechanism of bone metastasis is shown.FOXF2 overexpressed by BLBC/luminal regulates EOT via BMP4/SMAD1 pathway 
and BRGs, leading to bone metastasis. (2) Mechanism of visceral metastasis is shown. Deficiency of FOXF2 in BLBC transdifferentiates to myofibroblast/cancer associated fibroblast 
(CAF)-like phenotype and metastasizes to visceral organs via TGF-β/SMAD/miR-182-5p, which in turn repress FOXF2. (3) PI3K and HER2 activation downregulates AMPKα1 
expression via ΔNp63α, reducing cell-cell adhesion. (4) S100A14 promotes cancer metastasis by upregulating the secretion of CCL2 and CXCL5 via NF-κB pathway. (5) 
Mechanisms of lncRNA in regulating TNBC metastasis are shown below. Oncogenic lncRNA, NAMPT-AS activates NAMPT via POU2F2 miR-548b-3p.The reduction of 
LINC00665 encoded CIP2A-BP increases PI3K/AKT/NFκB to reduce lung metastasis. LINC00908 encodes ASRPS inhibits angiogenesis via VEGF. 
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via ΔNp63α and highlighted that transcriptional 
control was another layer of AMPK regulation, which 
suggested the pivotal role of AMPKα1 in cell-cell 
adhesion and cancer metastasis (Fig. 2) [41]. S100 
calcium binding protein A14 (S100A14) promoted 
cancer metastasis by upregulating the expression and 
secretion of CCL2 and CXCL5 via RAGE/NF-κB 
pathway (Fig. 2) [42]. These findings provided new 
therapeutic strategies for inhibiting breast cancer 
metastasis. 

Long noncoding RNA (lncRNA) plays an 
important role in regulating TNBC metastasis. 
Antisense strand of nicotinamide phosphoribosyl-
transferase (NAMPT-AS) was an oncogenic lncRNA 
that epigenetically activated NAMPT to promote 
breast cancer metastasis (Fig. 2) [43]. LncRNA 
LINC00665, encoding a micropeptide CIP2A-BP 
(CIP2A binding peptide), significantly reduced lung 
metastasis of breast cancer (Fig. 2) [44]. LncRNA 
LINC00908, encoding a polypeptide ASRPS (a small 
regulatory peptide of STAT3), inhibits angiogenesis 
and metastasis of TNBC (Fig. 2) [45]. 

In addition, Nie et al. raised new precautions in 
dexamethasone therapy for breast cancer patients. 
Glucocorticoids (GCs) could activate TEA domain 
transcription factor 4 (TEAD4) in the Hippo signaling 
pathway for cancer metastasis and chemo-resistance 
by enhancing the interaction of the glucocorticoid 
receptor (GR) with TEAD4 to form a transcriptional 
complex (Fig. 2) [46]. 

Drug resistance 
Drug resistance, both intrinsic and acquired, 

remains the main obstacle for effective anticancer 
therapies. 

In terms of chemotherapy, cancer cells can 
develop drug resistance by activating DNA damage 
repair signaling pathways [47]. Following DNA 
damage, poly ADP-ribose polymerase 1 (PARP1) 
recruits MORC2 (MORC family CW-type zinc finger 
2) to DNA damage sites and catalyzes MORC2 
PARylation, which enhances its chromatin 
remodeling activities, thereby facilitating efficient 
DNA repair. In turn, MORC2 stabilizes PARP1 
through a crosstalk between N-acetyltransferase 
(NAT10)-mediated acetylation and CHFR-mediated 
ubiquitination [48]. DNA-damaging chemo-
therapeutic agents stimulate MORC2 acetylation in a 
NAT10 dependent manner, then acetylated MORC2 
activates G2 DNA damage checkpoint, enhancing cell 
survival following DNA damage [49]. Therefore, 
depleting MORC2 or inhibiting NAT10 sensitizes 
cancer cells to chemotherapy by abrogating DNA 
damage repair. Moreover, Rac 1 enhances the activity 
of non-oxidative pentose phosphate pathway via 

