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Abstract 

Cancer is a life-threatening disease, but cancer therapies based on epigenetic mechanisms have made 
great progress. Enhancer of zeste homolog 2 (EZH2) is the key catalytic component of Polycomb 
repressive complex 2 (PRC2) that mediates the tri-methylation of lysine 27 on histone 3 (H3K27me3), a 
well-recognized marker of transcriptional repression. Mounting evidence indicates that EZH2 is elevated 
in various cancers and associates with poor prognosis. In addition, many studies revealed that EZH2 is 
also involved in transcriptional repression dependent or independent of PRC2. Meanwhile, long 
non-coding RNAs (lncRNAs) have been reported to regulate numerous and diverse signaling pathways in 
oncogenesis. In this review, we firstly discuss functional interactions between EZH2 and lncRNAs that 
determine PRC2-dependent and -independent roles of EZH2. Secondly, we summarize the lncRNAs 
regulating EZH2 expression at transcription, post-transcription and post-translation levels. Thirdly, we 
review several oncogenic pathways cooperatively regulated by lncRNAs and EZH2, including the 
Wnt/β-catenin and p53 pathways. In conclusion, lncRNAs play a key role in the EZH2-regulated 
oncogenic network with many fertile directions to be explored. 
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Introduction 
Cancers are characterized by dysregulated 

genetic and epigenetic homeostasis under 
environmental and endogenous stimuli, leading to 
uncontrolled cell division, growth and life- 
threatening metastasis [1]. Malignant transformations 
are generally caused by accumulated genetic 
mutations of oncogenes and tumor suppressors 
involved in various important signaling pathways, 
but mechanisms underlying cancer development and 
progression can be extended to the level of epigenetic 
regulation [2, 3]. Epigenetics is defined as regulatory 
mechanisms leading to stably inheritable changes 
resulting from alterations of gene expression without 
alterations in DNA sequences [4, 5]. In the past 
decades, cancer epigenetics has gained considerable 
attention due to our increasing understanding of its 
regulation in cell fate decisions, reversible and 

environment-dependent features, and vulnerability as 
therapeutic targets [6-8]. DNA methylation and 
histone modification are two important epigenetic 
mechanisms regulating gene expression. Meanwhile, 
noncoding RNAs (ncRNAs), a large population of 
molecules with currently undetermined numbers, are 
closely involved in different epigenetic processes, 
either directly or indirectly, to modulate gene 
expression, RNA splicing and stability, chromatin 
remodeling, and genomic stability [9, 10]. 

With the development of high-throughput 
technologies and computational algorithms, we have 
learned that only about 2% of the human genome 
codes proteins, and most transcripts from over 70% of 
the genome are ncRNAs [11-13]. In the past decade, 
ncRNAs have been intensively studied in the context 
of their regulatory roles in gene expression [9, 10]. 
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Long noncoding RNAs (lncRNAs) are defined as a 
class of ncRNAs longer than 200 nucleotides without 
evident protein coding ability. LncRNAs could 
modulate gene expression by serving as molecular 
signals, decoys, scaffolds and guides through binding 
both nucleic acids and proteins [14, 15]. Based on 
these features, emerging evidence demonstrates that 
lncRNAs are involved in almost all progressive stages 
of cancers, including cell migration, invasion, 
metastasis and angiogenesis, as well as autophagy 
[16-18]. Since the expression of lncRNAs exhibit more 
tissue- and cell-specific patterns than protein-coding 
genes, they have been considered as potential 
biomarkers and therapeutic targets in cancers [19]. For 
example, a well-characterized lncRNA, HOTAIR 
(HOX Transcript Antisense RNA), has been 
recognized as a prognostic marker of several cancer 
types [20-22]. Mechanistically, HOTAIR acts as a 
molecular scaffold for PRC2 (Polycomb repressive 
complex 2) and other histone modification complexes, 
such as LSD1, to establish gene silencing [23, 24]. 

