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Abstract 

Heme oxygenase 1 (HO-1), also known as heat shock protein 32 (HSP32), is a stress-inducible enzyme. 
In the past, it was believed to participate in maintaining cell homeostasis, reducing oxidative stress damage 
and exerting anti-apoptotic effects. When exposed to noxious stimulation, the expression of HO-1 in the 
body will increase, antagonizing these oxidative stresses and protecting our bodies. Recently, many 
studies showed that HO-1 was also highly-expressed in multiple gynecological cancers (such as ovarian 
cancer, cervical cancer and endometrial cancer), suggesting that it should be closely related to cell 
proliferation, metastasis, immune regulation and angiogenesis as an oncogene. This review summarizes 
the different effects of HO-1 under normal and diseased conditions with a brief discussion of its 
implications on the diagnosis and treatment of gynecological cancers, aiming to provide a new clue for 
prevention and treatment of diseases. 
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Introduction 
The most important component of red blood cell 

is hemoglobin, which is composed of globin and heme 
[1]. Heme is a large complex, containing iron and 
protoporphyrin IX [2-4]. It is a cellular oxidant, 
participating in the formation of oxidative free 
radicals and leading to oxidative injury [5]. Noxious 
stimulation leads to the increase of heme oxygenase 1 
(HO-1) for antagonizing these oxidative stresses and 
protecting our bodies [6]. Therefore, the hypothesis 
that HO-1 may be used as a targeted gene in tumor 
treatment has attracted more and more attentions. It is 
one of the most widely distributed antioxidative 
enzymes in the body and is the rate-limiting enzyme 
of heme metabolism [7]. 

Among all these malignant tumours, 
gynecological cancers is a specific type of fatal disease 
which only happens to women, and can seriously 
threaten the lives and health of women around the 

world. In recent years, many studies have confirmed 
that HO-1 is highly-expressed in a variety of 
gynecological tumors, such as ovarian cancer, cervical 
cancer and endometrial cancer. The elevated level of 
HO-1 and the deviation of its dynamic trend from the 
baseline may be a signal of disease alert [8-11]. Studies 
have also shown that as a novel oncogene, HO-1 is 
closely related to tumor proliferation and metastasis, 
and may become a potential marker for predicting the 
prognosis of gynecological tumors [9]. Furthermore, 
HO-1 itself is also expected to become a target for 
tumor treatment. HO-1 inhibitors such as zinc 
protoporphyrin (ZnPP) have obtained certain efficacy 
in clinical work [12]. Therefore, this review 
summarizes the expression, regulation, roles and 
treatment values of HO-1 in gynecological tumors. 
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HO-1 and heme metabolism 
HO family and HO-1 

In the long course of evolution, cells have 
developed a set of mechanisms against oxidative 
stress, and heme/HO system is one of the most 
important anti-oxidant mechanisms. Since Tenhunen 
and his colleagues first described the mechanism of 
heme catabolism in 1968 [13], people have gradually 
conducted more and more studies on the HO family. 
It is an unique type of cell protection enzyme located 
in the endoplasmic reticulum, and participate in the 
metabolism of heme [14]. 