activating aldolase A and ERK signaling pathway, 
thereby inhibiting the nucleotide metabolism and 
DNA damage caused by chemotherapy in breast 
cancer [50]. Additionally, Zhang et al revealed that a 
feed-forward circuit between serglycin (SRGN) and 
YES-associated protein (YAP) induced HDAC2 
expression, promoting chemoresistance to 5-FU [51]. 
Dong et al. found glutathione S-transferases P1 
(GSTP1) contributed to adriamycin resistance [52]. In 
TNBC, synaptotagmin-like 4 (SYTL4) contributes to 
taxane resistance via attenuating the stability of 
microtubule network and increasing the growth rate 
of microtubule [53] The antisense intronic lncRNA 
(ai-lncRNA) EGOT (eosinophil granule ontogeny 
transcript) sensitizes breast cancer cells to paclitaxel 
by enhancing autophagy[54]. MEF2-interacting 
transcriptional repressor (MITR), as a truncated 
isoform of HDAC9, induces resistance of paclitaxel 
via increasing interleukin-11 (IL11) expression and 
subsequent activating JAK/STAT3 signaling pathway 
[55]. 

In terms of endocrine therapy, antiestrogens 
stabilize MORC2 in a GPER1 (G protein coupled 
estrogen receptor 1) dependent manner and decrease 
MORC2 enhanced cellular sensitivity to tamoxifen 
and fulvestrant [56]. In estrogen receptor (ER) 
positive breast cancer, lncRNA BDNF-AS, driven by a 
MEF2A regulated enhancer, induces endocrine 
resistance of breast cancer by activating the RNH1 
(ribonuclease inhibitor 1)/TRIM21/mTOR 
(mechanistic target of rapamycin) cascade [57]. This is 
a novel mechanism other than the canonical PI3K 
(phosphatidylinositol-3-kinase)/AKT/mTOR axis. 
LncRNA DILA1 contributes to tamoxifen resistance in 
breast cancer via interacting with Cyclin D1 and 
blocking its phosphorylation and degradation [58]. 
Ajuba recruits DBC1 and CBP/p300, forming a 
ternary complex, to increase transcriptional activity of 
ERα and to potentiate the ERα target gene expression, 
thereby contributing to tamoxifen resistance [59]. 
MiR-575 enhances ERα activity and tamoxifen 
resistance via targeting cyclin dependent kinase 
inhibitor 1B (CDKN1B) and BRCA1 [60]. Moreover, 
inactivation of neddylation with MLN4924 
transcriptionally inhibits ERα and significantly 
improves the fulvestrant sensitivity [61]. However, in 
ER negative breast cancer, targeting ubiquitin 
carboxyl terminal hydrolase-L1 (UCH-L1) 
upregulates ERα expression via enhancing 
ubiquitination and degradation of EGFR, and 
subsequently increases the sensitivity of tamoxifen 
and fulvestrant [62]. 

In terms of targeted therapy, lncRNA TINCR 
induces trastuzumab resistance by regulating 
miR-125b/HER-2 (human epidermal growth factor 
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receptor 2) pathways [63]. LncRNA TROJAN 
promotes ER+ breast cancer resistance to palbociclib, 
a cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitor, 
through TROJAN-NKRF-CDK2 axis [64]. PARP 
inhibitor olaparib is effective in treating breast cancer 
patients with BRCA1 mutations. All-trans retinoic 
acid (ATRA) sensitizes BRCA1-proficient breast 
cancer to PARP inhibition by inhibiting Pin1 and 
destabilizing BRCA1, which could extend the use of 
PARP inhibitors [65]. 