Enhancer of zeste homolog 2 (EZH2), a 
well-known SET domain-containing protein, is the 
catalytic core of the PRC2 with methyltransferase 
activity [25]. PRC2 is essential for transcription 
silencing through specifically catalyzing the 
tri-methylation of lysine 27 on histone H3 
(H3K27me3) [26]. EZH2 expression is commonly 
elevated in nearly all solid cancers, including gastric, 
breast and prostate cancers, which is associated with 
poor prognosis, suggesting an oncogenic role of EZH2 
in these cancers [25]. Noteworthily, in lymphoma and 
myeloid neoplasms, several EZH2 missense 
mutations and truncations were reported to associate 
with oncogenic activities [27-29]. In most studies, 
EZH2 inhibition could reduce tumor formation and 
promote cell death. Recent reports also demonstrated 
EZH2 as a promising target to suppress tumor 
immune escape and block viral infection [25, 30-32]. 
Thus, EZH2 has been considered a bona fide 
therapeutic target in cancer therapies, and inhibitors 
targeting EZH2 have been increasingly developed, 
such as tazemetostat (EPZ-6438), valemetostat, 
CPI-0209 and CPI-1205 [33-36]. Tazemetostat was the 
first drug approved by the FDA in 2020 for the 
treatment of patients with locally advanced or 
metastatic epithelioid sarcoma not eligible for 
complete resection [37], and phase Ⅰ/Ⅱ clinical trials 
are still ongoing in the treatments of other cancers, 
such as diffuse large B-cell lymphoma and malignant 
mesothelioma [33]. 

In addition, an increasing number of studies 
indicate that lncRNAs regulate the expression and 
function of EZH2 at multiple levels. On the other 
hand, many lncRNAs involved in different oncogenic 

signaling pathways are also transcriptional targets of 
EZH2. In the current review, we will discuss 
functional interplays between EZH2 and different 
lncRNAs, and the biological consequences of their 
interactions, mostly in the contexts relevant to 
oncogenesis. 

LncRNAs regulate a dual role of EZH2 in 
PRC2-dependent transcription 

SUZ12, EZH2 and EED comprise the core 
components of PRC2 that serves as an epigenetic 
“writer” to switch off genes [26]. Although H3K27 
methylation is an important event to determine gene 
expression status and cell fate, it remains poorly 
understood how it is catalyzed by PRC2 in a 
site-specific manner. Early studies revealed that many 
molecules could act as “readers” or recruiters of PRC2 
to promote de novo H3K27me3 [38-42], such as 
RBBP4/7, JARID2 and YY1 [43-45]. However, a 
growing number of lncRNAs have been demonstrated 
to serve as “genomic address codes” for PRC2 [46], 
including HOTAIR, PVT1 and many other lncRNAs 
(Table 1). A potential mechanism is that lncRNAs 
preferentially bind a GA-rich DNA motif in 
promoters to form a triplex, and then recruit protein 
complexes, such as PRC2 [47-51]. As an example of 
these studies, the HITT is an EZH2-binding lncRNA, 
and its additional region forms an RNA-DNA triplex 
with the HIF-1α promoter, leading to PRC2 
recruitment and reduced HIF-1α expression under 
normoxic conditions. This suppression is released and 
HIF-1α expression is activated under hypoxic 
conditions due to reduced HITT levels [51]. Actually, 
computational tools, such as Triplexator and Triplex 
Domain Finder (TDF), were developed to evaluate 
triplex-forming lncRNAs and their potential target 
sites in the human genome [49, 52]. In addition, 
another software, Triplex-Inspector, can also aid the 
design of sequence-specific ligands and selection of 
optimal targets to avoid off-target effects in genomic 
manipulations [53]. The PRC2- or EZH2-associated 
lncRNAs exert critical regulatory activities in the 
expression of various genes involved in different 
oncogenic signaling pathways. Interestingly, many of 
these lncRNAs inhibit the methyltransferase activity 
of EZH2 unless PRC2 associates with JARID2, which 
reduces PRC2-RNA interaction and subsequently 
promotes EZH2 activity [54-56] (Figure 1A). 

To date, a large number of lncRNAs have been 
identified to interact with PRC2 [95, 96]. Both EZH2 
and EED contribute to PRC2 binding to lncRNAs, and 
EZH2 has much higher affinity to lncRNAs than EED, 
although no canonical RNA recognition motif (RRM) 
has been identified in either protein [55, 97]. Thus, the 
heterodimer EZH2-EED is necessary and sufficient for 
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HOTAIR binding [97]. Phosphorylation at T350 of 
EZH2 (pT350) mediated by CDK1 and CDK2 is crucial 
for PRC2 binding to its lncRNA recruiters [98-100] 
(Figure 1B). Consistently, the phosphorylation of 
mouse Ezh2 at T345 (corresponding to T350 of human 
EZH2) was also important for its binding to lncRNAs 
HOTAIR and Xist, and the T345D mutant also showed 
increased affinity to the lncRNAs compared to wild 
type Ezh2 and T345A mutant [101]. In addition, 
Ezh2-T345 is located in a ncRNA-binding domain 
(ncRBD1, amino acids 342-370), overlapping with the 
BRCA1 binding region (amino acids 341-559) on Ezh2 
[102]. Therefore, BRCA1 could act as a negative 
regulator of PRC2 through competing for EZH2 
association with lncRNAs [103]. 