From algae to humans, HO is ubiquitous and 
highly-conserved, suggesting that it may play an 
indispensable role in cells. We usually divide HO into 
three categories [15]. As shown in Table 1, HO-1 is a 
32 kD stress-inducible enzyme [16]. As it can be 
induced by high temperature, so it is also known as 
heat shock protein 32 (HSP-32) [13, 17]. High- 
expression of HO-1 can be observed in liver, spleen, 
bone marrow and senescent erythrocytes [18, 19], and 
its main function is to degrade heme into biliverdin 
(BV), carbon monoxide (CO) and ferrous ion (Fe2+) 
[20, 21]. Under the action of biliverdin reductive 
(BVR), BV will be further processed into bilirubin (BR) 
[22, 23]. By regulating intracellular levels of heme and 
heme metabolites, HO-1 participates in maintaining 
cell homeostasis, reducing oxidative damage, 
regulating cell proliferation and apoptosis [24]. HO-2 
is a 36 kD constitutive enzyme, which is related to the 
nerve creed effect of carbon monoxide, it also 
participates in hemoglobin degradation [25]. High 
levels of HO-2 can be found in brain tissue, retina and 
testis [26]. Many scholars speculate that the presence 
of HO-2 in the testis may play a crucial role in the 
male reproductive system [27], but this hypothesis has 
not been confirmed. What has been verified is that 
HO-2 can protect neurons against ischemia/ 
reperfusion injury. HO-3 is widely distributed but has 
weak activity, which can promote the combination of 
heme and HO [28]. Sometimes it is viewed as a 
pseudogene processed from HO-2 transcription [26]. 
Among different HO isoforms, HO-1 seems to be the 
most valuable because its expression level can be 
induced under various pathophysiological conditions 
[24]. 

Metabolites related to HO-1 

Carbon monoxide 
As depicted in Figure 1, carbon monoxide (CO) 

is a gaseous product, most CO in our bodies comes 
from heme metabolism, it is an important signaling 
molecule [22, 29]. It can act directly on the blood 
vessels to cause vasodilation, this effect can also be 
achieved through the activity of the autonomic 
nervous system [30, 31]. Besides, CO plays a 
significant role in anti-apoptotic effects, this can be 
synergistic with other anti-apoptotic system [32, 33], 
by regulating the Mitogen-activated protein kinase 
(MAPK) signal pathway and inhibiting the activated 
mononuclear macrophage system. Exogenous CO has 
also this effect by up-regulating the expression of 
HO-1. Additionally, CO also participates is involved 
in many other physiological and pathological 
processes, for example, anti-inflammation, anti- 
proliferation [16, 34], inhibition of platelet aggregation 
[22, 35] and neurotransmission [36]. 

Biliverdin and bilirubin 
BVR is an NADPH-dependent enzyme, which 

can reduce biliverdin (BV) to bilirubin (BR) in the 
presence of NADPH. It is a dual-specific protein 
kinase that phosphorylates serine and tyrosine, 
therefore it’s a key enzyme for protein 
phosphorylation. Apart from working as reductase 
and dual-specific protein kinase, BVR can also 
regulate tumor cells by acting as a basic leucine zipper 
(bZIP) transcription factor [37, 38]. 

The anti-apoptotic effect of BV and BR is 
achieved by promoting anti- 
apoptotic protein bcl-2 and inhibiting pro-apoptotic 
protein Bax [39]. BR is also an important antioxidant 
in our bodies [40], it can inhibit the peroxidation of 
lipid and protein by scavenging excessive reactive 
oxygen species (ROS) [20, 41]. Oxidative stress is 
caused by the imbalance between cellular oxidants 
and antioxidants, ROS is a major oxidant in our 
bodies [42, 43], which can cause protein denaturation, 
genetic instability, and promote tumorigenesis [43]. It 
is usually generated by oxygen metabolism, but 
noxious stimulation can also cause an increase in ROS 
[44]. 

Table 1. Comparison of three HO isozymes 

 HO-1 HO-2 HO-3 
Molecular weight 
Inducibility 
Activity level 

32kD 
Stress-inducible 

High 

36kD 
Constitutive 

High 

Unknown 
Unknown 

Low 
Highly-Expressed localization Live, spleen, bone marrow, senescent 

erythrocytes 
Brain, retina and testis Widely distributed 

Similarity Degrade heme into biliverdin, carbon monoxide, ferrous ion and bilirubin 
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Ferrous ion 
Fe2+ is cytotoxic because it can interact with 