In regard to immunotherapy, breast cancers have 
poor response to immunotherapy because of poor 
T-cell infiltration and heightened immuno-
suppression within TME [66]. A low-dose vascular 
endothelial growth factor receptor 2 (VEGFR2) 
blockade can increase immune cell infiltration and 
upregulate programmed cell death protein-1 (PD-1) 
expression on immune cells, thus sensitizing breast 
cancer to a PD-1 blockade [67]. PARP1 suppresses 
PD-L1 expression via interaction with nucleophosmin 
(NPM1), which abolishes the binding of NPM1 at the 
PD-L1 gene promoter in TNBC. Olaparib elevates 
PD-L1 expression and leads to better anti-cancer 
efficacy in combination with the anti-PD-L1 antibody 
[68]. In addition, as a strong candidate for autophagy 
deficiency mediated immunosuppression, Tenascin-C 
(TNC) is overexpressed and is inversely correlated 

with LC3B expression and CD8+ T cells in TNBC 
patients. Inhibition of TNC in autophagy impaired 
TNBC cells sensitizes T cell mediated tumor killing 
and boosts anti-tumor effects of anti-PD-1/PD-L1 
therapy [69]. These findings provided new 
approaches to potentially combine immunotherapy 
with molecular-targeting agents. These drug 
resistance mechanisms aforementioned are 
summarized in Table 1 and Figure 3. 

Tumor biomarkers 
The prognosis of breast cancer mainly depends 

on early detection and intervention. Recently, 
accumulated evidence indicates that circulating tumor 
DNA (ctDNA) could be a sensitive and specific 
biomarker for monitoring breast cancer progression 
and predicting relapse in early-stage [70]. A study 
showed the positive detection rate of ctDNA in 
early-stage breast cancer could reach 74.2%. 
Moreover, positive ctDNA after surgery indicated 
potential recurrence and remote metastasis [71]. 
Serum LRP6 ectodomain (LRP6N) could be another 
promising metastatic diagnosis marker for its binding 
to CXCR4 and competitively preventing SDF-1/ 
CXCR4-induced lung metastasis [72]. 

 

Table 1. Drug resistance mechanisms of breast cancer 

Drug resistance Drugs Mechanism Reference 
Chemotherapy DNA damage 

agents 
A feedback loop between MORC2 and PARP1 facilitates efficient DNA repair 48 
NAT10-mediated MORC2 acetylation contributes to DNA damage-induced G2 checkpoint activation 49 
Rac1 promotes the glycolysis, especially non-oxidative pentose phosphate pathway and nucleoside metabolism 50 

 5-FU A feed-forward circuit between SRGN and YAP induces HDAC2 expression to maintain stemness and 
chemoresistance 

51 

 adriamycin GSTP1 promotes autophagy by interacting with PI3K, p110α, and then preventing PI3K-Akt-mTOR pathway 
signaling 

52 

 paclitaxel SYTL4 decreases microtubule stability via inhibiting microtubule polymerization 53 
EGOT enhances autophagosome accumulation via the upregulation of ITPR1 expression in cis and in trans 54 
MITR increases IL11 expression and activation of downstream JAK/STAT3 signaling pathway 55 

Endocrine 
therapy 

tamoxifen/ 
fulvestrant  

Estrogen receptor antagonists stabilize MORC2 via the GPER1-PRKACA-CMA pathway 56 
UCH-L1 contributes to loss or reduction of ERα by the deubiquitinase-mediated stability of EGFR 62 

 tamoxifen BDNF-AS promotes RNH1 degradation via TRIM21-mediated ubiquitination and sustains the activation of mTOR 
signaling 

57 

DILA1 blocks phosphorylation and degradation of Cyclin D1 58 
Ajuba/DBC1/CBP/p300 ternary complex co-activates ERα transcriptional activity and enhances ERα acetylation 59 
miR-575 enhances ERα activity by targeting CDKN1B and BRCA1 60 

 fulvestrant Inactivation of neddylation with MLN4924 inhibits ERα via delaying SGK degradation and inducing FOXO3a 
nuclear export 

