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Abstract

Ferroptosis is a newly recognized mechanism of regulated cell death. It was reported to be highly
associated with immune therapy and chemotherapy. However, its mechanism of regulation in the tumor
microenvironment (TME) and influence on oral squamous cell carcinoma (OSCC) therapy are unknown.
We identified a ferroptosis-specific gene-expression signature, an FPscore, developed by a principal
component analysis (PCA) algorithm to evaluate the ferroptosis regulation patterns of individual tumor.
Multi-omics analysis of ferroptosis regulation patterns was conducted. Three distinct ferroptosis
regulation subtypes, which linked to outcomes and the clinical relevance of each patient, were
established. A high FPscore of patients with OSCC was associated with a favorable prognosis, a
ferroptosis-related immune-activation phenotype, potential sensitivities to the chemotherapy and
immunotherapy. Importantly, a high FPscore correlated with a low gene copy number burden and high
immune checkpoint expressions. We validated the prognostic value of the FPscore using independent
immunotherapy and pan-cancer cohorts. Comprehensive evaluation of individual tumors with distinct
ferroptosis regulation patterns provides new mechanistic insights, which may be clinically relevant for the
application of combination therapies in OSCC.
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Introduction

Cell death, which occurs in all organisms, is an
important aspect of development. In particular,
certain mechanisms of cell death depend on a specific
molecular machinery, which may be
pharmacologically or  genetically  controlled.
Ferroptosis, discovered in 2012, is an iron-dependent,
nonapoptotic mechanism of cell death, characterized
by iron-dependence, and excess levels of reactive
oxygen species and lipid peroxidation [1]. The cell
morphology and function of ferroptosis clearly differs

from those of necrosis, apoptosis, and autophagy [2,
3]. Further, ferroptosis is closely associated with
numerous diseases, such as cancers, neuropathies, as
well as kidney injury [4].

Cancer cells require increased levels of iron and
lipid metabolism compared with those of normal cells
to promote development. Thus, cancer cells are more
sensitive to ferroptosis [5, 6]. Further, inducers of
ferroptosis, such as erastin and RLS3, show strong
potential for suppressing the growth of colorectal
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cancer, clear cell renal cell carcinoma, and melanoma
[7,8].

Head and neck squamous cell carcinoma
(HNSCC) represent the sixth most common cancer
worldwide with at least 350,000 deaths every year [9,
10]. Oral squamous cell carcinoma (OSCC), the most
frequently occurring subtype of HNSCC, is
characterized by high morbidity and mortality [11].
Most patients with OSCC are diagnosed only when
the disease is advanced. However, current treatments
for OSCC, such as chemoradiotherapy and surgery,
have not significantly improved the survival rate [11].

The increased recognition of the complexity and
importance of the tumor microenvironment (TME)
has inspired numerous investigations of the
regulation of the TME in tumor metastasis [12, 13].
Moreover, evidence continues to indicate that the
expression of ferroptosis regulators is highly
associated with the immune response and the TME
[14]. For example, immune checkpoint inhibitor (ICI)
therapies have revolutionized the treatment of certain
cancers [15, 16]. In 2016, the US Food and Drug
Administration approved PD-L1 and PD-1 for
treatment of HNSCC [17]. In 2021, PD-1 has been used
as a first-line therapy for patients with advanced
OSCC according to the NCCN guidelines (https://
www.nccn.org/home).

Furthermore, ICI treatment enhances CD8+ T
cell-mediated ferroptosis in melanoma and ovarian
cancer [18]. Unfortunately, insufficient information is
available that describes the overall characteristic
infiltration of the TME mediated by interconnected
functions of multiple regulators of ferroptosis, and
some studies concentrate on one type of cell or some
regulators [19-21]. Therefore, characterizing the role
of ferroptosis in the cellular infiltration of the TME
will enhance our understanding of the antitumor
response of components of the TME and improve
immunotherapy strategies.

In this study, the first identification of ferroptosis
regulation patterns and the characterization of the
TME in patients with OSCC was accomplished using
samples from the Gene-Expression Omnibus (GEO)
and The Cancer Genome Atlas (TCGA) database. This
study identified three TME-relevant phenotypes as
follows: immune-inflamed, immune-desert, and
immune-excluded [22]. Moreover, we discovered that
the immune-inflamed phenotype is a ferroptosis
phenotype.

Moreover, we developed the FPscore to
comprehensively evaluate individual tumors with
each of the above ferroptosis patterns. The findings
reveal that the FPscore shows promise as a prognostic
biomarker for patients undergoing chemotherapy and
immunotherapy. Therefore, we believe that this

information will provide new insights into the
regulation of ferroptosis in association with the TME
and serve as a platform for developing new strategies
to implement optimal combination therapy of cancer.

Materials and methods

Data acquisition

Data for patients with OSCC were downloaded
from the GEO and TCGA, which included the original
“CEL" files of seven GEO data (GSE41613, GSE42743,
GSE9844, GSE30784, GSE74530, GSE78060, and
GSE138206; n = 510) and the level 3 gene-expression
data (counts) of the TCGA-HNSCC cohort.
Background adjustment and quantile normalization
were performed for GEO data using the “affy”
package. We selected 292 samples with OSCC and 30
normal control samples from TCGA-HNSCC data
according to the previously described position of the
tumor [23]. To establish TCGA-OSCC datasets, RNA
sequencing, somatic mutation, and copy number
aberrations data were downloaded from Genomic
Data Commons (GDC, http://portal.gdc.cancer.
gov/) and the Broad Institute (https://www.
broadinstitute.org/). The original counts data were
transformed into transcripts per kilobase million
(TPM) values, because the TPM values were more
similar to those of microarrays. Batch effects were
corrected using the “Remove Batch Effects” algorithm
to eliminate nonbiological technical biases for the
seven datasets. The GEO + TCGA cohort represented
the combination of TCGA-OSCC, GSE41613, and
GSE42743 cohorts where every sample contained
overall survival (OS) information. The accession
numbers, platforms, and other details of datasets are
summarized in Table S1.