cellular oxidants to generate ROS, promoting 
oxidation and inflammation. However, Fe2+ generated 
by heme metabolism can increase the expression of 
ferritin, which turns to prevent inflammation. In other 
words, when HO-1 is highly expressed, the level of 
Fe2+ increases, iron regulatory proteins (IRPs) can be 
dissociated from mRNA, which promotes ferritin 
translation. Ferritin increases the anti-injury ability of 
cells and makes the tumors more sensitive to 
oxidative stress, realizing the anti-tumor effect of 
HO-1 in iron metabolism. However, some studies 
pointed out that many diseases, such as Alzheimer, 
patients’ lipid peroxidation may be related to iron 
accumulation. The amount of iron and ROS is the 
determinative momentum for the role of HO-1, 
excessive iron and ROS can turn HO-1 from a cell 
protector to a perpetrator, causing DNA damage, 
gene mutations and even cell death [45, 46]. 
Ferroptosis is a newly-identified non-programmed 
cell death, which is characterized by iron-overload 
and lipid peroxidation [47, 48]. Therefore, some 
researchers proposed that it can be used as a new 
strategy in many diseases, especially in cancer 
therapy. 

The role of HO-1 in different tumors 
Oxidative stress is caused by the imbalance 

between oxidation and antioxidant system in our 
bodies [49]. Common noxious stimuli include 
hypoxia, inflammatory cytokines, ultraviolet light, 
heavy metal ions, radiotherapy and so on [24, 47]. 
These stimuli changes the body’s homeostasis, which 

triggers the activation of various signaling pathways, 
leading to disease progression. In normal cells, HO-1 
acts as a cytoprotective agent, it can fight against 
oxidative injuries and regulate inflammatory response 
[50, 51]. In ischemic diseases, HO-1 has been be used 
for the treatment of glucocorticoid-related 
osteoporosis and osteonecrosis [52]. Noxious stimuli 
actives upstream signal kinases, promoting the 
binding of DNA and transcription factors, which 
results in high expression of HO-1 and providing 
protection for normal cells [50, 53]. 

Nevertheless, the biological effect of HO-1 seems 
to be tissue-specific. In some cancer cells, HO-1 plays 
the role of survival factor [29]. Overexpression of 
HO-1 promotes tumor progression in turn [23, 54]. It 
can facilitate angiogenesis and prevent tumor cells 
from apoptosis, leading to its survival and 
progression [55]. Researches suggest that heme can 
induce a stress-inducible protein Sestrin2 (SESN2), 
which is a protective mechanism to antagonize 
oxidative stress and colon tumor growth. However, 
high level of SESN2 can promote tumorigenesis [56]. 
Another high-risk factor of colorectal carcer is the 
consumption of red meat. Heme iron is the main 
component of red meat, which may be the cause of 
excessive colonic proliferation and carcinogenesis 
[57]. Antioxidants can stimulate lung cancer 
metastasis by reducing heme levels and stabilizing the 
transcription factor BTB and CNC homology 1 
(BACH1) [58]. Overexpression of HO-1 induces the 
expression of Cyclin Dependent Kinase 4 (CDK4) and 
promotes the occurrence of liver cancer; however, a 
feedback loop may exist between IL-6 and HO-1, thus 
HO-1 can be induced as an antitumor gene through 
the IL-6/JAK/STAT3 pathways [59, 60]. The 

application of HO-1 inhibitor zinc 
protoporphyrin (ZnPPIX) can greatly 
inhibit the proliferation of pancreatic 
cancer cells, while HO-1 significantly 
promotes cell proliferation [61]. 
Overexpression HO-1 promotes the 
occurrence of melanoma and plays the 
role of anti-apoptosis through the 
B-Raf-ERK signaling pathway [62]. The 
most common metastatic site of prostate 
cancer is bone, a research by Anselmino 
has showed that HO-1 is a pivotal 
modulator of bone turnover and 
remodeling because it can promote the 
growth and invasion of cancer cells both 
in vivo and in vitro. This may be related 
to the epithelial-mesenchymal transition 
(EMT) induction and antioxidant and 
antiapoptotic effects of the prostate 
cancer cells [63, 64]. 

