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Abstract 

Background: Alcohol consumption increases the risk of hepatocellular carcinoma (HCC), and associated 
with a high mortality rate and poor prognosis. N6-methyladenosine (m6A) methylations play key roles in 
tumorigenesis and progression. However, our current knowledge about m6A in alcohol-related HCC 
(A-HCC) remains elucidated. Herein, the authors construct an integrative m6A model based on A-HCC 
subtyping and mechanism exploration workflow. 
Methods: Based on the m6A expressions of A-HCC and in vivo experiment, different prognosis risk A-HCC 
subtypes are identified. Meanwhile, multiple interdependent indicators of prognosis including patient survival 
rate, clinical pathological prognosis and immunotherapy sensitivity. 
Results: The m6A model includes LRPPRC, YTHDF2, KIAA14219, and RBM15B, classified A-HCC patients 
into high/low-risk subtypes. The high-risk subtype compared to the low-risk subtype showed phenotypic 
malignancy, poor prognosis, immunosuppression, and activation of tumorigenesis and proliferation-related 
pathways, including the E2F target, DNA repair, and mTORC1 signalling pathways. The expression of 
Immunosuppressive cytokines DNMT1/EZH2 was up-regulated in A-HCC patients, and teniposide may be a 
potential therapeutic drug for A-HCC. 
Conclusion: Our model redefined A-HCC prognosis risk, identified potential m6As linking tumour progress 
and immune regulations and selected possible therapy target, thus promoting understanding and clinical 
applications about A-HCC. 

Key words: Hepatocellular carcinoma, N6-methyladenosine, tumour immune microenvironment, treatment 
sensitivity, teniposide 

Introduction 
N6-Methyladenosine (m6A) methylation is the 

most common post-transcriptional modification, 
regulating RNA splicing, translocation, stability, and 
translation into proteins [1, 2]. Enzymes involved in 
m6A methylation include demethylases (commonly 
referred as ‘erasers’), methylases (‘writers’), and 
methylation recognition enzymes (‘readers’) [3]. 

Abnormal activity of m6A-related enzymes can 
induce numerous pathological responses, including 
tumour development, immune dysregulation, and 
embryonic developmental delay [4-6]. Therefore, 
understanding the m6A alterations can provide 
meaningful insights into the tumorigenesis, 
progression and potential therapeutic targets. 
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Liver cancer is one of the most common cancers 
and the fourth leading cause of cancer-related deaths, 
with more than 850,000 annually reported cases 
worldwide [7-10]. The most common risk factors for 
HCC are viral infection, alcoholism, and metabolic 
syndrome [11-13]. Alcohol can significantly increase 
the release of cytoplasmic mtDNA, thereby activating 
the cGAS-IRF3 signal, causing liver cell apoptosis and 
inflammation [14, 15]. Excessive alcohol intake 
induces a metabolism shift from oxidative metabolism 
to reductive reaction, which favour the synthesis of 
fatty acids and promote fatty liver progress, leading to 
liver cirrhosis and cancer [16, 17]. In addition, chronic 
alcohol intake can cause reactive oxygen species and 
DNA damage, and further promote the activation of 
cancer stem cell-related gene mutations, leading to a 
poor prognosis for A-HCC [18], which has a mortality 
rate that is 4 times that of the general population [19]. 

The specific molecular mechanisms underlying 
A-HCC remain to be elucidated. The two most 
recognised major drivers are cytochrome P450 2E1 
(CYP2E1) and intestinal lipopolysaccharide (LPS) 
imbalance [20, 21]. Alcohol could induce liver 
inflammation and oxidative stress cause DNA 
damage in hepatocytes; ultimately promote tumour 
initiation and progression [22]. Previously, m6A 
methylation was reported to play a promoting role in 
the occurrence and development of HCC, regulating 
cell proliferation, cell invasion and epithelial to 
mesenchymal transformation [23]. The levels and 
activities of m6A regulatory genes YTHDF2, ALKBH5 
and FTO can inhibit the HCC malignancy [24-26]. For 
example, FTO can control liver energy homeostasis 
and metabolism, and it plays an anticancer role in the 
HCC development [27]. 

Here, to further explore the correlation between 
the level of m6A methylations and the occurrence and 
prognosis of A-HCC. We propose an integrative m6A 
model based on A-HCC subtyping and mechanism 
exploration workflow. Then, based on the m6A 
regulatory factors and multi-omics data from the 
cancer genome atlas (TCGA) two A-HCC subtypes 
and their corresponding biological and clinical 
characters were identified. We observed high-risk 
A-HCC subtypes are related to immunosuppression 
and some key Immunosuppressive cytokines (EZH2 
and DNMT1) promote the poor prognosis of A-HCC 
patients. In addition, we selected possible therapy 
target, thereby promoting a comprehensive 
understanding of A-HCC and providing guidelines 
for its treatment. 

Materials and Methods 
Patients and specimens 

For this study, we collected samples from 108 
patients who underwent a liver biopsy at Zhujiang 
Hospital (Southern Medical University, Guangzhou, 
China) between 2018 and February 2021. After 
formalin fixation for 24 h, the samples were 
dehydrated, embedded in paraffin, and stored at 4 °C. 
The samples were divided into three groups: normal 
(no HCC history, n = 31), N-A-HCC (no history of 
alcohol consumption, n = 56), and A-HCC (history of 
alcohol consumption for more than 20 years, n = 21) 
(Supplementary Table 1). The data and tissue samples 
used in this study met the medical ethical 
requirements of the Southern Medical University. 

Mice, diets, and experimental design 
C57BL/6 mice were obtained from the 

Guangdong Animal Experiment Center, China and 
they were kept in a specific pathogen-free 
environment at a constant temperature and light-dark 
cycle of 12 h. All animal handling procedures were 
approved by the Southern Medical University Animal 
Care and Use Committee. 

To establish a tumour model, C57BL/6 mice 
were intraperitoneal injected with 25 mg/kg 
diethylnitrosamine (DEN; Sigma, USA) at 2 weeks of 
age. At 6 months, mice injected with DEN were given 
a non-alcoholic liquid diet for diet adaption. One 
week later, the experimental group was switched to 
an alcoholic liquid diet (the alcohol concentration was 
gradually increased to 4.8%), while the control group 
continued to receive a non-alcoholic liquid diet 
(maltose instead of alcohol with the same caloric 
content). Mice in the experimental treatment group 
were given teniposide (0.4 mg/d per kg bodyweight; 
Topscience, China) via gavage for 8 weeks at 6 months 
of age. 