61 

Targeted therapy trastuzumab TINCR promotes HER-2 expression by sponging miR-125b and promotes EMT by targeting Snail-1 63 
 palbociclib TROJAN binds to NKRF and inhibits its interaction with RELA, upregulating the expression of CDK2 64 
 olaparib ATRA sensitizes BRCA1-proficient breast cancer to PARP inhibition by inhibiting Pin1 and destabilizing BRCA1 65 
Immunotherapy  anti-PD-1 Low-dose VEGFR2 blockade sensitizes tumors to anti-PD-1  

therapy via upregulation of PD-1 on immune cells through stimulating the secretion of OPN and TGF-β 
67 

 anti-PD-L1 PARP1 suppresses PD-L1 transcription through interacting with NPM1 and abolishing the binding of NPM1 at 
the PD-L1 promoter 

68 

 anti-PD-1/ 
anti-PD-L1 

TNC contributes to autophagy deficiencymediated immunosuppression via suppressing LC3B and CD8+ T cells  69 

PRKACA protein kinase cAMP-activated catalytic subunit alpha, CMA chaperone-mediated autophagy, SGK serum and glucocorticoid-induced protein kinase, FOXO3a 
forkhead box O3a, OPN osteopontin. 
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Figure 3. Schematic diagram of drug resistance. (A) The mechanism of drug resistance in chemotherapy, including DNA damage agents, 5-FU, Adriamycin, and paclitaxel. 
(B) Drug resistance mechanism of tamoxifen/fulvestrant, tamoxifen and fulvestrant. (C) Drug resistance mechanism of trastuzumab, palbociclib and olaparib. (D) Drug resistance 
mechanism of immunotherapy. 
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Because of the highly heterogeneity of TNBC, 
appropriate classification will provide effective 
prediction for outcomes. TNBC were classified into 
three heterogeneous clusters based on the 
microenvironment phenotypes: cluster 1, the 
“immune-desert” cluster, with low microenvironment 
cells infiltration; cluster 2, the “innate immune- 
inactivated” cluster, with resting innate immune cells 
and nonimmune stromal cells infiltration; and cluster 
3, the “immune-inflamed” cluster, with abundant 
adaptive and innate immune cells infiltration. Cluster 
1 and 2 were both called “cold tumors” while cluster 3 
was a “hot tumor”. Immune checkpoint inhibitors 
might be effective for “immune-inflamed” clusters, 
indicating that these distinct phenotypes were 
potential biomarkers for predicting therapeutic 
efficacy. The transformation of “cold tumors” into 
“hot tumors” should also be considered when dealing 
with “immune-desert” and “innate immune- 
inactivated” clusters [73]. 

The molecular typing of breast cancer has been 
revealed deeply by novel detecting techniques. A 
study divided Chinese TNBC into four subtypes 
based on multi-omics data: luminal androgen 
receptor, immunomodulatory, basal-like immune- 
suppressed, and mesenchymal-like subtypes, which 
could serve as a reference in order to further advance 
the understanding and precision treatment of TNBC 
[74]. Further, the same group conducted a phase Ib/II 
trial, demonstrating the clinical benefit of molecular 
subtyping-based and targeted sequencing-based 
therapy for refractory metastatic TNBC. Specifically, 
nab-paclitaxel in combination with anti-PD-1 therapy 
or with anti-VEGFR therapy showed favorable 
outcomes on IM (immunomodulatory) subtype and 
BRCA1/2 wild type-BLIS (basal-like immune- 
suppressed) subtypes, respectively [75]. Moreover, 
based on distinct metabolic dysregulation, TNBC was 
classified into three subtypes via multi-omics 

database analysis. MPS1 (heterogeneous metabolic- 
pathway-based subtype 1) is the lipogenic subtype 
with upregulated lipid metabolism. MPS2 is the 
glycolytic subtype with upregulated carbohydrate 
and nucleotide metabolism. MPS3 is the mixed 
subtype with partial pathway dysregulation. 
Different subtypes respond to metabolic inhibitors 
with distinct sensitivity which enables the 
development of personalized cancer therapy by 
targeting unique metabolic profiles [76]. 