Research efforts have been made to investigate 
whether any special RNA sequence or motif is 
favored by PRC2. In HOTAIR, a highly structured 
domain consisting of 89 nucleotides was identified as 

an EZH2 binding region [97]. This G-rich region forms 
alternative G-quadruplex structures depending the 
presence of potassium ions, which is different from a 
reported PRC2-binding tandem dual-hairpin motif in 
Xist RepA [104]. Consistently, several studies 
demonstrated that PRC2 showed high affinity to 
G-tract-containing RNA molecules and preferentially 
bound to G-quadruplex structures, but displayed 
much lower binding affinity to RNA duplexes [105] 
(Figure 1B). Importantly, PRC2’s preferential binding 
to RNA G-quadruplex is evolutionarily conserved 
[106]. Another oncogenic lncRNA, HERES, promotes 
Wnt signaling pathways through recruiting PRC2 to 
chromatin in esophageal squamous cell carcinoma 
and this recruitment is through direct binding of 
EZH2 to HERES [70]. Interestingly, the GGW (W: A or 
U) repeats in HERES, which form the 
G-quadruplex-like motifs, are essential for its 
interaction with EZH2. 

 
 

Table 1. LncRNAs recruiting EZH2 to inhibit gene transcription in cancers. 

LncRNA Expression Cancer type Interacting 
molecules 

Cell process / Clinical feature 

AGAP2-AS1 Up GBM[57] EZH2, LSD1 Proliferation, apoptosis, invasion / Shorter OS 
ANCR Up BC*[58],  

glioma[59] 
EZH2 Proliferation, migration & invasion[58, 59], apoptosis, EMT & stemness[59] / Lymph node metastasis, 

advanced TNM stages[58] 
AWPPH Up BC#[60],  

NPC[61] 
EZH2[60, 61],  
LSD1[61] 

Proliferation, apoptosis, migration[60, 61], autophagy[60] / - 

BLACAT1 Up PC[62] EZH2 Proliferation, migration, AG and MOP / - 
CASC9 Up BC#[63],  

ESCC[64] 
EZH2 Proliferation[63, 64], migration & invasion[63], apoptosis[64] / Larger tumor size, shorter OS[64] 

FOXC2-AS1 Up Melanoma[65] EZH2 Proliferation, apoptosis / Metastasis, shorter OS 
FOXD2-AS1 Up HCC[66] EZH2 Proliferation / Larger tumor size, shorter OS and DFS 
FOXP4-AS1 Up NSCLC[67],  

osteosarcoma[68] 
EZH2,  
LSD1[67, 68] 

Proliferation, apoptosis, migration & invasion[67, 68] / Larger tumor size, advanced TNM stage, 
shorter OS and PFS[67] 

H19 Up BC#[69] EZH2 Metastasis / Invasion 
HERES Up ESCC[70] EZH2 Cell cycle, apoptosis / Worse survival 
HOTAIR Up BC*[20, 71-73], OSCC[74], 

PC[75] 
EZH2 Proliferation, apoptosis, migration & invasion[74, 75], EMT & stemness, DNA damage repair, 

radio-resistance[20, 71-73] / Metastasis and survival[20, 71-73], advanced clinical stage[75], lymph 
node metastasis and shorter survival[74] 

HOXD-AS1 Up GC[76],  
osteosarcoma[77] 

EZH2[76, 77] Proliferation[77], cisplatin resistance[76] / Lymph node metastasis, advanced TNM stage[76], shorter 
OS[76, 77] 

LINC-PINT Down Melanoma[78] EZH2 Proliferation, migration / Shorter OS 
MAGI2-AS3 Down Esophageal cancer [79] EZH2 Proliferation, apoptosis, radio-resistance / - 
MALAT1 Up RCC[80] EZH2 Proliferation, apoptosis, invasion / Advanced clinical stage and shorter OS 
MEG3 Down BC*[47, 81, 82] EZH2,  

JARID2 
Proliferation, invasion, angiogenesis / - 

PVT1 Up GC[83], NSCLC[84],  
thyroid cancer[85] 

EZH2 Proliferation [83-85], apoptosis [84] / Larger tumor size[84], deeper invasion depth[83], lymph node 
metastasis and advanced TNM stag, shorter survival[83, 84] 

SNHG6 Up Chondrosarcoma[86], 
GC[87] 

EZH2 Proliferation[86, 87], migration & metastasis / Deeper invasion depth and advanced TNM stage[87], 
clinical classification[86] 

SNHG7 Up OC[88] EZH2 Growth, migration & invasion, metastasis, EMT / - 
SPRY4-IT1 Up CCA[89] EZH2, LSD1, 