Cell culture and reagents 
The human HCC-derived cell lines Huh7 and 

HepG2 were obtained from the American Type 
Culture Collection (ATCC, Manassas, VA, USA). Cells 
were cultured in Dulbecco’s modified Eagle’s 
medium (DMEM; Gibco, USA) supplemented with 
10% foetal bovine serum (FBS; Gibco) and 1% 
penicillin/streptomycin (Gibco) at 37 °C in a 5% CO2 
atmosphere. Mid-log phase cells were used in all 
experiments. 

When the cells achieved the desired confluency, 
the cells were starved by culturing in medium 
without FBS for 24 h. Subsequently, the cells were 
incubated with medium containing 100 mM ethanol 
for 48 h at 37 °C in a 5% CO2 humidified environment. 
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These cells were used as in vitro model of A-HCC. 
Then, the cells were incubated for 12 h with 0.5 μM 
teniposide (Alexis Biochemicals, San Diego, CA, 
USA). 

Quantitative reverse transcription PCR 
(qRT-PCR) 

Total RNA was extracted from clinical patient 
samples and cells using TRIzol reagent (Life 
Technologies, USA). RNA concentration and quality 
were measured using a spectrophotometer 
(Nanodrop One, Thermo Fisher Scientific, Waltham, 
MA, USA). Samples with a 260/280 absorbance ratio 
> 2 ± 0.1 were considered contaminated with protein 
and discarded. RNA samples were then reverse 
transcribed to cDNA using a reverse transcription kit 
(#RR037A; Takara Bio, Shiga, Japan), after which 
qPCR was performed using SYBR Premix Ex Taq 
(DRR041A; Takara Bio). Specific primers as shown in 
Supplementary Table 2 were used to detect the 
expression levels of relevant genes. 

Immunohistochemistry and 
immunofluorescence 

To perform immunohistochemistry (IHC) on 
patient liver samples, the samples were processed into 
4 μm-thick paraffin sections, deparaffinized, and 
hydrated, followed by microwave treatment (10 mM 
citrate buffer) for antigen retrieval. The tissue sections 
were treated with 3% H2O2 for 15 min to block 
endogenous peroxidase and with goat serum to 
prevent nonspecific antibody binding. Thereafter, 
they were incubated overnight at 4 °C with the 
primary antibodies against DNMT1 (ab188453; 
Abcam, Cambridge, England), EZH2 (ab191080; 
Abcam), KIAA1429 (PA5-95717, Thermo Fisher 
Scientific), LRPPRC (sc-166178,Santa Cruz 
Biotechnology, Dallas, TX, USA), RBM15B 
(PA5-110279, Thermo Fisher Scientific, USA) and 
YTHDF2 (PA5-100053, Thermo Fisher Scientific), 
followed by incubation with the secondary antibody 
at room temperature for 1h. For IHC staining, 
3,3-diaminobenzidine (DAB; DA1010; Solarbio, 
China) was used and cell nuclei were counterstained 
with haematoxylin. Tissue sections were observed 
using brightfield microscopy. 

For immunofluorescence, the cells were fixed 
with 4% paraformaldehyde, incubated with Triton, 
blocked with goat serum, and incubated with primary 
antibodies against DNMT1 and EZH2 at 4 °C 
overnight and with secondary antibodies (ab150077; 
Abcam) at room temperature for 1 h. The nuclei were 
counterstained with DAPI, after which the samples 
were imaged using a fluorescence microscope. 

Western blotting 
Cultured cells were dissolved in RIPA buffer 

containing protease and phosphatase inhibitors. 
Proteins were collected by centrifugation (10,000 rpm 
for 10 min) and their concentrations determined using 
the bicinchoninic acid assay (BCA; Thermo Fisher 
Scientific). Proteins were subjected to NuPAGE 
Bis-Tris Gel Electrophoresis (#NP0321; Invitrogen, 
USA), transferred to nitrocellulose membranes, and 
incubated with the corresponding antibodies against 
DNMT1 (1:1,000), EZH2 (1:500), and β-actin (1:1,000; 
ab8226; Abcam). 

Data acquisition 
Tumour RNA-seq data and clinical information 

were obtained from two separate series of patients. 
The first series obtained from The Cancer Genome 
Atlas (TCGA, https://portal.gdc.cancer.gov/), 
included 167 samples (117 A-HCC samples and 50 
normal liver samples), and was used as the training 
set. The second series consisted of 316 samples (114 
A-HCC samples and 202 normal liver samples) from 
the International Cancer Genome Consortium (ICGC, 
https://icgc.org/) and was used as the validation set. 
The relationship between m6A-regulators was 
determined used the Search Tool for Retrieval of 
Interacting Genes/Proteins (STRING, https://string- 
db.org/). The clinical characteristics of each patient 
series are shown in Supplementary Tables 3 and 4. 
Data obtained from TCGA and ICGC databases are 
freely available to the public, and this research strictly 
followed access policies and publication guidelines. 
Therefore, this study did not require ethical review or 
approval from an Ethics Committee. 

Genes related to KIAA1429, LRPPRC, RBM15B, 
and YTHDF2, as well as mutation data, were obtained 
from Cbioportal (http://www.cbioportal.org/). 
Co-expressed genes were considered those with a 
Spearman’s coefficient greater than 0.3. For gene 
selection, the threshold parameters were R ≥ 0.3, and p 
< 0.05. Drug sensitivity data were obtained from the 
Cancer Therapeutics Response Portal (CTRP) 
database of GSCALite (http://bioinfo.life.hust.edu. 
cn/web/GSCALite/) [28]. The Immune Cell 
Abundance Identifier (ImmunoCellAI, http:// 
bioinfo.life.hust.edu.cn/ImmuCellAI#!/) tool was 
used to predict immunotherapy response [29]. The 
relationship of 21 m6A regulators was downloaded 
from GeneMANIA (http://genemania.org/). 