 

 
Figure 1. Heme metabolism and its main metabolites. Oxidative stress increases the level of HO-1, 
which can degrade heme into BV, BR, CO and Fe2+. Through regulating the autonomic nervous system, CO 
can act directly on the blood vessels to cause vasodilation. Large amount of Fe2+ generated by heme 
metabolism can dissociate IRPs from mRNA and promote the translation of ferritin, which increases the 
anti-injury ability of cells and makes the tumors more sensitive to therapy. BVR is an NADPH-dependent 
enzyme, and it can reduce BV into BR. BV and BR then work together to scavenge excessive ROS and inhibit 
the peroxidation of lipid and protein. In summary, by regulating intracellular levels of heme and heme 
metabolites, HO-1 participates in maintaining cell homeostasis, reducing oxidative damage, regulating cell 
proliferation and apoptosis. HO-1: Heme oxygenase 1; BV: biliverdin; BR: bilirubin; CO: carbon monoxide; 
Fe2+: ferrous ion; IRPs: iron regulatory proteins; BVR: biliverdin reductive; ROS: reactive oxygen species. 
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HO-1 can increase anti-apoptotic ability, which 
may lead to their uncontrolled cell proliferation and 
even cause tumorigenesis [24]. Compared with the 
surrounding normal tissues, therefore, the increased 
expression of HO-1 can be observed in tumors [11]. 
Abnormal signaling pathway activation can lead to 
reduced self-adhesion ability of tumor cells, tumor 
angiogenesis and changes in microenvironment [65], 
preventing the cancer cells from apoptosis and 
autophagy, and even promoting their proliferation 
and metastasis [47]. Many studies have shown that 
HO-1 is a crucial substance for angiogenesis [66], 
which can help malignant tumors continue to grow 
and invasion. Currently, highly-expressed HO-1 has 
been found in various malignant tumors such as 
melanoma [2], thyroid cancer [5], osteosarcoma [50], 
breast cancer [67], lung cancer [58], bowel cancer [56, 
57, 68], renal cell cancer [69], hepatoma [59], prostate 
cancers [63, 64], pancreatic cancer [61], and so on. 

However, the formation of tumors is not only 
related to the cancer cells themselves. In fact, their 
occurrence, growth and even metastasis are very 
closely related to the surrounding cells (immune/ 
inflammatory cells, glial cells, fibroblasts, etc.) and 
extracellular components (cytokines, growth factors, 
hormones, etc.), namely the so-called tumor 
microenvironment (TME) [70, 71]. More and more 
studies have shown that HO-1 can affect cancer 
progression through modulating TME [72]. Of note, 
HO-1 can act as an immunomodulator that inhibits 
cell maturation, activation and infiltration [73-75]. 
Myeloid-derived suppressor cells (MDSCs) are 
known to inhibit anti-tumor immunity, HO-1 
expression in MDSCs plays a role in the suppression 
of alloreactive T cells [76, 77] through promoting the 
release of many inflammatory factors such as 
interleukin-10 (IL-10) [78] and tumor necrosis factor-α 
(TNF-α) [79], the expression of transforming growth 
factor β (TGF-β), intercellular adhesion molecule 1, 
and other fibrogenesis factors increase, activating the 
NF-κB/Signal Transducer and Activator of 
Transcription (STAT)3 signaling pathway [80, 81], and 
maintaining the self-renewal ability of cancer stem 
cells[82]. By regulating the inflammatory response 
and anti-tumor immunity, these immune/ 
inflammatory cells play significant roles in TME, 
which can deeply affect cancer progression. 

Meanwhile, as a key mediator of angiogenesis, 
vascular endothelial growth factor (VEGF) can form 
new vasculature around tumors, causing them to 
grow exponentially [83]. HO-1 also participates in 
fostering angiogenesis linked to inflammation and 
tumor by up-regulating the expression of VEGF in 
macrophages. A study conducted by Gabriel et al. has 
showed that the ectopic expression of HO-1 can 

significantly increase the transcriptional activity of 
VEGF in prostate cancer cells [84]. In addition, VEGF 
fosters the formation of capillary-like tubular 
structures in tumor tissues [85, 86], and promotes the 
proliferation and migration of cancer cells. 