DNMT1 
Growth, metastasis / Tumor node metastasis, worse OS and PFS 

TUG1 Up SCLC[90] EZH2 Proliferation, migration & invasion, apoptosis, chemo-sensitivity / Worse OS 
Down NSCLC[91, 92] EZH2[91, 92],  

EED[92] 
Proliferation[91, 92] / Larger tumor size and advanced pathological stage[91] 

Xist Up NSCLC[93], NB[94] EZH2[93, 94] Growth[93], migration & invasion[94], metastasis[93] / larger tumor size and advanced TNM stage, 
shorter OS[93] 

BC*: breast cancer; BC#: bladder cancer; CCA: cholangiocarcinoma; ESCC: esophageal squamous cell carcinoma; GBM: glioblastoma; GC: gastric cancer; HCC: hepatocellular 
carcinoma; NB: neuroblastoma; NPC: nasopharyngeal carcinoma; NSCLC: non–small cell lung cancer; OC: ovarian cancer; OSCC: oral squamous cell carcinoma; PC: 
pancreatic cancer; RCC: renal cancer Carcinoma; SCLC: small cell lung cancer; AG: aerobic glycolysis; MOP: mitochondrial oxidative phosphorylation; EMT: 
epithelial-mesenchymal transition; TNM: tumor node metastasis; OS: overall survival; DFS: disease-free survival; PFS: progression-free survival. 
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Figure 1. Models of lncRNA-mediated EZH2 action to regulate chromatin remodeling. (A) Schematic model of trans lncRNAs recruiting EZH2 to catalyze 
H3K27me3 and repress gene transcription. LncRNA (red curve, the same below) recruits PRC2 to the promoter of target genes, such as tumor suppressor genes, but inhibits 
the methyltransferase activity of EZH2, which can be relieved by JARID2 binding. (B) Characteristics of interaction between EZH2 and lncRNAs. EZH2, EED and SUZ12 are the 
core subunits of PRC2. Phosphorylation of EZH2 at T350 mediated by CDK1/2 is essential for its association with lncRNAs, and preferentially binds to G-quadruplex RNA. (C) 
Regulation of PRC2 activity by cis-acting RNAs. PRC2 scans nascent RNAs and then binds to G-tract regions. With slow transcription, EZH2 binding to nascent RNAs can 
promote H3K27me3 on chromatin to repress gene expression; with fast transcription, pre-existing PRC2 can bind nascent RNAs and then be evicted from the promoter, leading 
to gene activation. 

 
RNA G-quadruplexes are generally present in 

the 5’-region of the first intron [107], which may 
explain why nascent RNAs may act as cis-regulatory 
elements in gene activation through binding to EZH2 
and antagonizing the repressive activity of PRC2 [54]. 
Consistently, a recent report by Beltran et al. verified 
preferential binding of PRC2 to G-tracts in nascent 
pre-mRNA and further revealed that RNA 
G-quadruplex could attract PRC2 to evict it from 
chromatin, leading to specific gene activation [108]. In 
addition to nascent RNAs, other lncRNAs, such as 
LINC-PINT, HOTAIRM1 and PPP1R1B, could also 
exert cis- or trans-regulatory roles to activate gene 
expression through sequestering PRC2 [109-111]. 

Thus, RNAs possess a dual role in regulating 
PRC2-mediated gene expression. In the cis-acting 
regulation, nascent RNAs can be scanned by PRC2, 
which allows it to bind RNA G-tracts or 
G-quadruplex motifs. The recruited PRC2 can 
enhance H3K27me3 in the promoter to strengthen 
transcriptional repression. However, if nascent RNAs 
are quickly transcribed, the pre-existing PRC2 on 
chromatin can bind G-rich RNAs and be promptly 
removed from the promoter, leading to reduced 
H3K27me3 on a targeted promoter and consequent 

gene activation. Therefore, the decision between 
recruitment and eviction of PRC2 on a target gene 
depends on the status of RNAs, including both 
nascent RNAs and lncRNAs [26, 47, 105] (Figure 1C). 
In a study of oncogene-induced senescence, Muniz et 
al. discovered that an isoform of the circular ANRIL 
could bind to Polycomb proteins and reduce EZH2 
occupation on the p15 and p16 promoters, leading to 
declined H3K27me3. As a result, the expression of 
ANRIL or its relative levels versus EZH2 determined 
the expression of these genes, as well as cell 
senescence [112]. Noteworthily, many lncRNAs are 
downstream effectors of EZH2, and over 20% of 
lncRNAs are regulated by PRC2 (Figure 2A) [113]. 
Several lncRNAs acting as guide partners of PRC2, 
such as MEG3 and SPRY4-IT1, were also found to be 
suppressed by EZH2 [114, 115].  