Risk model constitution 
The 21 m6A-regulators, comprising eight writers 

(METTL3, METTL14, RBM15, RBM15B, WTAP, 
KIAA1429, CBLL1, ZC3H13), two erasers (ALKBH5 
and FTO), and 11 readers (YTHDC1, YTHDC2, 
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YTHDF1, YTHDF2, YTHDF3, IGF2BP1, 
HNRNPA2B1, HNRNPC, FMR1, LRPPRC, ELAVL1), 
were selected based on a previous report [30]. To 
quantify the effects of m6A-regulators, statistically 
significant m6A-regulators selected from univariable 
Cox regression were analysed using least absolute 
shrinkage and selection operator (LASSO) regression. 
Statistical significance was set at p < 0.05. The hazard 
ratios and 95% confidence intervals were calculated. 
A total of 11 m6A-regulators were selected for further 
analysis. The m6A-risk model was developed using 
the LASSO Cox regression algorithm. The applied 
formula was as follows: 

Risk score =� (𝐶𝑜𝑒𝑓𝑖 × 𝐺𝑒𝑛𝑒𝑖)𝛱
𝑖=1  

Gene set enrichment analysis (GSEA) 
GSEA analysis was performed using GSEA 

software (version 4.0.3) to detect the difference in 
enriched pathways between the high-risk and 
low-risk subtypes by the Molecular Signatures 
Database (MSigDB, h.all.v7.2.symbols.gmt). For each 
analysis, gene set permutations were performed 1,000 
times. 

Estimation of immune cell type 
We used the single-sample GSEA (ssGSEA) 

algorithm to quantify the relative abundance of 
infiltrated immune cells. The gene set stores a variety 
of human immune cell subtypes, including T cells, 
dendritic cells, macrophages, and B cells [31, 32]. The 
enrichment score calculated using ssGSEA analysis 
was used to assess infiltrated immune cells in each 
sample. 

Statistical analysis 
Relationships among the m6A regulators were 

calculated using Pearson's correlation based on gene 
expression. Continuous variables are summarised as 
mean ± standard deviation (SD). Differences between 
groups were compared using the Wilcoxon test, using 
the R software. Different m6A-risk subtypes were 
compared using the Kruskal-Wallis test. The 
‘ConsensusClusterPlus’ package in R was used for 
consistent clustering to determine the subgroup of 
A-HCC samples from TCGA. The Euclidean squared 
distance metric and K-means clustering algorithm 
were used to divide the sample from k = 2 to k = 9. 
Approximately 80% of the samples were selected in 
each iteration, and the results were obtained after 100 
iterations [33]. The optimal number of clusters was 
determined using a consistent cumulative distribution 
function graph. Thereafter, the results were depicted 
as heatmaps of the consistency matrix generated by 
the 'heatmap' R package. 

We then used Kaplan-Meier analysis to compare 

the disease-specific survival (DSS), disease-free 
interval (DFI), progression-free interval (PFI) or 
overall survival (OS) between different subtypes 
using the ‘survival’ and ‘survminer’ packages in R 
software. The significance of differences in survival 
time was calculated using the log-rank test with a 
threshold of p < 0.05. Univariate and multivariate 
analyses were performed using Cox regression, 
followed by identification of independent risk factors 
for DSS, DFI, PFI, and OS in A-HCC. To evaluate the 
accuracy and sensibility of the model, we constructed 
the receiver operating characteristic (ROC) curve and 
calculated the area under the curve (AUC) using the 
‘survivalROC’ package in R software. 

Results 
Regulatory pattern of m6A-related genes in 
A-HCC 

The study design is shown in Figure 1. To 
determine whether the clinical prognosis of A-HCC is 
associated with known m6A-related genes, we 
summarised the occurrence of 21 m6A regulatory 
factor mutations in A-HCC in TCGA database (n = 
117). Among them, VIRMA (KIAA1429) had the 
highest mutation rate (20%), followed by YTHDF3, 
whereas four genes (YTHDF1, ELAVL1, ALKBH5, and 
RBM15) did not show any mutation in this sample 
(Figure 2A). To systematically study all the functional 
interactions between proteins, we used the web site 
GeneMANIA to construct a network of interaction 
between the selected proteins and found that 
HNRNPA2B1 was the hub of the network (Figure 
2B-C). Furthermore, we determined the difference in 
the expression levels of the 21 m6A regulatory factors 
between A-HCC and normal liver tissue (Figure 
2D-E). Subsequently, we analysed the correlation of 
the m6A regulators (Figure 2F) and found that the 
expression patterns of m6A-regulatory factors were 
highly heterogeneous between normal and A-HCC 
samples, suggesting that the altered expression of 
m6A-regulatory factors might play an important role 
in the occurrence and development of A-HCC. 

An integrative m6A risk model 
To explore the prognostic value of the expression 

levels of the 21 m6A methylation regulators in 
A-HCC, we performed univariate Cox regression 
analysis based on the expression levels of related 
factors in TCGA dataset and found seven related 
genes to be significantly related to OS (p < 0.05), 
namely YTHDF2, KIAA1429, YTHDF1, RBM15B, 
LRPPRC, RBM15, and YTHDF3 (Supplementary Table 
5). To identify the most powerful prognostic m6A 
regulator, we performed LASSO Cox regression 
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analysis. Four candidate genes (LRPPRC, KIAA1429, 
RBM15B, and YTHDF2) were selected to construct the 
m6A risk assessment model (Figure 3A, B), the risk 
score was as follows: risk score = (0.0648970639115386 
× KIAA1429) + (0.0370948653489106 × LRPPRC) + 
(0.000459715556466468 × RBM15B) + 
(0.0605157571421274 × YTHDF2). Based on the 
expression levels of these four m6A-related genes as 
well as k = 2, a parameter that leads to Supplementary 
Table clustering outcome, we identified two new 
clusters in TCGA dataset (Figure 3C-E). Principal 

component analysis showed that cluster analysis 
could successfully divide A-HCC patients into two 
subtypes (Figure 3F). We compared the clinical 
survival curves of the two subtypes and found that 
the survival trend of subtype C1 was significantly 
better than that of subtype C2 (p = 9.832e-04; 
Supplementary Table 6, Figure 3G, Figure S1A). The 
expression levels of the four selected m6A-related 
genes and the clinicopathological variables in the two 
subtypes were closely related to tumour stage and 
grade (Figure 3H). 

We verified the gene 
and protein expression of 
the four m6A regulators 
screened in the collected 
samples from HCC clinical 
patients, and the results 
showed that compared 
with normal patients, 
KIAA1429, LRPPCC, 
RBM15b and YTHDF2 
were up-regulated in HCC 
patients, which was more 
significant in A-HCC 
patients (Figure S1B-C). 
Meanwhile, to further 
illustrate the external 
applicability of the model, 
we conducted survival 
analysis of the m6A model 
in a variety of cancers in 
addition to A-HCC and 
found that it was 
predictive (p =0.003), such 
as liver hepatocellular 
carcinoma (LIHC, p =0.01), 
lower grade glioma (LGG, 
p =0.029), uterine corpus 
endometrial carcinoma 
(UCEC, p =0.033) kidney 
chromophobe (KICH, p 
=0.005) and arenal cortical 
carcinoma (ACC, p =0.044; 
Figure S1D). 