Consensus clustering of ferroptosis regulation
patterns

Ferroptosis regulators were downloaded from
http:/ /www.zhounan.org/ferrdb/. After matching
with our datasets, we included 232 ferroptosis
regulatory genes (Table S2). Based on these genes and
the GEO + TCGA cohort, data were selected to
perform unsupervised clustering analysis using the
“ConsensusClusterPlus” R package. Further, this
consensus clustering algorithm was used to identify
the number of clusters, and the analysis included 1000
iterations to ensure the stability of the classification
[24].

Gene set variation analysis and functional
analysis

The “ClusterProfiler” R package was used for
the analyses of the Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG)
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databases. A false discovery rate (FDR) < 0.05 served
as the cutoff to select the pathways that were
significantly =~ enriched. = Non-parametric  and
unsupervised Gene Set Variation Analysis (GSVA)
analysis was performed using the “GSVA” R package
and gene sets of the MSigDB database of the Broad
Institute. Single-sample gene set enrichment analysis
(ssGSEA), including all TME and immune cell
signatures, was conducted using the package “IOBR”
[25]. The enrichment scores were calculated to
represent the relative expression in each sample.

Differentially expressed gene (DEG) analysis
and development of the ferroptosis score
(FPscore)

To identify genes associated with ferroptosis
patterns, DEGs among the ferroptosis clusters were
determined using the limma R package. The
significant criteria were selected using FDR < 0.01 and
absolute fold-change (FC) > 2. To evaluate the
classification value of the DEGs, dimension reduction
was conducted using the Boruta algorithm [26] and
the ferroptosis gene signature was determined. The
unsupervised clustering method was performed
using the TCGA-OSCC dataset. Patients were divided
into different groups according to the clustering of
ferroptosis gene signature for further analysis.

PCA was then performed to determine the
FPscore using principal components 1 and 2. This
approach concentrated on the score of the set
comprising the most significantly associated genes
and involved scaling down the score of genes that did
not track to other members of the set. The FPscore,
which is described according to a GGI-like procedure
[27], was calculated as follows: FPscore = ) (PC1;-
PC2)).

Evaluation of the FPscore of the TCGA cohort

To evaluate the FPscore of TCGA-OSCC data, we
first used Kaplan-Meier analysis to determine high
and low FPscore subtype via the “survminer” R
package. Next, HALLMARK gene set
(h.all.v7.2.symbols) enrichment analysis (GSEA) was
used to determine the biological signaling pathways
associated with two groups using the “clusterProfiler”
R package (P < 0.05, FDR < 0.25) [28]. To assess the
importance of the association of the FPscore with
patients” clinical characteristics, univariate and
multivariate analyses were performed to establish a
Cox proportional hazard regression model. The tumor
mutation burden (TMB) of OSCC was calculated
using the total number of nonsynonymous mutations
per megabase with the “maftool” R package [29]. The
chi-square test was performed to evaluate the
significance of differences of the numbers of mutated

genes between FPscore subtypes. GISTIC 2.0 (https://
cloud.genepattern.org) was used determine copy
number alterations to classify genes that were
amplified or deleted [30]. The total number of each
gene with an arm or focal region, which was deleted
or amplified, was calculated as the burden of copy
number loss or gain [31].

Prediction of the immunotherapeutic
response and evaluation of drug sensitivity

The immunophenoscore, tumor immune
dysfunction and exclusion (TIDE) algorithm, and the
subclass mapping (submap) algorithm were used to
predict responses to ICI treatment as previously
described [32-34]. To predict the chemotherapeutic
responses of FPscore subtypes, the drug sensitivity
data for cancer cell lines was obtained from the
Cancer Therapeutics Response Protal (CTRP v2.0,
https:/ / portals.broadinstitute.org/ctrp) and the
PRISM Repurposing dataset (PRISM,
https:/ /depmap.org/portal/prism/). The CTRP and
PRISM databases contained 481 and 1448 compounds,
respectively. We evaluated the most widely used
drugs to treat OSCC (afatinib, aphidicolin,
capecitabine, cisplatin, etoposide, fluorouracil, and
paclitaxel) as well as the other four inducers of
ferroptosis, which included RSL-3, erastin, ML162,
and ML210. The lower area under the curve (AUC) of
the dose-response curve indicated increased
sensitivity to a chemotherapeutic drug [35].

Connectivity map analysis

To further identify candidate compounds that
target FPscore subtypes and to classify potentially
beneficial therapeutics, connectivity map analysis
(CMap, https://clue.io/) was conducted utilizing
genes with the most significant fold-changes (up- and
downregulated; absolute FC > 1.5, FDR < 0.05) [36].
Compounds with enrichment scores > 0.5 (P < 0.05)
were designated potential agents for treating patients
with OSCC.