To date, mechanisms of RNA-mediated 
trans-regulation for EZH2 eviction are still poorly 
understood, owing to the highly complex and 
dynamic features of epigenetic regulation. With the 
applications of RNA-immunoprecipitation followed 
by high-throughput sequencing (RIP-seq) technology, 
more PRC2/EZH2-associated lncRNAs have been 
identified and annotated, and their functional roles 
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will be explored and expectantly revealed in further 
research [113, 116]. In a report by Ye et al., the authors 
demonstrated that 2,595 previously annotated 
lncRNAs were potentially associated with EZH2 in 
neuroblastoma cells [113] In another study, Wang et 
al. carried out a global screening for EZH2-binding 
lncRNAs in different tissues, and identified 1,328 
EZH2-associated lncRNAs. Among them, 470 
lncRNAs were detected in at least two tissues, while 
858 were only present in single tissues. Although a 
potential EZH2-binding motif was discovered in 
many lncRNAs, but it was not found in all 
immunoprecipitated RNAs [116]. Thus, EZH2 is a 
protein with promiscuous binding affinity to different 
lncRNAs, and its detailed RNA binding domain(s) 
needs to be prudently mapped in future studies. 

LncRNAs involved in PRC2-independent 
methylation of non-histone proteins  

As a methyltransferase, EZH2 has also been 
reported to directly promote the methylation of many 
non-histone proteins. For instance, EZH2-mediated 
K299 mono-methylation of GATA4 reduced its 
transcription factor activity through disrupting its 
binding to p300 and consequently decreasing its 
acetylation [117]. In another report, Lee et al. 
discovered methylation-dependent ubiquitination 
machinery. Through this mechanism, non-histone 
proteins, such as RORα, were mono-methylated by 
EZH2, and the methylation status could be recognized 
by a specific E3 ligase to promote their ubiquitination 
[118], which is independent of EZH2’s activity in 
mediating H3K27me3. 

On the other hand, EZH2 could also manifest its 
oncogenic activity through acting as a coactivator to 
promote the methylation of transcription factors, such 
as androgen receptor in prostate cancer and STAT3 in 
glioblastoma [119, 120]. AKT can mediate EZH2 
phosphorylation at S21 (pS21). A number of reports 
demonstrated that pS21 of EZH2 reduced its activity 
in promoting H3K27me3 [120-122], or negatively 
correlated with this gene silencing marker [119, 120]. 
Consistently, inhibition of the PI3K-AKT pathway 
could decrease EZH2-pS21 but increase the global 
levels of H3K27me3 [120], suggesting that pS21 acts as 
a molecular switch of EZH2 between a repressor and 
an activator. A recent study revealed that 
lincRNA-p21 could enhance EZH2-pS21 through 
inhibiting the EZH2-HOTAIR interaction, leading to 
PRC2 disruption in prostate cancer cells [123], 
indicating that lincRNA-p21 determines the outcomes 
of EZH2-mediated gene expression (Figure 2B). It 
supports a trans-regulatory mechanism of lncRNAs 
through competitively binding EZH2 to activate gene 
expression. In addition, β-catenin, the key effector of 

the Wnt signaling pathway and a signal transducer to 
the nucleus, was reported to be methylated at K49 by 
EZH2, which increased its stability through blocking 
ubiquitination. In this process, a lncRNA, lnc-β-Catm, 
could bind to both β-catenin and EZH2 to promote 
β-catenin methylation and improve its stability [124] 
(Figure 2C). Importantly, this regulatory activity of 
EZH2 is independent of PRC2, since depletion of 
SUZ12 and EED exerted no effect on it. 

LncRNAs involved in regulating EZH2 
expression and activity 

Accumulating evidence indicates that lncRNAs 
regulate the expression and activity of EZH2 at 
different levels, including transcription, post-trans-
cription and post-translational modifications. 

LncRNA-mediated transcriptional regulation 
of EZH2 

Early studies demonstrated that EZH2 
expression was regulated by various transcription 
factors, including MYC, SOX4 and E2Fs [125-127]. The 
E2F family is a group of DNA-binding proteins that 
play a critical role in promoting cell cycle progression 
[128]. Whether an E2F protein activates or represses 
gene expression depends on its associated cofactors 
[129-132]. Two recent studies indicated that both E2F1 
and E2F7 could enhance EZH2 transcription through 
binding to its promoter [133, 134]. Consistently, an 
E2F binding site was identified in the EZH2 promoter 
[135-137]. However, Feng et al. reported that E2F1 
repressed EZH2 expression when recruited by a 
lncRNA, NR-104098, to the EZH2 promoter [138] 
(Figure 2D). Based on this mechanism, treatment of 
acute myelogenous leukemia cells by ATPR, a 
derivative of all-trans retinoic acid (ATRA), could 
markedly stimulate NR-104098 expression and 
subsequently block EZH2 expression, leading to 
reduced cell proliferation and enhanced cell 
differentiation [138]. 