To further unravel 
the mutation events 
associated with the m6A 
risk model, we divided the 
A-HCC patients into 
high-risk and low-risk 
subtypes. In the high-risk 
subtype, 53% of the 
samples had mutations in 
TP53 (Figure 3I), whereas 
CTNNB1 mutations were 

 

 
Figure 1. Flow chart of this study: establishment, verification, and application of m6A model. 
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frequent in the low-risk subtype (Figure 3J). TP53 is a 
common tumour suppressor gene, and its mutations 
accompany tumorigenesis [34]. The frequency of TP53 
mutations in the high-risk subtype was significantly 
higher than in the low-risk subtype (53% vs. 23%, p = 
0.001; Figure 3K). Subsequently, we divided the 
A-HCC patients into two subtypes according to the 
presence or absence of mutations in TP53 (Figure 3L). 
Risk scores and model-related gene expressions were 
higher in the TP53-mutation group than in the 
non-mutated group. 

To explore the function of the four identified 
m6A-related genes, we extracted and screened genes 
their co-expressed genes and performed gene 

ontology (GO) enrichment analysis. A total of 202 
genes were co-expressed with the four m6A-related 
genes (Figure 3M) and their functional categories 
were molecular function (MF), biological process (BP), 
and cellular component (CC). These terms were 
mainly enriched in pathways related to RNA 
processing, modification, and proliferation such as 
ncRNA metabolic processing and regulation of lipid 
metabolic processes (Figure 3N). Altogether, the 
results suggest that TP53 mutation may be a key 
factor in initiating m6A methylation, which activates 
cancer-promoting pathways. Hence, the expression 
levels of KIAA1429, LRPPRC, RBM15B, and YTHDF2 
could be used as a prognostic indicator in A-HCC. 

 

 
Figure 2. Landscape of genetic expression and variation of m6A regulators in A-HCC. (A) The mutation frequency of 21 m6A regulators in A-HCC patients 
from TCGA-LIHC cohort was acquired from Cbioportal. (B) Protein-Protein interactions among 21 m6A-related genes acquired from GeneMANIA. (C) Number of edges of 21 
m6A regulators in the protein-protein interactions network. (D-E) Boxplot (D) and heatmap (E) of 21 m6A regulator expression levels between normal individuals and A-HCC 
patients. (F) Correlation analysis of 21 m6A regulators in TCGA-A-HCC cells. 
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Figure 3. Establishment of the model with four m6A RNA methylation regulators and availability of these key genes. (A-B) Consensus clustering model 
with cumulative distribution function for k = 2-9 (k means cluster count). (C) TCGA A-HCC cohort was divided into two clusters when k = 2. (D) Relative change in area under 
cumulative distribution function curve for k = 2-9. (E) Consensus clustering cumulative distribution function for k = 2-9. (F) Principal component analysis of the total RNA 
expression profile in A-HCC cohort. (G) Overall survival curves for A-HCC patients. (H) Heatmap showing the relationship between two clusters and clinical characteristics. (I 
& J) m6A high/low risk subtype: the mutation frequency of the top 10 genes in different risk subtype with A-HCC from TCGA-LIHC cohort acquired from Cbioportal. (K) 
Chi-square test of mutation frequency in different risk subtypes. (L) Boxplots showing model-related gene expression and risk scores in the TP53 mutation and non-mutation 
groups. (M) Venn diagram of KIAA1429, LRPPRC, RBM15B, and YTHDF2 associated genes from Cbioportal. (N) GO analysis of KIAA1429, LRPPRC, RBM15B, and YTHDF2 associated 
genes. 

 

Prognostic performance of the m6A risk 
model in A-HCC 

Since the expression levels of the four selected 
genes (KIAA1429, LRPPRC, RBM15B, and YTHDF2) 
play a crucial role in tumorigenesis and tumour 
development, we employed them to establish an m6A 
risk signature model. KIAA1429, YTHDF2, and 
RBM15B expression levels were not significantly 
different between the high/low-risk subtypes when 
DFI was analysed. In the LRPPRC low-expression 
group and low m6A risk model, patients had 
significantly longer DFI than those in the high- 

expression and high-risk model (Figure 4A, Figure 
S2A). To demonstrate the reliability of the m6A risk 
model, we constructed an ROC curve for DFI 
prediction and quantified the AUC. The AUC of the 
m6A risk model in 1/2/3 years was better than that of 
the expression of other genes (KIAA1429, YTHDF2, 
and RBM15B) and other factors, such as age, sex, and 
tumour grade (Figure 4B-C). The clinical prognostic 
differences were consistent from DSS and PFI analysis 
(Figure 4D-I), which indicated that the m6A risk 
model composed of four genes (KIAA1429, LRPPRC, 
RBM15B, and YTHDF2) can more accurately predict 
the prognosis of A-HCC. 
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Figure 4. Kaplan-Meier analysis and ROC curves of different survival times in the TCGA-A-HCC cohort. (A) Different factors risk model of Kaplan-Meier 
analysis for disease-free interval (DFI). (B-C) Model-related genes (B)/ clinical characteristics (C) of ROC curves for DFI (1/2/3 year). (D) Different factors risk model of Kaplan- 
Meier analysis for disease-specific survival (DSS). (E-F) Model-related genes (E)/ clinical characteristics (F) of ROC curves for DSS (1/2/3 year). (G) Different factors risk scores 
of Kaplan-Meier analysis for progression-free survival (PFI). (H-I) Model-related genes (H)/ clinical characteristics (I) of ROC curves for PFI (1/2/3 year). 