Influence of the ferroptosis patterns on
immunotherapy and TCGA analyses of
pan-cancer

We analyzed five independent immunotherapy
datasets, which included the melanoma cohort treated
with pembrolizumab (anti-PD-1, GSE78220, n = 27)
[37], advanced melanoma treated with nivolumab
(anti-PD-1, GSE91061, n = 50) [38], melanoma treated
with the immunotherapy TCGA-SKCM (n = 70) [39],
melanoma treated with ipilimumab and nivolumab or
pembrolizumab (anti-PD-1 and anti-CTLA4, Gide. El
at cohort, n = 32) [40], and metastatic urothelial cancer
treated with atezolizumab (anti-PD-L1, IMvigro210, n
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= 298) [41]. Data were transformed from FPKM to
TPM for further analysis. Survival analysis was
performed to validate the prognostic value of the
FPscore as applied to ICI treatment cohorts. Further,
time-dependent receiver operating characteristic
(ROC) curves were generated to evaluate the
predictive significance of the FPscore. The pan-cancer
data of 33 independent TCGA cancer cohorts
comprising 9703 tumor samples were acquired using
the UCSC Xena browser (http://xena.ucsc.edu/), and
the correlations between FPscore and PD-L1, PD-1,
CTLA-4, GPX4 in the pan-cancer cohort were
evaluated. The prognostic value of the FPscore for
predicting the OS was validated through univariate
Cox regression analysis and displayed as a forest plot.

Statistical analysis

Data were analyzed using R software (version
3.63). Comparisons of = 2 groups were conducted
using a parametric test (Student t-test or ANOVA test)
or a nonparametric test (Wilcoxon rank-sum test or
Kruskal-Wallis test). Post hoc tests were performed
with Benjamini-Hochberg adjustment of P values
after a Kruskal-Wallis test to compare each pair of
groups using the R package “PMCMR”. Pearson
correlation coefficients of the two groups were
compared. Additionally, chi-square tests were used to
analyze correlations between the ferroptosis gene
clusters and OSCC clinicopathological characteristics.
Survival analysis was performed using the Kaplan-
Meier method, and the significance of differences was
evaluated using the log-rank test. Univariate and
multivariate analyses were used to establish a Cox
proportional hazard regression model and a
nomogram model. We generated a time-dependent
ROC curve to estimate the power of the nomogram
model. The AUC was calculated using the R package
“pROC”. Alluvial diagrams show the distribution of
clusters. The data in nomograms included the
standard error of the mean (SEM). P < 0.05 indicates a
significant difference, and ns, *, **, and *** represent
not significant (P = 0.05) and significant at the levels P
<0.05,P<0.01, and P <0.001.

Results

The ferroptosis regulation patterns in OSCC

According to the results of unsupervised cluster
analysis, k = 3 was selected as the optimal ferroptosis
cluster number, according to the expression levels of
232 ferroptosis regulators (Figure S1A-E; Table S2).
Using these data, we distinguished ferroptosis
regulation patterns as ferroptosis cluster A,
ferroptosis cluster B, and ferroptosis cluster C by PCA
(Figure 1A). The circos plot shows the expression
levels of genes encoding ferroptosis regulators in the

clusters and the chromosomal positions of their
corresponding genes (Figure 1B). Kaplan-Meier
survival analysis showed that these ferroptosis
regulation patterns significantly differed with
patients’” survival (log-rank test, P = 0.009) (Figure
1C).

To identify the biological differences that
potentially explain these differences in survival, we
investigated immune-cell infiltration and the TME
associated with ferroptosis regulation patterns.
Among three ferroptosis clusters, all of their immune-
cell populations and TME were significantly different.
Further, the ferroptosis cluster C subtype, which was
associated with the shortest survival, comprised of
fewer immune cells; and the ferroptosis cluster A and
B subtypes were mainly enriched in immune cells,
such as B cells and CD8 T cells (Figure 1D; Table S3).
But the populations of exhausted CD8 T cells, T cell
exhaustion, and regulator T cells were significantly
elevated in ferroptosis cluster A. The TME results
showed marked enrichment of ferroptosis cluster A in
TGEF-B, the epithelial-mesenchymal transition (EMT),
co-inhibition  antigen-presenting  cells (APC),
co-inhibition T cells, and major histocompatibility
complex (MHC) Class I. GSVA analysis revealed that
ferroptosis cluster A was strongly associated with
stromal activation, which included extracellular
matrix receptor interaction, focal adhesion molecules,
and cell adhesion molecules (Figure 1E; Table S4).
Ferroptosis cluster B was associated with ferroptosis-
related metabolism and immune response pathways
(Figure 1E-F; Table S4). Moreover, ferroptosis cluster
C was associated with DNA repair pathways (Figure
S1F; Table S4). Together, these findings indicated that
ferroptosis cluster B was associated with immune
activation  and  ferroptosis-related  activities.
Ferroptosis cluster C showed more genomic
instability and less immune activation than the other
two clusters. In contrast, ferroptosis cluster A showed
T cell suppression and activation of stromal cells.