As a well-characterized lncRNA, GAS5 is 
downregulated in solid tumors, and its decreased 
expression correlated with poor prognosis of cancer 
patients [136, 139-141]. Mechanistically, GAS5 could 
bind E2F4, recruit it to the EZH2 promoter, and 
repress EZH2 expression, leading to enhanced 
apoptosis and reduced viability of bladder cancer 
cells [136] (Figure 2D). Consistently, Xu et al. also 
reported that GAS5-mediated EZH2 inhibition could 
decrease H3K27me3 and consequently upregulate 
CDKN1C expression, causing accelerated oxidative 
stress and apoptosis of melanoma cells [142]. All these 
findings extended our understanding of lncRNAs 
involved in EZH2 transcription, and suggested new 
therapeutic targets in cancer therapies.  
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Figure 2. LncRNAs involved in regulation of EZH2 expression and activity. (A) The PRC2- or EZH2-associated lncRNAs regulate the expression of various genes, 
including lncRNAs. Many lncRNAs inhibit EZH2 methyltransferase activity, which can be relieved by JARID2 binding leading to reduced PRC2-RNA interaction and subsequently 
enhanced EZH2 activity. (B) EZH2 directly methylates non-histone proteins independent on PRC2: LincRNA-p21 disrupts PRC2 through competitively binding EZH2, and 
enhances the EZH2-pS21 by AKT, resulting in the coactivation of methylated STAT3. (C) Lnc-β -Catm stabilizes β -catenin protein through directly promoting its methylation 
by EZH2. (D) At the transcriptional level: LncRNAs, such as NR-104098 and GAS5, suppress EZH2 transcription through recruiting transcription factors, such as E2F1 and E2F4, 
respectively. (E) At the post-transcriptional level: ceRNAs scavenge microRNAs, and thus prevent the EZH2 mRNA from degradation and translational inhibition. (F), (G) and (H) 
At the post-translational level: lncRNAs, such as ANCR, directly bind EZH2 and enhance pT350 through increasing its interaction with CDK1, leading to EZH2 ubiquitination and 
proteasomal degradation (F). FAM83C-AS1 recruits deubiquitinase ZRANB1 to stabilize EZH2 (G). PVT1 improves EZH2 stability through blocking EZH2-pT350 to antagonize 
its ubiquitination, and EZH2 can also stabilize MDM2 through direct interaction. PVT1 also recruits EZH2 to repress gene transcription (H). 

 

LncRNAs-mediated post-transcriptional 
regulation of EZH2 

MicroRNAs are small endogenous ncRNAs 
regulating gene silencing through promoting 
destabilization and blocking translation of target 
mRNAs. MicroRNA expression profiles can be used 
to classify cancers, and the levels of specific 
microRNAs correlate with diagnosis and prognosis of 
cancer patients [143, 144]. Many groups, including 
ours, reported that EZH2 expression was regulated by 
microRNAs, such as miR-101 and miR-26a [145, 146]. 
It is also interesting to know that EZH2 can generally 
inhibit the expression of EZH2-targeting microRNAs 

through promoting the H3K27me3 of their genomic 
loci to create a positive feedback loop that maintains 
high EZH2 expression and malignant status [147]. A 
microRNA can be specifically blocked by its antisense 
oligonucleotide, such as a locked nucleic acid (LNA) 
with its complementary sequence, or an RNA 
containing multiple copies of its binding site to act as 
a microRNA sponge, leading to reduced microRNA 
binding to the target mRNA and its upregulated gene 
expression [148, 149]. In addition, this regulatory 
mechanism of microRNAs’ action also exists through 
a concept of competing endogenous RNA (ceRNA) 
[150, 151] (Figure 2E). 
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Table 2. CeRNAs scavenging microRNAs that target EZH2 mRNA. 