 
Analysis of KIAA1429, LRPPRC, RBM15B, and 

YTHDF2 expression levels in the high- and low-risk 
subtypes from TCGA database showed significantly 
upregulated expression in the high-risk subtype 
(Figure 5A). The high-risk subtypes had a lower OS 
and a higher risk score than those in the low-risk 
subtype (Figure 5B-C). Higher expression levels of 
KIAA1429, and RBM15B and higher m6A risk model 
scores were associated with a higher mortality rate in 

the high-risk subtype (Figure 5D, Figure S2D). To 
further evaluate the accuracy of the m6A risk model 
for predicting the 1, 2, and 3-year survival rate of 
A-HCC patients, we performed ROC curve analysis 
on TCGA (n = 117) cohorts (Figure 5E). Similarly, the 
performance of the m6A risk model was better than 
the models using the expression levels of a single gene 
and other factors (age, gender, tumour grade, tumour 
stage, and vascular invasion; Figure 5F-G). 
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Meanwhile, the same verification was performed in 
the ICGC database (Figure S3). The above data show 
that the m6A risk model predicts the OS of A-HCC 
patients with more accuracy and reliability than any 
of the other models analysed. 

m6A risk model to evaluate the occurrence 
and development of A-HCC 

Considering that m6A methylation is closely 
related to the occurrence and development of 
tumours, we explored the relationship between the 
m6A risk model and clinicopathological 
characteristics. In TCGA cohort, the expression levels 
of LRPPRC and RBM15B and the m6A risk score were 
significantly correlated with tumour grade and T 
stage. Increases in tumour grade and T stage were 

associated with higher m6A risk score or gene 
expression levels. Additionally, KIAA1429, LRPPRC, 
and RBM15B and the m6A risk scores were 
significantly different between different tumour 
stages (Figure 6A). Subsequently, we validated our 
conclusions again using the ICGC dataset. In the 
ICGC cohort, KIAA1429, LRPPRC, RBM15B, and 
YTHDF2 expression levels and the m6A risk score 
were significantly correlated with tumour grade. 
Moreover, the increase in tumour grade was 
associated with a gradual increase in the m6A risk 
model score. Only RBM15B expression levels and the 
m6A risk model score were associated with tumour 
stage and T stage. We also evaluated the relationship 
between the m6A risk model and vascular invasion 
and found that KIAA1429 and LRPPRC expression 

 

 
Figure 5. Performance of the m6A-risk model in predicting A-HCC patient survival in TCGA databases. (A) Boxplots showing four m6A-related gene 
expression profiles in high-risk and low-risk subtypes. (B) Patient status distribution in the high-risk and low-risk subtypes. (C) Mortality rates of the high-risk and low-risk 
subtypes. (D) Overall survival curves for A-HCC patients. (E-G) ROC curves of TCGA cohort: ROC curves showing the predictive accuracy of model (E)/model-related genes 
(F)/different clinical characteristics and time (1/2/3 year) (G). 
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levels and the m6A risk model score were 
significantly correlated with vascular invasion (Figure 
6B). This indicates that tumour vascular invasion is 
highly correlated with the model score and that 
patients with higher scores are more likely to exhibit 
vascular invasion. 

Next, we used the Cox regression model to 
perform univariate and multivariate survival analyses 
on the m6A risk model. In TCGA dataset, both 
univariate and multivariate analyses showed that 
tumour stage and the m6A risk model score were 
strongly associated with OS (Figure 6C), which was 
replicated in the ICGC database (Figure 6D). Thus, we 
concluded that the m6A risk model can used to 
evaluate the occurrence and development of A-HCC. 

GSEA signalling pathways 
To further explore the pathways potentially 

involved in the development of A-HCC, we divided 
the patients from TCGA and ICGC databases into 
high-risk and low-risk subtypes based on risk scores 
and performed GSEA enrichment analysis 
(Supplementary Table 7). Pathways enriched in the 
high-risk subtype were mainly related to tumour 
formation and proliferation, such as E2F targets, DNA 
repair, and MTORC1 signalling pathways (Figure 
7A). Interestingly, the enriched pathways were shown 
to be closely related to tumour development and 
anti-apoptosis. For example, the E2F pathway plays a 
key role in cell proliferation by regulating the cell 
cycle [35]. 

 

 
Figure 6. Analysis of clinical characteristics analysis of the m6A-risk model in A-HCC. (A-B) The expression levels of KIAA1429, LRPPRC, RBM15B, YTHDF2 
and risk model in A-HCC patients with different clinical characteristics in TCGA (A) and ICGC (B) databases. (C-D) Univariate and Multivariate analyses in TCGA (C) and ICGC 
cohorts (D) in A-HCC patients; Left: Univariate evaluating m6A signature in terms of OS; Right: Multivariate analyses evaluating the m6A signature in terms of OS. 
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Figure 7. Prognostic value of the m6A-risk model in A-HCC. (A) GSEA showing enriched hallmarks in TCGA (left) and ICGC (right) cohorts. Normalized enrichment 
score (NES) > 1 and nominal p-value (NOM p-Val) < 0.05were indicated significant gene sets. (B-C) Boxplot and ROC curves (from left to right) of m6A-risk model in TCGA 
(B) and ICGC (C) cohorts to distinguish normal individuals and A-HCC patients. (D-E) Boxplot and ROC curves of the m6A-risk model in TCGA (D) and ICGC (E) cohorts to 
distinguish normal individuals and paracarcinoma and A-HCC patients. (F) Multivariate nomogram predicts OS in A-HCC patients. 

 

Utility of the m6A risk model in diagnosing and 
assessing the disease status of A-HCC 

To explore the potential role of the m6A risk 
model in the diagnosis of A-HCC as well as its 
reliability and accuracy, we compared it with known 
A-HCC-related genes and diagnostic markers. 
Alpha-fetoprotein (AFP) is the most commonly used 
clinical HCC marker [36]. Other proteins closely 
related to A-HCC include patatin-like phospholipase 
domain-containing protein 3 (PNPLA3), 
hydroxysteroid 17-beta dehydrogenase 13 
(HSD17B13), serpin family A member 1 (SERPINA1), 
and transmembrane 6 superfamily member 2 
(TM6SF2) [37-40]. We found that the m6A risk model 

(AUC = 0.888) had a better predictive accuracy for 
A-HCC diagnosis compared with that of AFP, 
SERPINA1, TM6SF2, and PNPLA3 expression levels 
(Figure 7B). We validated these results using the 
ICGC database (Figure 7C). 

We next evaluated the specificity of the m6A 
model in distinguishing A-HCC from alcohol- 
associated non-malignant changes. Surprisingly, the 
m6A risk model score was significantly increased in 
the A-HCC samples compared with A-HCC 
paracarcinoma and normal tissue samples in both 
TCGA and ICGC databases; additionally, the m6A 
model showed a marked sensitivity in A-HCC 
diagnosis (Figure 7D-E). We also verified that this 
model was superior to other related factors in 
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distinguishing cancer and paracarcinoma tissue 
samples (Figure S4), demonstrating that dysregulated 
expression levels of m6A genes are highly specific in 
the tumorigenesis of A-HCC. Based on TCGA 
database, we established a nomogram to predict the 
OS of patients according to various possible 
influencing factors (Figure 7F). 