Identification of genes associated with
ferroptosis regulatory subtypes

To evaluate the transcriptome differences among
ferroptosis regulation patterns, we conducted
analyses of DEGs (Table S5) together with the Boruta
algorithm to minimize dimensions of the ferroptosis
gene signature to reduce noise or redundant genes
and 245 DEGs were finally obtained as ferroptosis
gene signatures (Table S6). We next analyzed the
TCGA-OSCC cohort (292 patients with OSCC; Table
S7) to better identify and recognize the biological and
clinical variations between these patterns. The
summaries of GO and KEGG analyses of the DEGs are
shown in Figure 2A-B, and Table S8. DEGs were
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Figure 1. Ferroptosis regulation patterns and related biological process. (A) Principal component analysis of 463 (GSE41613, GSE42743, TCGA-OSCC) patients with
OSCC. There were significant differences among the transcriptomes of three distinct ferroptosis regulation patterns. (B) Integration of circular plots of 463 patients with OSCC.
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Figure 2. Identification of ferroptosis gene clusters and development of the FPscore. (A,B) Functional annotation of DEGs using GO and KEGG enrichment analysis.
(C€) Unsupervised clustering of ferroptosis regulation patterns-related DEGs was used to classify patients into different genomic subtypes in the TCGA-OSCC cohort
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*EP < 0.001).
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Unsupervised clustering was performed
according to the expression of 245 DEGs. We
identified three genomic clusters in the TCGA-OSCC
cohort, namely ferroptosis gene clusters A, B, and C
(Figure S2A-E). The heatmap illustrated significantly
different transcriptome profiles of the 245 DEGs
according to genomic cluster (Figure 2C). Further,
Kaplan-Meier survival analysis revealed important
prognostic variations in the TCGA-OSCC cohort
associated with the three ferroptosis gene clusters as
follows: The ferroptosis gene cluster B correlated with
better prognosis, whereas ferroptosis gene clusters A
and C were associated with worse outcomes (P =
0.032) (Figure 2D). The chi-square test stratified
patients into three discrete clusters with distinct
ferroptosis gene signature and clinicopathological
characteristics. The ferroptosis gene clusters were
significantly associated with differences in the
immune response according to the TIDE algorithms
(P < 0.05). Furthermore, gene cluster B exhibited low
tumor grades and mainly the basal molecular
subtype, whereas gene clusters A and C showed
diverse patterns (Figure 2E).

Similarities between the landscape of infiltration
of immune cells and TME signatures characteristic of
the ferroptosis regulation patterns are shown in
Figure S2F-G, and Table S3. Gene cluster B and C
exhibited higher B cells and CD8 T cells than were
exhibited by gene cluster A. T cell exhaustion and
regulatory T cells were most enriched in gene cluster
C. Patients with higher expression levels of PD-L1 as
well as expression of immune activation-related
genes, such as CD8A, CXCL10, and IFNG, were more
abundant in gene cluster B than they were in clusters
A and C (Figure 2F; Figure S2H; Table S3). These
results were consistent with patients’ outcomes and
the clinical relevance of different gene -clusters,
indicating that our classification was reasonable.

Generation of the FPscore

To apply the ferroptosis regulation patterns to
each patient with OSCC according to these ferroptosis
gene signatures, we developed the FPscore. The circle
plot shows that the FPscore was significantly
associated (P < 0.05) with canonical ferroptosis-
related genes [42, 43] (Figure 2G; Table S9). Notably,
ferroptosis cluster B and gene cluster B, which had the
highest FPscore, were associated with better
prognosis compared to other clusters (Figure 2H-I).

FPscore is an independent prognostic factor in
OSCC

Further, the FPscore was significantly different
between normal and tumor samples in all cohorts
(seven GEO datasets and TCGA-OSCC cohort, n =

832) and TCGA-OSCC cohorts (n = 322) (Figure
3A-B). The prognostic value of the FPscore for
predicting OS, progression-free interval (PFI), and the
disease-specific survival (DSS) of the TCGA-OSCC
cohort was evaluated (Figure 3C; Figure S3A-B).
These results were confirmed by Kaplan-Meier
analyses of the GEO + TCGA, GSE42743, and
GSE41613 cohorts (Figure 3D; Figure S3C-D). Based
on the OS results in TCCA-OSSC cohort, we divided
the OSCC patients into high/low FPscore subtype
and the association between ferroptosis-related
clusters and status were displayed in Figure 3E. These
results showed that the high FPscore subtype
experienced significantly better outcomes compared
with the low FPscore subtype.

The FPscore, which was subsequently evaluated
as a continuous variable in univariate and
multivariate Cox regression models, was identified as
an independent and stable prognostic factor of the
TCGA-OSCC and GEO + TCGA cohorts (HR, 0.58;
95% ClI, 0.39-0.87; P = 0.008 and HR, 0.63; 95% CI,
0.47-0.84; P = 0.002, respectively) (Figure 3F-G).
Further, a nomogram that combined the FPscore with
the tumor stage was created to provide clinicians with
a predictive tool for estimating the 1-, 3-, and 5-year
prognoses of patients with OSCC (Figure 3H). The
calibration plot showed that the nomogram
performed well in predicting OS (Figure 3I). The
C-indices of our nomogram model used to predict OS
of the TCGA-OSCC and GEO + TCGA cohorts were
0.61 and 0.60, respectively. Further, the AUC values
showed that the FPscore was superior to the TIDE
score for predicting OS (Figure 3]J-K).

Characteristics of the FPscore of TCGA
molecular subtypes and their clinical relevance

When we investigated the relationship between
the FPscore and clinical characteristics, we found that
a high FPscore was significantly associated with low
tumor grade, early tumor stage, wild-type TP53, T
and N stage, and low mDNAsi and mRNAsi (P <0.05)
(Figure 4A-G; Table S3). Further, the distributions of
FPscore were significantly different among the
molecular subtypes (Figure 4H-J; Table S3).