More importantly, the level of HO-1 is closely 
related to the clinical features and prognosis of 
tumors. Generally speaking, the higher the expression 
of HO-1, the lower the tumor differentiation, and the 
more active the proliferation and metastasis [9]. HO-1 
inhibitors can suppress cell proliferation and invasion 
by increasing intracellular ROS levels and inducing 
cell cycle arrest [5]. Because HO-1 is so closely related 
to tumors, some people even proposed that HO-1 can 
also be used as one of the tumor markers. However, a 
study on breast cancer showed that HO-1 
overexpression can reduce lung metastasis by 
inhibiting cell EMT and proliferation, suggesting that 
HO-1 is tissue-specific [87], which needs to be studied 
further. 

HO-1 plays different roles during different 
stages of tumor formation. Before a tumor is formed, 
it can remove aging and dead cells, inhibit tumors and 
protect normal cells. When a tumor is formed, the 
activation of HO-1 enables tumor cells to gain this 
anti-apoptotic ability, which leads to the occurrence 
and proliferation of tumors [53]. In that case, it has a 
protective effect on tumor cells instead. 

Regulation mechanism of HO-1 
expression 

Different HO-1 inducers activate different 
protein phosphorylation-dependent signaling 
pathways, then activate various transcription factors. 
MAPK is one of the most important signal kinases in 
HO-1 transcription, other signal kinases such as 
phosphatidylinositol 3-kinase (PI3K), tyrosine kinases 
and many protein kinases (PK) also participate in this 
process [24]. The latest study suggests that the 
regulation of its enzymatic activity depends heavily 
upon the expression of transcriptional level [88]. 

Nuclear factor E2-related factor 2 (Nrf2) is a key 
transcription factor involving in maintaining cell 
redox homeostasis [89], and HO-1 is one of the most 
important regulatory products. It is a bZIP 
transcription factor [10]. Under resting conditions, 
Nrf2 binds to kelch-like ECH-related protein 1 (keap1) 
and form a Keap1-Nrf2 complex [90]. The complex 
will be degraded by ubiquitous proteasome and exist 
in the cytoplasm in an inactive state. However, 
oxidative stress induces the modification of cysteine 
residues in Keap1, causing Nrf2 to dissociate from the 
complex and increase the translocation of nucleus 
[10]. Within the nucleus, it binds to the antioxidant- 
responsive element (ARE) in target gene promoters 
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and form the Nrf2-ARE signaling pathway [90], 
activating the transcription of its downstream target 
genes, such as HO-1 and NADPH quinone 
dehydrogenase 1 (NQO1), protecting cells from 
oxidative damage and participating in maintaining 
redox homeostasis [24, 42, 56]. 

The PI3K/protein kinase B (PKB, also known as 
AKT) signaling is one of the most critical pathways in 
regulating cell growth, proliferation and apoptosis. 
Studies have found that Nrf2 is significantly elevated 
in tumor cells. Inactivating PI3K/AKT pathway can 
significantly reduce the level of Nrf2, inhibiting tumor 
cell proliferation, inducing cell apoptosis, and 
improving the sensitivity of tumor cells to treatment 
[91]. In addition, MAPK signaling pathways can also 
regulate the activity of Nrf2. 

Nuclear factor κB (NF-κB) and Bach1 also play a 
key role in the occurrence and development of cancer 
[92], and is considered to be a target for the cancer 
therapy. Under resting conditions, IκB binds to NF-κB 
and Bach1 binds to Maf recognition element (MARE), 
they form a new complex respectively, preventing 
NF-κB and Bach1 translocation from the cytoplasm to 
the nucleus [93]. Once oxidative stress stimulates the 
complex, NF- κB dissociates from IκB, Bach1 
dissociates from MARE. Both of them can activate the 
transcription of HO-1 [18, 43]. 