The immune landscape of A-HCC patients 
To explore the immune landscape of A-HCC 

patients, we performed ssGSEA using TCGA and 
ICGC databases. The resulting heatmap is shown in 
Figure S5A-B and the infiltration levels of various 
immune cell types are shown in Figure 8A. The 
infiltration levels of most immune-activated cells, 
such as activated CD8+ cells, activated CD8+ T cells, 
effector memory CD8+ T cells, gammadelta T cells, 
and immature B cells, were reduced in the high-risk 
subtype. However, the proportion of activated CD4+ T 
cells and CD56dim natural killer cells in the high-risk 
subtype was higher than in the low-risk subtype. We 
then found a positive correlation between these 

immune cells, and the proportion of myeloid-derived 
suppressor cells were closely correlated with that of 
regulatory T cells (R = 0.91; Figure 8B). Subsequently, 
we downloaded the immunosuppressive cytokines 
related to the cancer-immunity cycle from the 
Tracking Tumour Immunophenotype website [41] 
and compared the relationship between the m6A risk 
model and immunosuppressive cytokines using box 
plots. The results showed that levels of most of the 
immunosuppressive cytokines, such as Arg2, CCL28, 
DNMT1, and EZH2, were upregulated in the high- 
risk subtype (Figure 8C), suggesting that high-risk 
A-HCC patients have reduced cancer-immunity cycle 
activity. Similarly, we analysed the correlation 
between these immunosuppressive cytokines and 
found that DNMT1 and EZH2 were highly correlated 
(R = 0.71; Figure 8D). Kaplan-Meier analysis of 
DNMT1 and EZH2 showed that patients with higher 
DNMT1/EZH2 expression have poorer OS (Figure 
8E-F). 

 

 
Figure 8. Immune landscape and immunotherapy prediction between low and high m6A-risk A-HCC patients in TCGA databases. (A) Boxplot 
visualizing the difference of immune cell infiltration among different risk subtypes from TCGA-A-HCC. * P < 0.05, ** P < 0.01, *** P < 0.001. (B) Correlation analysis of immune 
cells from TCGA-A-HCC. (C) Boxplot visualizing the different expression of immunosuppressive cytokines among different risk subtypes from TCGA-A-LIHC. * P < 0.05, ** P 
< 0.01, *** P < 0.001. (D) Correlation analysis of immunosuppressive cytokines from TCGA-A-HCC. (E-F) Kaplan-Meier analysis of DNMT1 (E) and EZH2 (F) for OS between 
different risk subtypes. (G-H) Radar map showing relationship between immune cells and DNMT1 (G)/EZH2 (H). (I) Boxplot of the relationship between ImmuneScore 
StromaScore ImmuneScore/StromaScore-MicroenvironmentScore. (J) Boxplot showing risk scores and four hub genes (KIAA1429, LRPPRC, RBM15B, and YTHDF2) between 
the immunotherapy non-response and immunotherapy response groups in the TCGA databases. 
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To verify the above conclusions, we generated a 
Venn diagram of immune cells and 
immunosuppressive cytokines of TCGA/ICGC 
databases, which resulted in an overlap of 19 immune 
cells and 26 immunosuppressive cytokines (Figure 
S4C). Subsequently, we explored the correlation 
between immunosuppressive cytokines (DNMT1 and 
EZH2) and all immune cells (Supplementary Table 8) 
and found that three types of immune cells (activated 
CD4+ T cells, monocytes, and neutrophils) were 
closely related to DNMT1 and EZH2 levels (Figure 
8G-H). These results were further validated in the 
ICGC database (Figure S6A-H). Therefore, we 
performed logistic regression analysis of the model 
risk score and immune cells/immunosuppressive 
cytokines levels and found that they were closely 
correlated (Figure S7). Altogether, these results 
indicate that an increase in activated CD4+ T cell 
infiltration is associated with higher expression levels 
of DNMT1 and EZH2, whereas the opposite was 
observed for monocyte and neutrophil infiltration. 
Therefore, immunosuppressive cytokines, such as 
DNMT1 and EZH2, and immune cells, such as 
activated CD4+ T cells, monocytes, and neutrophils, 
may form a TIM regulatory system, representing a 
new target for A-HCC therapy. 

m6A model predicts A-HCC treatment 
efficacy 

In TCGA database, patients in the m6A high-risk 
subtype had lower immune and stroma scores as well 
as lower ration immune score - stroma 
Score/microenvironment score than patients in the 
m6A low-risk subtype (Figure 8I). Thus, our model 
could predict the TIM state and the therapeutic 
responses of A-HCC. Recently, an ImmuCellAI 
estimation method was developed to predict the 
response of HCC patients to immunotherapy [42]. We 
evaluated whether the m6A risk model can make 
similar predictions and analysed the difference in 
KIAA1429, LRPPRC, RBM15B, and YTHDF2 
expression levels and the risk score between the 
responder and non-responder group. 

Significantly upregulated expression of 
KIAA1429, LRPPRC, and RBM15B and high-risk 
scores were observed in the non-responder group 
compared with the responder group (Figure 8J). This 
was further verified using the ICGC database (Figure 
S5I-J). As shown in Figure 8A, most high-risk 
subtypes lacked immune cells; immunoreactive cell 
deficiency is known to cause immunotherapy 
tolerance [43, 44], which indicates that high-risk may 
be related to non-response to immunotherapy 
(immune tolerance). 

We further conducted a drug sensitivity analysis 

of DNMT1, EZH2, RBM15B, KIAA1429, LRPPRC, and 
YTHDF2 using the CTRP database. Screening 
revealed teniposide, PX−12, LRRK2−IN−1, and GSKJ4 
as potential therapies for A-HCC (Figure S8). 

Validation of A-HCC core genes 
(DNMT1/EZH2) and potential drugs 

We collected pathological samples from normal, 
N-A-HCC, and A-HCC patients and performed 
immunohistochemical staining and qRT-PCR. 
DNMT1 and EZH2 levels in the liver tissues of normal 
individuals and N-A-HCC patients were barely 
detecSupplementary Table, while they were diffusely 
expressed in A-HCC patients (Figure 9A-C), 
indicating that DNMT1 and EZH2 expression in 
A-HCC patients is increased in comparison with 
normal and N-A-HCC individuals. 