To further investigate the biological differences
between FPscore subtypes, we performed GSEA
analysis. The results showed that TP53 pathway,
tumor necrosis factor alpha (TNF-alpha signaling,
Kras signaling decreasing, and responses to
interferon-gamma were activated in the high FPscore
subtype. In contrast, the EMT, DNA repair pathway,
hypoxia, and mTORC1 were activated in the low
FPscore subtype (Figure 5A-B). Further, the
ferroptosis level was significantly higher in the high
FPscore subtype (P < 0.05) (Figure 5C).
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Figure 3. Ferroptosis score is an independent prognostic factor in OSCC. (A) Violin/boxplot showing the distributions of FPscore between normal and tumor tissues
of patients in cohorts: GSE9844, GSE30784, GSE41613, GSE42743, GSE74530, GSE78060, GSE138206, and TCGA-OSCC. (B) Violin/boxplot showing the distributions of
FPscore between normal and tumor tissues of patients in TCGA-OSCC cohort. (C,D) Kaplan-Meier analysis of OS associated with high and low FPscore subtype in the
TCGA-OSCC cohort (log-rank test, P = 0.006) and GEO + TCGA cohort (log-rank test, p = 0.002). (E) Alluvial diagram of ferroptosis clusters in groups of ferroptosis gene
clusters, FPscore, and survival outcomes. (F,G) Forest plot showing univariate and multivariate Cox regression analyses of FPscore associated with age, gender, tumor stage, and
TIDE score of two cohorts. (H) Nomogram developed using multivariate Cox regression analysis for predicting the OS of patients with OSCC. (I) Plots depict the calibration
of the model in terms of agreement between predicted and observed OS rates. Model performance is shown, and the 45° slope represents perfect prediction. (J,K) AUCs
associated with OS of the nomogram-based signatures, FPscore, and TIDE scores of the TCGA-OSCC cohort and GEO + TCGA. P values were tested using the Student's t-test,

the Mann-Whitney test, and Kruskal-Wallis test (*P < 0.05, **P < 0.01, ***P < 0.001).

A correlation matrix heat map showed that the
FPscore was significantly and positively associated
with the immune-activation signature, TMEscore,
fatty acid biosynthesis, and arachidonic acid
metabolism; although there were significant negative
correlations with stroma, EMT, the m6A signature
and glutathione metabolism (P < 0.05) (Figure 5D;
Table S10). Together, these results support the
conclusion that the FPscore achieved clinical
prognostic value and that the TME was strongly
associated with ferroptosis. Moreover, the FPscore
accurately reflected the ferroptosis regulation patterns
in patients with OSCC.

Comparison of copy number aberrations and
somatic mutations using the FPscore

Changes of gene copy numbers are associated
with ICI. We therefore determined the copy number
aberrations between the FPscore subtypes. We found
that the high FPscore subtype showed a significant
lower focal-level gain/loss burden and a lower
arm-level gain/loss burden compared with those of
the low FPscore subtype (P < 0.05) (Figure 5E). The
distributions of G-scores among all chromosomes of
these subtypes (Figure 5F) showed difference in copy
number aberrations. In contrast, there was no
significant difference in TMB associated with the
FPscore subtypes (P 0.130) (Figure S4A). The

http://www.ijbs.com



Int. J. Biol. Sci. 2021, Vol. 17

3484

number of each somatic mutation type in FPscore
subtypes was showed in Figure S4B. The oncoplot of
somatic mutations showed the top 20 most frequently
mutated genes (Figure S4C-D). The chi-square test
revealed that the high FPscore subtype was associated
with a significantly low TP53 mutation burden
compared with the low FPscore subtype (Table S11).
A lollipop plot showed similar results and provided
details about the positions of the TP53 mutations
between the FPscore subtypes (Figure 5G).

Predicting responses to immune therapy and
chemotherapy

To determine whether the FPscore predicted the
response of ICI treatment in OSCC, we evaluated the
expression of immune checkpoint and immune-
activation-related genes. There was a significant
increase in the high FPscore subtypes including
PD-L1, CTLA4, PD-1, IENG, and MHC (P < 0.05)
(Figure 6A). Next, we used the immunophenoscore

scoring system and TIDE algorithm to evaluate the
potential therapeutic effectiveness of immunotherapy.
immunophenoscore was found significantly elevated
in high FPscore subtype (P < 0.05) (Figure 6B). A
greater propensity for immune evasion was
demonstrated by the higher TIDE predictor score,
indicating that patients may not benefit from ICI
therapy. Interestingly, the high FPscore subtype had a
significantly lower TIDE score compared with that of
the low FPscore subtype (P < 0.05) (Figure 6C). We
next investigated whether the higher FPscore subtype
correlated with an objective response to ICI therapy
though TIDE (P < 0.001) (Figure 6D). The submap
result showed that the high FPscore subtype may
respond to PD-1 treatment (P < 0.05) (Figure 6E).
These results provided evidence that the ferroptosis
regulation patterns play a key role in mediating the
immune response in OSCC.
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Figure 5. The biological pathways and copy number burdens of FPscore subtypes. (A) GSEA enrichment plots showing the associations of the high FPscore subtype
with interferon response, KRAS signaling down, P53 pathway, and TNF-alpha signaling. (B) GSEA enrichment plots showing the associations of the low FPscore subtype with
active in DNA repair, E2F targets, EMT, G2M checkpoint, glycolysis, hypoxia, and mTORCI signaling pathway. (C) Violin/boxplot showing the ferroptosis levels of the FPscore
subtypes. (D) Correlations between the FPscore associated with the immune-activation signature, TME, and ferroptosis-related metabolism. A negative correlation is shown in
blue and a positive correlation in red. (E) Distribution of focal and broad copy number aberrations between the FPscore subtypes. (F) Copy number profiles of the low and high
FPscore subtype, with gains in red and losses in blue. Gene segments are ordered according to their chromosomal locations. (G) Lollipop plots of mutations in TP53, upper side
(purple) represents the low FPscore subtype, lower side (brown) represent the high FPscore subtype. P values were tested using the Student's t-test, the Mann—Whitney test, and
Pearson correlation analyses (*P < 0.05, **P < 0.01, ***P < 0.001).