CeRNA Cancer type MicroRNAs Cellular activity Clinical relevance 
FOXC2-AS1 PCa[157] miR-1253 Proliferation, tumor growth Shorter survival 
H19 NPC[158] miR-630 Invasion - 
HOTAIR OC[159] miR-138-5p Cisplatin resistance - 
MALAT1 OSCC[160] GC[161] miR-101[160],  

miR-124-3p[161] 
Proliferation[160, 161], invasion[160], 
migration, and H2 resistance[161] 

- 

NEAT1 EC[162] miR-144-3p Proliferation, migration & invasion - 
PVT1 NSCLC[163] mi-526b Proliferation, migration Shorter survival 
SNHG6 CRC[155], ESCC[154], 

OCCC[156] 
miR-101-3p[154], 
miR-214[155],  
miR-26a/b[153, 
155] 

Apoptosis[154, 156],  
migration & invasion, metastasis[153, 155, 156], 
EMT[153] 

Deeper invasion depth, 
lymph node metastasis and advanced TNM stage, shorter 
survival[155, 156] 

SPRY4-IT1 BC#[89, 164] miR-101-3p[89, 
164] 

Metastasis[89, 164], proliferation, migration & 
invasion[164] 

Tumor node metastasis,  
worse OS and PFS[89] 

TUG1 PC[165] miR-382 Proliferation, migration and EMT Large tumor size, advanced TNM stage, shorter survival 
Xist CRC[166], GC[167] miR-137[166],  

miR-101[167] 
Proliferation[167], migration & invasion[166, 
167] 

Large tumor size, lymph node invasion and advanced TNM 
stage, distant metastasis and worse OS[167] 

ZNFX1-AS1 CRC[168] miR-144-3p Proliferation, migration & invasion, metastasis Larger tumor size, deeper invasion depth, lymph node invasion, 
and advanced TNM stage, shorter survival 

EC: endometrial cancer; OCCC: ovarian clear cell carcinoma; PCa: prostate cancer. 
 
 
The first reported microRNA targeting EZH2 is 

miR-26a, which is overexpressed during myogenesis 
[145, 152]. Recently, the lncRNA, SNHG6, was 
determined as a ceRNA to trap miR-26a and 
consequently promote EZH2 expression in colorectal 
cancer [153]. Importantly, SNHG6 has also been 
identified as a molecular sponge of miR-101, -214 and 
-4465, which all target EZH2 in different cancers 
[154-156]. The term “molecular sponge” was 
designated as a relatively large ncRNA containing 
multiple binding sites of one or more microRNA 
molecules and thus sequestering them. In addition, a 
number of other lncRNAs could also work as decoys 
to antagonize different microRNAs and thus promote 
EZH2 expression, leading to enhanced cancer 
progression and resistance to chemo- or 
radiotherapies (Table 2). As we indicated above, 
many lncRNAs work with the EZH2 protein to 
mediate H3K27me3 at specific genomic loci. 
Therefore, lncRNAs can modulate the function of 
EZH2 at multiple levels. 

LncRNA-mediated post-translational 
modifications of EZH2 

EZH2 activity and stability are regulated by 
different post-translational modifications, including 
phosphorylation, ubiquitination, methylation and 
O-GlcNAcylation [98, 121, 169-173], and many 
lncRNAs contribute to these processes. As discussed 
above, pT350 is crucial for EZH2 binding to lncRNAs 
and PRC2 recruitment to chromatin. Activities of the 
lncRNA ANCR in binding EZH2 and promoting its 
phosphorylation have been reported by several 
research groups, but the overall effects of this 
regulation on cancer cells varied, likely depending on 
cancer types and genetic backgrounds. Li et al. 
reported that ANCR could directly bind mouse Ezh2, 

promote its interaction with CDK1, and consequently 
increase pT345 and pT487, leading to enhanced Ezh2 
ubiquitination and degradation, and reduced breast 
cancer progression [31] (Figure 2F). Consistently, in 
another report, ANCR inhibited proliferation, 
migration and invasion of osteosarcoma cells through 
binding and attenuating EZH2 [174]. However, a 
positive regulation of EZH2 expression by ANCR was 
also reported in colorectal cancer and glioma cells [59, 
175], as well as osteoblast cells [176]. 

Several recent studies revealed the activities of 
additional lncRNAs in promoting EZH2 ubiquiti-
nation and degradation, including MEG3, UCA1 and 
the circular RNA circ-ADD3 [177-179]. Interestingly, 
all these lncRNAs exerted their regulation through 
promoting EZH2’s interaction with CDK1 and 
enhancing its phosphorylation, which subsequently 
caused EZH2 ubiquitination and degradation. As for 
the regulatory mechanism, Li et al. proposed that 
lncRNA binding likely altered EZH2 conformation 
that improved recognition by CDK1 to facilitate its 
phosphorylation [25]. Another lncRNA PAR5, 
downregulated in anaplastic thyroid carcinoma, was 
also reported to negatively regulate EZH2 activity. 
PAR5 interacts with EZH2, decreases its protein 
levels, and reduces its binding to the E-cadherin 
promoter [180]. Consistently, similar regulation of 
EZH2 by PAR5 was also observed in human glioma 
[181]. 