We then evaluated the role of DNMT1 and EZH2 
in guiding A-HCC treatment. As the therapeutic 
effects of PX-12 [45], LRRK2-IN-1 [46], and GSK-J4 
[47] in A-HCC have been already described, we 
decided to explore the therapeutic effect of teniposide 
on A-HCC. We employed two HCC cell lines, Huh7 
and HepG2, and treated them with 100 mM alcohol, 
as a cellular model of A-HCC. DNMT1 and EZH2 
gene expression and protein levels, evaluated by 
qRT-PCR, western blotting and immunofluorescence 
staining, were significantly higher in the 
alcohol-treated group (100 mM) than in the control 
group. Administration of teniposide (0.5 μM) to 
alcohol-treated cells abolished these effects (Figure 
9D-F). Given that DNMT1 and EZH2 are barely 
expressed in the control group but are significantly 
up-regulated by alcohol-treatment and significantly 
down-regulated after teniposide treatment, the results 
suggest that DNMT1 and EZH2 may be core proteins 
in the aetiology of A-HCC and highlight teniposide as 
a potential therapeutic drug. 

The potential therapeutic effect of teniposide 
against A-HCC in vivo 

We evaluated the role of teniposide in the 
occurrence and development of HCC in mice; an 
overview of the experimental procedure is provided 
in Figure 10A. Mice begin to form HCC 7-10 months 
after injection of DEN solvent [48]; hence we 
administered alcohol and drugs (teniposide, TEN) at 6 
months of age, and divided the mice into five groups: 
Control+NC (without TEN and alcohol), Alcohol+NC 
(without TEN), Alcohol+TEN, Control+TEN (without 
alcohol) under DEN stress, and Control without DEN 
stress (10 mice per group). MRI imaging (AVANCE 
IIITM HD 600MHz) of the mouse liver was obtained 
at 8 months and representative liver images of each 
group are shown in Figure 10B. Tumour number 
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analysis showed that teniposide significantly reduced 
tumours numbers in A-HCC (Figure 10C). 
Haematoxylin and eosin staining of liver sections 
demonstrated that Alcohol+NC group had the most 
obvious liver lesions and that teniposide was more 
effective in treating A-HCC than HCC (Figure 10D). 
We then determined the expression of two A-HCC 
core genes (DNMT1 and EZH2) using qRT-PCR and 
IHC, and found significantly higher expression in the 
A-HCC group than in the HCC group, which 
significantly decreased following teniposide 
treatment (Figure 10E-G). Taken together, these data 
suggest that teniposide has a potential therapeutic 
effect on the occurrence and progression of A-HCC by 
acting on the A-HCC core genes, DNMT1 and EZH2. 

Discussion 
Increasing evidence has demonstrated that the 

interaction between multiple m6A regulators plays an 

essential role in the development and progression of 
several types of cancers. Here, we summarised the 
m6A-regulatory genes involved in the pathways 
associated with tumorigenesis (Supplementary Table 
9). To clarify the relationship between m6A-related 
genes and the prognoses of patients with A-HCC, we 
selected 21 m6A regulators and mapped the m6A 
modifications mediated by these regulators and their 
potential biological functions in disease occurrence 
(Figure 11). Demethylases (FTO and ALKBH5) and 
methyltransferases (such as Metl3 and Metl14) have 
been reported to regulate the progression of several 
types of cancers, including liver, lung, and breast 
cancers [49-52]. For example, silent information 
regulator 1 (SIRT1) can deregulate FTO to guide the 
m6A methylation of downstream molecules [53], and 
ALKBH5 can act as a tumour suppressor by reducing 
the expression of LYPD1 in HCC [54]. 

 

 
Figure 9. Expression of DNMT1/EZH2 and potential drug validation. (A-B) The immunohistochemical staining of DNMT1/EZH2 in clinical patients of three groups 
was observed: Normal (n = 31), N-A-HCC (no history of alcohol consumption n = 56), and A-HCC (n = 21) (A), the positive rate of immunohistochemical staining was analysed 
(B). (C) qRT-PCR expression of DNMT1/EZH2 in clinical patients of the three groups (Normal/ N-A-HCC/ A-HCC). (D-F) HCC cell lines (Huh7 and HepG2) were treated with 
alcohol, divided into normal control (NC) group, alcohol (100 mM) groups, and teniposide group (0.5 μM teniposide treatment of alcohol-treated HCC cells), and the expression 
of DNMT1/EZH2 was analysed using western blotting (D), immunofluorescence staining (E) and qRT-PCR (F). 
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Figure 10. Alcohol promotes the occurrence and development of HCC, while teniposide showed a therapeutic effect on A-HCC. (A) C57BL/6 mice 
were injected with 25mg/kg DEN (n = 40) at 2 weeks of age. At 6 months of age, mice were given liquid alcohol diet (4.8% alcohol) (n = 10), teniposide (n = 10) and liquid alcohol 
diet (4.8% alcohol) + teniposide (n = 10). The animals were sacrificed at 8 months of age. (B) Representative MRI liver images obtained for each group (arrows depict tumours), 
n = 10 for Control without DEN stress, Control+NC, Alcohol+NC, Alcohol+Ten, and Control+Ten group under DEN stress. (C) Quantification results of tumour number for 
each group under DEN stress, *** P < 0.001 (Mann-Whitney U test). (D) H&E staining of representative liver sections observed in each group (dotted line indicates tumours 
outline). Scale bar, 400 µm (D); 50 µm (E). (E) qPCR results of DNMT1 and EZH2 in liver tissue of each group, data shown as mean ± SEM; n = 10 for Control without DEN stress, 
Control+NC, Alcohol+NC, Alcohol+Ten, and Control+Ten group under DEN stress, *** P < 0.001 (Mann-Whitney U test). (F-G) Immunohistochemical staining showed the 
expression level of DNMT1/EZH2 in each group: Control without DEN stress, Control+NC, Alcohol+NC, Alcohol+ TEN, and Control+ TEN group under DEN stress (F), 
positive rate of immunohistochemical staining was analysed. Scale bar, 40x, 50 µm. *** P <0.001 (Mann-Whitney U test) (G). 

 
Currently, the mortality rate of HCC remains 

high, especially for A-HCC patients, owing to the lack 
of early diagnostic markers, treatment resistance, and 
poor immunotherapy sensitivity [55]. The TIM plays a 
decisive role in the effectivity of treatment methods 
and can lead to tumour development and recurrence 
after treatment [56, 57]. In the progression of liver 
cancer, immune cells and immunosuppressive 
cytokines can adjust the balance of the immune 
system by, for example, modifying the proportion of 
T-cell subsets [58]. Importantly, the 
immunosuppressive state in the tumour can be 
transformed into an immune-activated state by 
adjusting the TIM and inducing an effective immune 
response, which can lead to an enhanced sensitivity to 
immunotherapy. Therefore, evaluating the TIM, and 
its relationship with prognosis in A-HCC patients is 
urgent. In the present study, we clarified the role of 
m6A methylation in regulating the TIM and 

developed a risk model based on the expression levels 
of m6A regulators, which may help predict the 
prognosis of A-HCC patients and more effective 
immunotherapy targets. 