http://www.ijbs.com



Int. J. Biol.

Sci. 2021, Vol. 17

3486

A

Expression

Mmoot mc e oem s B
= High = Low
354
| |
z
o
Fl
o
304 2
g 3
o 8
254 2
@
45.5% E:
8
204 222%
p=0008 p<0.001 p<0.001
High Low High Low High Low
(n=112) (n=180) (n=112) (n =180) (n=112) (n=180)
- - - -
F 05 |
1
p-value =
==
Nominal p-value o L- * |
2 =
08 . Bonferroni comected @ 4 ke ]
Q T
2 s
|
06 B os L T o
©
I £ 2
04 ] T
02 | L ===
= =T e
02 b . ol
3 3 an T
< o
@ — 01
3 ! " S &
3 3 &
® g & & &
a )
A
H H
g ] E 2
2 = -]
£20y_ E525 @ 2 - )
858z iceg 1,85 18§ H
Fecgs¥fecgs8ecefEsd 8
S825issgia8cesaais g
222EEEEE2SEa3a8E8S¢ &
mechanism of action g
I
. . Carbonic anhydrase inhibitor c?,
.0 Glucocorticoid receptor agonist
B B IMvigor210
. 3 Protein synthesis inhibitor 000] Log-rank p = 0.043
. Acetylcholine receptor antagonist ] 5 10 15 20 25
. Adenosine receplor antagonist, Hemoglobin antagonist Number al risk
. Adrenergic receptor antagonist |22 1 122 9 52 0
. Angiogenesis inhibitor e 47 30 20 13 ?_
. Bacterial DNA gyrase inhibitor 0 s 10 15 20 5
) = Time (months)
. Casein kinase inhibitor
I 1.00{ —~ High— Low
. Cytochrome P450 inhibitor L
. Dopamine receptor antagonist, Serotonin receptor antagonist g l |
L] inhibitor, Tt receptor g o ] ‘. |
é L
. Estrogen receptor agonist g ﬁ 41[
. Fatty acid synthase inhibitor E 0.50{ kl —iita it
. Histamine receptor agonist, Histamine receptor antagonist g 1
. N @ -
. Histamine receptor antagonist 025]
] Penicillin binding protein inhibitor s
. inhibitor, receptor GSE91061
@ Photosensitizing agent 0.00] Log-ank p =0.002
0 10 20 30 40
. Progesterone receptor agonist Number at risk
. Thyroid hormone stimulant - 3y 2 20 1 1
_1 10 9 6 3 0
0 10 20 30 40
Time (months)
1 71‘:\ ~ High-- Low K ol —y, ~ High— Low L 1 4._.7]1 — High— Low
g FRESEE e
£ 2 - £ S5 [
é 0.754 § or é 0754 ll el
§ 0.50f g 050 § 0501
= b= H =
> 3 3
@ @ @
0.25] 02! 025]
TCGA-SKCM Gide et al. GSET78220
0.00{ Log-rank p = 0.046 000{ Log-rank p =0.035 0 Log-rank p = 0.021
] 5 i) 3 70 [ 0 20 30 0 0 20 40 €0 80
Number at risk Number at risk Number at risk
|48 20 10 5 0 =28 23 17 2 1 i ] 15 9 5 2
=24 10 3 1 0 1 4 1 0 o sll| 7 3 2 1
[ 5 10 15 20 0 10 20 40 0 20 40 60
Time (months) Time (months) Time (months)
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Chemotherapy is frequently administered to
patients with OSCC, although drug resistance is a
major problem that hinders treatment. We therefore
applied CTRP and PRISM data to delineate drug
resistance and sensitivity associated with the FPscore
subtype. A high FPscore was associated with
sensitivity to chemotherapeutic drugs, and a low
FPscore subtype was significantly associated with
drug resistance (P < 0.05) (Figure 6F). Moreover, we
found that the sensitivity of erastin, an inducer of
ferroptosis, significantly correlated with the high
FPscore subtype. These findings indicated that a
patient with a high FPscore may achieve a good
response to chemotherapy.

Further, the CMap mode of action analysis
identified 21 pathways shared by the 24 compounds.
(Figure 6G; Table S12). To decipher the prognostic
value of the FPscore for immunotherapy, we
performed Kaplan-Meier analyses of five independent
ICI treatment cohorts. Each cohort showed that a high

FPscore subtype was associated with better prognosis
compared with that of a low FPscore (Figure 6H-L)
and time-dependent ROC curves validated the
accuracy of the FPscore (Figure S5A-E). These results
suggested that the FPscore has prognostic value for
ICI therapy administered patients.