HO-1 and gynecological tumors 
Ovarian caner 

In early stage of ovarian cancer (OC), patients 
lack specific manifestations, so early lesion is very 
easy to neglect. When patients show symptoms 
related to OC, they’re usually at their advanced stage, 

tumor progresses rapidly, plus no effective treatment, 
therefore, the fatality rate of OC ranks first among 
gynecological malignancies [48]. 

Just as HO-1 is elevated in many tumors, the 
level of HO-1 in ovarian cancer is higher than that in 
normal ovarian tissues, which may be achieved by 
activating the VEGF. The VEGF/VEGFR signaling 
pathway is a key regulator of tumor angiogenesis, 
upregulating VEGFR2 can significantly increase the 
level of HO-1, which is a downstream target gene of 
Nrf2 [8, 94]. 

Apatinib is a novel tyrosine kinase inhibitor, 
which can specifically target vascular endothelial 
growth factor receptor 2 (VEGFR2) and maintain it at 
a low level in OC cells, inhibiting the migration and 
proliferation of endothelial cells induced by VEGFR2 
[66]. A study found that after Apatinib treatment, the 
levels of pro-apoptotic protein bax in OC cells 
increased, while the expression of p62 and 
anti-apoptotic protein Bcl-2 reduced [95]. Light chain 
3 (LC3) is an autophagy marker. When the cell 
undergoes autophagy, the cytoplasmic type (LC3-I) 
will decompose a small piece of peptide and 
transform into the membrane type (LC3-II). Therefore, 
the ratio of LC3-II/I can be used to evaluate the level 
of cell autophagy. In this experiment, the conversion 
of LC3-I to LC3-II also increased [9]. This may be 
because Apatinib can act directly on OC cells, 
reducing tumor microvessel density, down-regulating 
the Nrf2/HO-1 pathway [93, 96], and promoting 
glutathione to generate ROS [97]. In short, inhibiting 
Nrf-2/HO-1 pathway promotes ROS-dependent 
apoptosis and autophagy in OC cells [66, 93, 95], and 
plays an anti-tumor role [10]. 

 

 
Figure 2. The mechanism of HO-1 in ovarian cancer. In OC cells, the combination of VEGF and VEGFR, plus the abnormal activation of MAPK and PI3K/ AKT signaling 
pathways can cause Nrf2 to dissociate from the Nrf2-Keap1 complex and increase the translocation of nucleus. Within the nucleus, Nrf2 binds to ARE, activating the transcription 
of its downstream gene HO-1. High levels of LC3-I, vimentin, Zeb1 and Bcl-2 can be observed in OC cells, while the level of LC3-II, keratin, Bax decrease. Therefore, 
up-regulating of the Nrf2/HO-1 pathway inhibits ROS-dependent apoptosis and autophagy in OC cells, increasing tumor microvessel density and promoting the growth and 
metastasis of OC. EMT also participate in this process collaboratively. OC: ovarian cancer; VEGF: vascular endothelial growth factor; VEGFR: VEGF receptor; Nrf2: nuclear factor 
E2-related factor 2; Keap1: kelch-like ECH-related protein 1; ARE: antioxidant-responsive element; LC3: light chain3; EMT: epithelial-mesenchymal transition. 
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EMT plays a key role in the growth and 
metastasis of tumor. HO-1 promotes the proliferation 
and migration of ovarian cancer cells by affecting 
EMT [98]. Therefore, the level of HO-1 is closely 
related to its lymph node metastasis and FIGO stage. 
After treating OC tissue with heme inducer for 24 
hours, vimentin (a mesenchymal marker), Zeb1 (a 
EMT transcription factor) and anti-apoptotic protein 
Bcl-2 were up-regulated; the levels of keratin and 
pro-apoptotic protein Bax decreased. The result is 
opposite after treating OC tissue with HO-1 inhibitor 
Znpp for 24 hours [9], suggesting that patients with 
high HO-1 expression have poorer prognosis and 
much lower overall survival. 