Novel therapeutic targets and new drugs 
With the increasing popularity of precision 

therapy for breast cancer, it is urgent to develop new 
therapeutic targets and drugs. 

Recent studies showed the effects of FTO[77], 
protein arginine methyltransferase 1 (PRMT1) [78], 
coactivator associated arginine methyltransferase 1 
(CARM1)/PRMT4 [79], Otubain-2 (OTUB2) [80], 
RING finger protein 144A (RNF144A) [81], plant 
homeodomain finger protein 20-like protein 1 
(PHF20L1) [82], heat shock transcription factor 1 
(HSF1) [83], epithelial cell transforming sequence 2 
(ECT2) [84], pescadillo homolog 1 (PES1) [85], 
PHACTR2-AS1 (PAS1) [86], breast cancer-related 
transcript 1 (BCRT1) [87], and circCDYL [88] on 
progression of breast cancer and they provided novel 
therapeutic targets. TNBC is especially hard to treat 
due to the lack of targets. A recent study 
demonstrated NOTCH1-ATR-CHK1 cascade and 
cisplatin displayed good synergy in inhibiting TNBC 
by targeting cell cycle checkpoint, DNA damage, and 
EMT [89]. In addition, TNBC progression was also 
promoted by TROJAN [90], circSEPT9 [91], and 
moesin (MSN) [92], which could be potent options for 
this fatal disease. These potential novel therapeutic 
targets are summarized in Table 2. 

 

Table 2. Potential novel therapeutic targets of breast cancer 

Target Function Mechanism Reference 
PES1 Promotes breast cancer growth Forms a complex with TERT and the TR, regulating telomerase activity, telomere length 

maintenance, and senescence 
85 

MSN Stimulates TNBC cells proliferation and 
invasion 
 
 

Phosphorylated MSN interacts with the nucleoprotein NONO and promotes the nuclear 
localization of PKC interacting with MSN, which leads to the phosphorylation of CREB 
and the up-regulation of downstream gene expression 

92 

PHF20L1 Maintains the proliferative state of breast 
cancer cells 

recognizes H3K27me2 and collaborates with PRC2 and the NuRD complex in regulating 
H3K27 modifications to suppress a series of tumor suppressors 

82 

TROJAN Promotes TNBC cells proliferation and 
invasion 

Increases ZMYND8 degradation and epigenetically upregulates metastasis-related genes 90 

PAS1 Inhibits breast cancer cells proliferation and 
metastasis 
 

Binds to rDNA genes and recruits histone methyltransferase SUV39H1, triggering H3K9 
methylation of these genes, resulting in the suppression of ribosome synthesis 

86 

BCRT1 Promotes breast cancer cells proliferation 
and mobility 

competitively binding with miR-1303 to protect PTBP3 from degradation; promotes M2 
polarization; facilitates hypoxia-induced EMT 

87 

circCDYL 
 

Promotes breast cancer cells proliferation promotes breast cancer malignant progression via the miR-1275-ATG7/ULK1-autophagic 
axis 

88 
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Target Function Mechanism Reference 
circSEPT9 
 

Promotes TNBC cells proliferation, 
migration, invasion and inhibits TNBC cells 
apoptosis and autophagy 

E2F1 and EIF4A3 mediated circSEPT9 regulates the expression of LIF via sponging 
miR-637 and activates LIF/Stat3 signaling pathway 

91 

OTUB2 Promotes breast cancer stemness and 
metastasis 

EGF and KRAS mutation induce OTUB2 poly-SUMOylation, thereby deubiquitinates and 
activates YAP/TAZ 

80 

NOTCH1 Induces the TNBC formation 
 

Promotes the EMT and regulates the cell cycle through activation of ATR-CHK1 signalling 
pathway 

89 

PRMT1 Promotes breast cancer cells proliferation PRMT1-dependent methylation of C/EBPα promotes the expression of cyclin D1 by 
blocking the interaction between C/EBPα and HDAC3 