Analysis of pan-cancer data

To systematically analyze the significance of the
FPscore in pan-cancer, we evaluated the expression of
the immune check-points and GPX4. The FPscore was
significantly associated with GPX4, PD-L1, PD-1, and
CTLA4 in many cancers, including HNSCC (Figure
7A-D; Table S13). A high FPscore was identified as a
favorable prognostic biomarker for 13 independent
TCGA cohorts, some of which comprised “hot
tumors” with high immunogenicity, such as head and
neck cancer, colon cancer, kidney cancer, urothelial
cancer, and cervical cancer (Figure 7E).
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Figure 7. Evaluation of the utility of the FPscore in pan-cancers. (A-D) Dot plot showing the correlation between FPscore and GPX4, PD-L1, PD-1, and CTLA4
expression in pan-cancer. The triangle and gray circle represent P > 0.05 and P < 0.05, respectively. (E) Univariate Cox regression analyses of the prognostic value of the FPscore
in different cancers. The length of the horizontal line represents the 95% CI for each group. The vertical dotted line represents HR = 1. HR < 1.0 indicates that an elevated

FPscore is a favorable prognostic biomarker. The numbers of patients are displayed.
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Discussion

Here we established three distinct ferroptosis
regulation patterns, defined by immune phenotypes,
which were associated with various levels of
anticancer immunity and the scheme of our study is
shown in Figure 8. This study depicts the
identification of ferroptosis cluster A, associated with
the immune-excluded phenotype, which was
characterized by the stromal activation. Ferroptosis
cluster B was characterized by immune-activation and
metabolism, which represents an immune-inflamed
and ferroptosis phenotype. The ferroptosis cluster C
was characterized by less infiltration with immune
cells, represented as the immune-desert phenotype
(Figure 1D-F).

Previous studies showed that stromal activation
prevented the infiltration of immune cells in tumor by

retaining them in the stroma, which were
consequently blocked from penetrating into tumors.
And the activation of stromal cells was considered to
suppress T cell activation [22, 44]. Consistent with
these results, ferroptosis cluster A was associated with
poor prognosis despite having abundant immune
cells. Notably, we identified ferroptosis cluster B,
which was associated with better prognosis, activated
T cell abundance, and high ferroptosis activity. We
believe that it is reasonable to conclude therefore that
the activation of T cells enhances ferroptosis and
contributes to its strong antitumor effect. For example,
ferroptosis is consistent with T cell-mediated cancer
immunity [18].

We showed here that the DEGs of distinct
ferroptosis patterns were greatly overrepresented in
biological pathways involved in ferroptosis-related
metabolism, indicating that DEGs represented gene
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signature linked to ferroptosis phenotypes (Figure
2A-B). Similar to the ferroptosis clustering data, three
subtypes of transcriptomic profiles were significantly
associated with survival outcomes; and the
ferroptosis gene signature was established and
designated gene clusters A, B, and C. These gene
clusters were each significantly associated with a
specific clinical subtype (Figure 2C-D).

We therefore sought to quantify the ferroptosis
trends of individual tumors according to the specific
heterogeneity of alterations of ferroptosis. Therefore,
the FPscore was developed to identify the ferroptosis
patterns of an individual patient. As a result, we
found that the FPscore was significantly associated
with the expression of canonical ferroptosis-related
genes and was consistent with the ferroptosis patterns
(Figure 2G). And the immune-inflamed and
ferroptosis phenotype had a higher FPscore compared
with those of the immune-desert and immune-
excluded phenotypes (Figure 2H-I). These findings
indicate that the FPscore will serve as an accurate and
robust tool for detailed evaluation of the patterns of
alterations of ferroptosis in individual tumors, which
may be useful for further evaluation of the patterns of
TME, such as tumor immune phenotypes.

Therefore, we conducted a comprehensive
evaluation of the FPscore. In clincal practices, Cox
regression analysis indicated that the FPscore was an
independent clinical predictive factor of the prognosis
of OSCC (Figure 3F-G). Further, a nomogram model
comprising the FPscore and tumor stage achieved
good prognostic predictive performance when
applied to patients with OSCC (Figure 3H-K).
However, from a clinical perspective, a large-cohort
validation is needed. These results convincingly
demonstrate that the nomogram model may provide
clinicians with robust prognostic biomarkers for
managing patients with OSCC. We further
demonstrated that the FPscore was related to
clinicopathological characteristics. FPscore was found
to be elevated in patients with low grade, early stage,
immune C2 subtype, low mRNAsi/mDNAsi, T1
stage, and no lymph node metastasis, which always
represents a better prognosis (Figure 4A-J). Immune
subtype C1 was reported to be highly enriched in
angiogenesis and C2 subtype represented the strong
CD8 signal and antitumor immune response [45].
Moreover, the high value of mRNAsi/mDNAsi in
tumors has been identified to reflect the
dedifferentiation and metastasis of tumors [46]. Taken
together, these results indicated that the FPscore is
associated with tumor progression and TME
remodeling.

Through GSEA, our data revealed that a high
FPscore was significantly enriched in ferroptosis-

positive regulatory pathways and immune-activation
signature (Figure 5A-B). For example, arachidonic
acid metabolites release oxidized lipid mediators,
such as 11-HETE and 15-HETE during ferroptosis to
recruit immune cells [6]. Fatty acid accumulation in
cells and the depletion of cysteine and glutathione
peroxidase 4 (GPX4) will also induce ferroptosis [45,
46]. Therefore, those factors were in concordance with
our results that high FPscore subtype had higher
ferroptosis levels (Figure 5C). These results also
explain that the patients with a high FPscore subtype
survived longer compared with those with low
FPscore subtype.