On the other hand, lncRNA FAM83C-AS1 was 
shown to stabilize EZH2 protein through promoting 
its binding to ZRANB1, a deubiquitinase (Figure 2G). 
Upregulated EZH2 could mediate the H3K27me3 in 
the promoter of SEMA3F, which promoted colorectal 
cancer development [182]. In addition, lncRNAs PVT1 
and HERES were both reported to promote EZH2 
protein stability with undetermined molecular 
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mechanisms [70, 183]. Based on the evidence of 
available studies, we predict that the trans recruitment 
of EZH2 by lncRNAs to chromatin can concurrently 
reduce its ubiquitination through blocking T350 
phosphorylation, and consequently stabilizing EZH2. 

Several lncRNAs have been reported to 
negatively regulate EZH2 stability or activity. EDAL 
is a lncRNA that inhibits the replication of neurotropic 
viruses in neuronal cells. The mechanism underlying 
this regulation is EDAL-blocked T309 O-GlcNAcyla-
tion of EZH2. Interestingly, although T309 is 
involved, EDAL did not apparently alter the 
phosphorylation of EZH2 [32]. As discussed above, 
lincRNA-p21 can dramatically enhance AKT and 
EZH2 interaction, which consequently leads to 
increased pS21 of EZH2, and promotes EZH2- 
mediated STAT3 methylation [123]. Additionally, 
pS21 of EZH2 disrupts EZH2 binding to histone H3 
and subsequently reduces H3K27me3 of target genes 
[121]. 

Actually, a positive feedback regulation exists 
between lincRNA-p21 and p53; while p53 
transactivates lincRNA-p21 gene expression, the 
lncRNA also antagonizes MDM2-mediated p53 
ubiquitination and degradation [184-187]. In addition, 
EZH2 serves as a signal relay between lncRNA PVT1 
and p53; PVT1 improves EZH2 protein stability, while 
EZH2 also physically interacts with and stabilizes 
MDM2 (Figure 2H), leading to enhanced p53 
degradation [183, 188, 189]. MEG3, which promotes 
EZH2 degradation [177], was also reported to 
downregulate MDM2 and subsequently activate the 
p53 pathway [190]. On other hand, MDM2’s physical 
interaction with EZH2 on chromatin promotes 
H3K27me3, which suppresses lineage-specific genes 
and favors efficient generation of induced pluripotent 
stem cells (iPSCs) [191]. 

Based on this complex regulatory network, 
EZH2 is causally relevant to p53 activation. Thus, 
these lncRNAs regulating EZH2 stability and activity 
can either directly modulate EZH2-related epigenetic 
modifications or indirectly alter p53 signaling 
pathways through a positive EZH2-MDM2 interplay. 

Conclusion and prospective 
LncRNAs can regulate both the expression and 

methyltransferase activity of EZH2. In this review, we 
summarized this complex regulatory network in the 
following three aspects. First, during transcriptional 
initiation, lncRNAs and nascent RNAs can either 
recruit PRC2 to target promoters or evict it from 
chromatin, which determines the repressive or active 
expression status of a target gene, respectively (Table 
1 and Figure 1C). Second, regarding target selection, 
lncRNAs regulate EZH2-mediated methylation in 

either histone or non-histone proteins, which can both 
determine target proteins’ activities and alter global 
H3K27me3 levels (Figures 2A, 2B and 2C). Third, 
lncRNAs modulate EZH2 expression through directly 
regulating its gene transcription and indirectly acting 
as ceRNAs to scavenge EZH2-targeting microRNAs 
(Figures 2D, 2E and Table 2). Fourth, at the protein 
level, lncRNAs are also involved in the regulation of 
EZH2 post-translational modifications, which impacts 
its methyltransferase activity and also the activity or 
stability of its binding partners (Figures 2B, 2C, 
2F-2H). Taken together, the complex regulation of 
EZH2 by lncRNAs at different levels just represents a 
tip of the iceberg in the whole ncRNA regulatory 
network. Deep understanding of additional 
mechanisms underlying lncRNA-mediated EZH2 
actions, as well as other key cancer-related genes and 
proteins, will heavily rely on continuous exploration 
by scientific researchers and the advance of research 
technologies. Nevertheless, the current understanding 
of EZH2 expression and activity mediated by 
lncRNAs will not only be exemplificative in the 
studies of other oncogenic networks regulated by 
lncRNAs, but also provide insights in discovering 
novel therapeutic targets of cancer treatments. 
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