78 

CARM1 Promotes ERα-positive breast cancer cells 
proliferation 

Transcriptional activates cognate estrogen-induced genes and methylates a large cohort of 
proteins 

79 

FTO Promotes breast cancer cells proliferation, 
colony formation and metastasis 

Demethylates N6-methyladenosine in the 3’UTR of BNIP3 and causes its degradation 
 

77 

RNF114A Suppresses breast cancer cells proliferation, 
colony formation, migration, and invasion 

Interacts with and targets HSPA2 for ubiquitination and degradation 81 

HSF1 
 

Promotes breast cancer cells proliferation, 
migration, and invasion 

PIM2-mediated HSF1 phosphorylation at Thr120 promotes proteostasis and 
carboplatin-induced autophagy, and enhances PD-L1 expression 

83 

ECT2 promotes breast cancer cells survival Forms a positive feedback loop with USP7 to promote stabilization of each other, 
ultimately sustains the expression of MDM2 

84 

TERT telomerase reverse transcriptase, TR telomerase RNA, PKC protein kinase C, CREB cAMP response element–binding protein, PRC2 polycomb repressive complex 2, 
NuRD Mi-2/nucleosome remodeling and deacetylase, ZMYND8 zinc finger MYND-type containing 8, rDNA ribosome DNA, LIF leukemia inhibitory factor, TAZ WW 
domain-containing transcription factor, C/EBPα CCAAT/enhancer binding protein α, HSPA2 heat-shock protein family A member 2,PIM proviral integration site for 
moloney murine leukemia virus. 

 
 
As we know, tumor metabolism is important in 

cancer progression. Nevertheless, the lack of effective 
and selective anti-metabolism drugs hinders clinical 
application. Chen et al reported a small molecule 
ZY-444 bound to pyruvate carboxylase, which was a 
key anaplerotic enzyme of the tricarboxylic acid cycle 
in promoting cancer growth and metastasis through 
Wnt/β-catenin/Snail signaling pathways. ZY-444 
suppressed breast cancer cell proliferation with low 
cytotoxicity in normal cells by inactivating catalytic 
activity of pyruvate carboxylase [93]. Flubendazole, a 
broad-spectrum anthelmintic drug belonging to 
benzimidazole group, has been repurposed as a 
promising anti-cancer agent [94]. Zhen et al revealed 
flubendazole induced autophagic cell death by 
targeting Eva-1 homolog A (EVA1A) and suppressed 
TNBC proliferation and migration [95]. Moreover, 
resistomycin, QN-1 and emodin attenuates TNBC 
progression via binding to Pellino-1 to promote 
FBXO11-mediated SNAIL/SLUG degradation [96], 
down-regulating c-MYC transcription [97] and 
reducing VEGFA transcription [98], respectively. 
Accordingly, these studies provided alternative 
strategies for treating TNBC. 

Conclusion 
In summary, Chinese investigators have made 

significant progress in all areas of breast cancer 
research over the last two years, particularly in the 
field of BCSCs. A number of new BCSC membrane 
biomarkers, including PROCR, NOTCH4, SGCE, 
TSPAN8, and IL1R2, were identified. They may be 
used for diagnosis and potential therapeutic targets. 
In addition, stemness of BCSCs could be regulated by 
tumor microenvironment, such as TAM, CAF, and 
signaling molecules. Due to the increased patient 

numbers, limited treatment options, and 
unsatisfactory treatment efficacy in China, 
investigators focused on the exploration of drug 
resistance and metastasis mechanisms and made great 
efforts to identify new tumor biomarkers and 
therapeutic targets in order to improve the diagnosis 
and treatment of breast cancer. However, there is still 
a lack of milestone discovery in terms of breast cancer 
cell origin, pathological typing, and targeted 
metastatic therapy. Thus, multi-party cooperation is 
strongly recommended to make a breakthrough in 
basic research and clinical translation. 
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