In addition, endometriosis can lead to 
endometriosis-associated ovarian cancer (EAOC) [99], 
although this malignant transformation is relatively 
rare [48]. Studies have shown that the number of M2 
macrophages expressing HO-1 in EAOC is 
significantly reduced [100], suggesting that redox 
imbalance may participate in the malignant 
transformation of endometriosis [54]. However, more 
research is still needed to confirm this theory. 

Cervical cancer 
Cervical cancer (CC) is the most common female 

malignancy with a high incidence among 50-55 years- 
old women. However, in recent years, patients tend to 
be younger and younger [91]. When squamous 
intraepithelial lesion (SIL) forms and continues to 
develop, it can exceed the basal layer, infiltrate the 
interstitial tissues and form invasive carcinoma. 

Human papilloma virus (HPV) infection is the 
most important cause of CC. The oncoprotein 
produced by HPV may lead to autophagic 
dysfunction and the hinder viral clearance. Studies 
have found that HO-1 is overexpressed in 
HPV-infected tissues, especially in low-grade cervical 
intraepithelial neoplasia (CIN) lesions. X-linked 
inhibitor of apoptosis (XIAP) is an anti-apoptotic 
molecule and is considered to be a negative regulator 
of autophagy. By downregulating the expression of 
XIAP, HO-1 also increases the ratio of LC3-II/I [101]. 

On the other hand, HO-1 is a target gene of Nrf2, 
and its elevated level leads to the overexpression of 
Nrf2 in CC cells, which promotes the proliferation 
and invasion ability of SiHa cells [42], and makes 
tumor cells become insensitive to treatment [42, 91]. 
Meanwhile, high levels of HO-1 are closely related to 
the clinical staging of cervical cancer, lymph node 
metastasis and poor prognosis. 

Knockout of HO-1 can stimulate the inherent 
cellular response, promote autophagy response of CC 
cells, and downregulate the expression of anti- 
apoptotic proteins through anti-viral mechanisms. 

Hyperthermia is one of the adjuvant therapies for 
cervical cancer [17]. A research showed that 
hyperthermia could down-regulate the expression of 
HO-1 in cervical cancer cells, reduce the viral load of 
HPV16 E6, and even destroy the existing physical 
state of HPV16. The combination of the two methods 
has a better effect than a single one [101]. 

Endometrial cancer 
Endometrial cancer (EC) usually occurs in 

elderly women, irregular vaginal bleeding after 
menopause is a typical symptom. EC can be divided 
into 2 types, type1 refers to endometrioid carcinoma, 
which accounts for 75%. As an estrogen-dependent 
type, it’s closely associated with hyperplastic 
proliferation of the endometrial glands [102]. 
Compared with normal tissues, endometrial 
hyperplasia (EH) is characterized by an increased 
ratio of endometrial glands to stroma by more than 
1:1.Dysplasia of endometrium is even considered to 
be precancerous lesions, up to 50% patients will 
finally develop into EC [103, 104]. A study carried by 
Fatma et al. has showed that increasing the expression 
of HO-1 can ameliorate the EH induced by 
estrogen,which maybe achieved by the suppression of 
inducible nitric oxide synthase (iNOS), p38, MAPK, 
and Ki67 [43]. However, in EC tissues, HO-1 is highly 
expressed. This is because EC often has irregular 
vaginal bleeding, which may be related to the massive 
release of heme. As is mentioned before, the degration 
porducts of heme are potentially toxic. Through 
mediating oxidative stress and inflammatory stimuli, 
large amount of heme in turn accelerates the 
occurrence and development of tumors [53]. Overall, 
HO-1 shows completely different effects in EH tissues 
and in EC. However, articles on the role of HO-1 in EC 
are very limited and its mechanism is still unclear, 
which is worthy of further investigation. 