We were intrigued by our findings that the
FPscore positively correlated with the TMEscore and
negatively with the m6A signature (Figure 5D).
Previous studies showed that a lower m6A signature
and a higher TMEscore represented the immune-
inflamed phenotype. Both showed a predictive
advantage of immunotherapy for gastric cancer [24,
47]; here, the TIDE algorithm and the
immunophenoscore showed that a high FPscore was
significantly associated with a better response to ICI
treatment (Figure 6B-D). Further, PD-L1, PD-1, and
CTLA-4 were significantly expressed at high levels by
the high FPscore subtype (Figure 6A). Specifically, the
submap results imply that the high FPscore subtype
may respond to PD-1 treatment (Figure 6E). The
results of the study by Wang et al. are consistent with
our findings using a mice model, in which ICIs
enhanced T cell-mediated antitumor immunity
though  the upregulation of IFN-y and
downregulation of the cystine/glutamate antiporter,
system Xc- [18]. Recently, several clinical studies have
reported that gene mutations may reflect the response
of immune therapy; in particular, TMB has been
identified as an independent factor for predicting ICI
treatment [48, 49]. However, some studies have also
concluded that high-TMB failed to predict ICI
treatment; thus, whether TMB could be a biomarker
across all tumors is still unclear [50, 51]. When we
evaluated the TMB of the two ferroptosis subtypes,
we found that they were not significantly different (P
= 0.13, Figure S4A). In contrast, we were further
intrigued that copy number aberrations associated
with the FPscore subtype (Figure 5E-F). A
significantly lower copy number burden in the high
FPscore subtype compared with that of the low
FPscore subtype was demonstrated. Indeed, copy
number aberrations make a larger contribution to the
immune signature, and the low burden of copy
number gain/loss correlates with the response to
immunotherapy [16, 52]. A recent report
demonstrating that the burden of copy number loss
did not correlate with the mutational load during
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immune therapy [16]. Notably, the FPscore may
predict the response to immunotherapy as an
independent factor or even among OSCC patients
with the same TMB level. Furthermore, we found that
the low FPscore subtype showed more TP53
mutations than the high FPscore subtype;
additionally, the TP53 pathway was activated in
tumors with a high FPscore (Figure 4C; Figure 5G).
Therefore, these findings indicate that TP53 may
regulate ferroptosis in OSCC cells and are consistent
with those of recent studies showing that TP53 and
the tumor-associated mutant TP53 may play import
roles in ferroptosis of cancer cells [53, 54].

Moreover, the high FPscore subtype showed
significant sensitivity to chemotherapeutic agents and
to erastin (Figure 6F), the latter of which induces
ferroptosis of cancer cells through the cysteine-
glutamate transporter [55]. However, other inducers
of ferroptosis, such as RLS3, ML162, and ML210,
which directly inhibit GPX4 leading to ferroptosis, did
not exhibit drug sensitivity in FPscore subtypes.
These findings are likely explained by low GPX4
expression in the high FPscore subtype [5, 56]. We
used CMap to identify other inhibitors that may have
antitumor efficacy in OSCC (Figure 6G). The above
suggest that ferroptosis represents a pathway in
cancers cells that can be effectively targeted by
therapeutic agents. For example, we validated the
prognostic value of the FPscore of five independent
ICI treatment cohorts (Figure 6H-L), the same results
were obtained. That is, patients with a high FPscore
experience a better prognosis than those with a low
FPscore, suggesting that the FPscore predicts the
survival ratio of patients who undergo immuno-
therapy. Further, our present pan-cancer analysis
showed that the FPscore was associated with the
immune checkpoints and GPX4 (Figure 7A-D), which
predicted the OS of patients with “hot tumors.” These
findings support our conclusion that the FPscore
could be suitable for translation to the clinic.

In short, the high FPscore subtype was defined
as the ferroptosis-related immune-activation subtype
and was associated with clinicopathological features,
various biomarkers including TME, immune
checkpoint expression, and copy number aberrations,
which indicates that the FPscore is a promising
prognostic biomarker related to ICI treatment and
chemotherapy in OSCC. However, further studies
including single-cell RNA-seq and proteomics data
analyses are required to identify the details of the
activation of T cells caused by ferroptosis, such as the
mechanism of ferroptosis-induced cell death, which
releases signals that trigger cytotoxic T cell-mediated
adaptive immunity, which is beyond the scope of the
current study. Moreover, ferroptosis also occurred in

the normal cells and play a role as a double-edged
sword in oncogenesis through the release of signaling
molecules that inhibit or promote tumor growth and
proliferation [57]. A critical cutoff value and the role
of FPscore in assessing prognosis and the
immunotherapy responses of OSCC remain to be
accurately determined through prospective studies.

Conclusions

In conclusion, multi-omics analysis revealed that
a high FPscore identified patients with OSCC with
ferroptosis-related =~ immune  activation, = who
experienced longer survival and benefited from
immunotherapy and chemotherapy in OSCC. These
findings contribute toward new insights into the
regulation of ferroptosis associated with the TME,
which may be clinically relevant for developing
combination therapies of OSCC.
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