HO-1 and treatment insensitivity 
Chemotherapy is a very important adjuvant 

treatment method after malignant tumor surgeries 
[89]. Many commonly-used chemotherapy drugs can 
generate ROS to achieve the purpose of inducing 
cancer cell apoptosis [65, 96, 98]. In normal situations, 
antioxidants can protect our body from oxidative 
stress damage; nevertheless, cancer cells may also 
activate antioxidant signals to fight against the 
damage caused by chemotherapy drugs, namely, cells 
develop drug resistance [105]. Cis-platinum (CDDP) 
is one of the most widely used chemotherapy drugs 
[8]. Recent reports indicated that its cytotoxic effect 
may be achieved by ROS-dependent apoptosis or 
DNA damage [17, 106]. Other people believe that this 
may because chemotherapy-generated tumor cell 
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debris hijack tumor-associated macrophages (TAMs). 
By promoting HO-1 expression and reducing M1-like 
polarization, tumor cells developed resistance to 
chemotherapy drugs. What’s more, overexpression of 
HO-1 is often accompanied by an increase in 
multidrug resistance-related proteins (Mrp), which is 
an important reason for the difficulty in tumor 
treatment [67]. 

HO-1 plays a protective role in tumor cells has 
been widely recognized [107]. Studies have found that 
HO-1 inhibitor ZnPPIX can improve sensitivity to 
chemotherapy of gastric cancer cell [12, 108, 109], 
other research showed that the inhibition rate of 
esophageal cancer cells was positively correlated with 
ZnPPIX concentration [109, 110]. A study based on the 
treatment of acute myelogenous leukemia (AML) has 
found that through non‐covalently modified, lipid‐
polymer hybrid nanoparticle loaded with HO1‐
inhibitor tin mesoporphyrin (SnMP) can significantly 
improve the efficacy of daunorubicin and boost 
immune response [17, 111]. Furthermore, a strong 
potential of blocking HO-1 for the treatment of 
hereditary leiomyomatosis and renal cell carcinoma 
(HLRCC) has already been verified [69]. All these 
findings remind us that exploring the possibility of 
targeting or genetically or pharmacologically 
inhibiting HO-1 could make immunotherapy more 
effective [112], and HO-1 inhibitor may be used as a 
potential chemotherapeutic sensitizer in the near 
future [113]. 

Conclusion and Prospective 
Heme/HO system is one of the most important 

anti-oxidant mechanisms in our bodies. As a potential 
novel oncogene, HO-1 has received increasing levels 
of attention in recent years. On the one hand, HO-1 is 
highly expressed in a variety of gynecological 
malignancies, so the deviation of its dynamic trend 
from baseline could be used as a signal of disease alert 
and a predictor for the occurrence of tumors. On the 
other hand, for oncology patients with clinical 
manifestations and imaging evidence, high-level of 
HO-1 can also assist diagnosis. HO-1 level has certain 
relevance with prognosis and can be used as a 
potential indicator. Through inhibiting HO-1 directly 
or indirectly, HO-1 inhibitors can promote 
ROS-dependent autophagy and apoptosis. At present, 
HO-1 inhibitors have been used in clinical work and 
achieved certain efficacy. 

However, the exact mechanism of HO-1 in 
gynecological tumors is still unclear. For one thing, 
HO-1 was proposed as a novel oncogene in 
gynecological malignancies not long ago, thus it has 
not yet been fully studied. For another, HO-1 seems to 
be tissue-specific. In normal tissues, it plays the role of 

anti-inflammation and anti-apoptosis, which indicates 
us to seek for non-stress HO-1 inducers for body 
protection. However, in cancer cells, HO-1 facilitates 
angiogenesis and tumor metastasis in turn. The 
contradiction makes the research on HO-1 very 
difficultly. 

Anyway, regulating the expression of HO-1 may 
be a potential target of clinical treatment for patients 
with gynecological malignancies, although further 
studies are still needed to be done. Clarifing the exact 
mechanism of HO-1 in gyncological cancers may pave 
a new way for preventing the onset or progression of 
gyncological cancers. 
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