The risk model developed herein integrated four 
m6A methylation regulators, LRPPRC, YTHDF2, 
KIAA14219, and RBM15B. LRPPRC encodes a nuclear 
protein that is significantly negatively correlated with 
the immune response in a variety of tumour tissues 
[59-61]. YTHDF2 encodes a member of the YT521-B 
homology (YTH) domain family that has been 
reported to regulate mRNA stability [62, 63], and Yu 
et al. found that YTHDF2 plays a negative regulatory 
role in the inflammatory response induced by LPS 
[64]. KIAA14219 encodes a methyltransferase that acts 
as a m6A ‘writer’ [65] and has been reported to be 
involved in tumour cell proliferation and metabolism 
pathways in liver and breast cancers [66, 67]. Finally, 
RBM15B, which encodes another m6A ‘writer’, 
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modifies m6A by binding to m6A methylation 
complexes (METTL3 and WTAP) [68]. RBM15B has 
been reported to be associated with the immune 
landscape in various diseases [69]. 

In this study, we used the four m6A regulators to 
divide A-HCC patients into two subtypes and 
predicted their prognosis, and the model was 
validated in clinical patient samples we collected. We 
notably found that m6A high-risk subtypes had a 
high frequency of mutations in TP53. As TP53 is a 
tumour suppressor gene, this indicates that TP53 
mutations may cause changes in m6A methylation 
levels. In addition, the pathways associated with the 
high-risk subtype were mainly related to RNA 
processing modification, and tumour development, 
suggesting that these four m6A regulators can be used 
as indicators of the occurrence and prognosis of 
A-HCC. In analysing different survival interval (DFI, 
DSS, PFI and OS), we found that the prognosis of the 
m6A high-risk subtype was significantly worse and 
that the m6A risk model was more reliable and 
accurate than single genes in prediction efficiency, 
which could be used as an independent predictor. 
Meanwhile, the model was more reliable than the 
common clinical indicators AFP, PNPLA3, 
HSD17B13, SERPINA1, and TM6SF2 in predicting 
patient outcome. Finally, we constructed a nomogram 
based on various confounding factors, with the aim of 

applying this model to clinical guidance in the future. 
GSEA indicated that the pathways enriched in 

the high-risk subtype were related to tumour 
formation and proliferation, which included the 
common E2F pathway and the PI3K/Akt/mTOR 
pathway [70, 71]. E2F is a transcription factor that 
controls the expression of all cell division genes, of 
which E2F8 is significantly increased in HCC and 
ovarian cancer [72]. It can transcriptionally inhibit 
CDK1-induced hepatocyte polyploidy, interact with 
HIF1 to form a complex, improve VEGFA level, 
promote angiogenesis, and induce tumour metastasis 
[72, 73]. In addition, the PI3K/Akt/mTOR pathway is 
essential for tumour survival and growth, and 
induces resistance to radio-therapy, chemo-therapy, 
and cytostatic drugs [74]. 

A large amount of data from various disease 
conditions have indicated a correlation between m6A 
modifications and TIM [75-77]. Although several 
studies have investigated the role of single regulatory 
factors or a single immune-infiltrating cell type in the 
immune response [78, 79], the comprehensive role of 
multiple m6A regulators in the immune response has 
not been studied to date. In this study, we describe the 
relationship between m6A regulators and the A-HCC 
immune response. In our model, there were clear 
differences in the TIM cell infiltration characteristics, 
higher m6A risk scores were associated with a higher 

 
Figure 11. Summary of the dynamic process of m6A RNA methylation mediated by 21 regulators and their potential biological functions. 
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infiltration of activated CD4+ T cells, higher levels of 
immunosuppressive cytokines (DNMT1 and EZH2) 
and reduced levels of monocytes and neutrophils 
infiltration. These features indicate an 
immunosuppressive TIM in the high-risk subtype, 
corresponding to the so-called ‘immune desert type’. 
In contrast, the low-risk subtype had an immune- 
activated state. Therefore, the immunosuppressive 
cytokines DNMT1 and EZH2; and the immune cells 
activated CD4+ T cells, monocytes, and neutrophils 
appear to form a TIM regulatory system that greatly 
impacts the prognosis of A-HCC. 

DNMT1, a common DNA methyltransferase, is 
involved in DNA methylation in eukaryotes [80]. 
DNMT1 is closely related to the occurrence and 
development of various diseases, including several 
types of cancers, as it affects the methylation levels of 
CD4+T cell-related genes, thereby inhibiting the 
immune response [81-84]. EZH2 acts as a catalyst for 
polycomb repressive complex 2 (PRC2) formation, 
catalysing the trimethylation of lysine 27 on histone 
H3 (H3K27me3) and mediating gene silencing [85]. 
Several studies have reported that EZH2 can regulate 
the development and function of B cells and 
neutrophil migration and change the plasticity of 
CD4+T cells, highlighting the important role of EZH2 
in the immune regulation of many diseases [86-88]. 

CD4+ T cells act as central orchestrators of 
immune regulation. Depending on the specific TIM, 
activated CD4+ T cells can differentiate into CD4+ T 
helper (Th) cells, which collaborate with B cells and 
CD8+ T cells promote immune response [89, 90]. 
Monocytes are an important part of innate immunity 
and have been reported to be key regulators of cancer 
development [91]. During tumorigenesis, monocytes 
perform several antitumor immunity functions, 
including phagocytosis and recruitment of 
lymphocytes, and can even differentiate into 
tumour-related immune cells [92, 93]. Neutrophils 
exhibit powerful antimicrobial functions, including 
phagocytosis and formation of neutrophil 
extracellular traps [94, 95]. Under pathological 
conditions, neutrophils are activated and infiltrate 
lesions, thereby changing the tissue 
microenvironment [96-98]. 

We evaluated the performance of the m6A risk 
model in assessing the sensitivity of immunotherapy 
and found that high score models were associated 
with reduced sensitivity to treatment. This may be 
because activated CD4+ T cells, monocytes, and 
neutrophils in the m6A high-risk subtype interact 
with DNMT1 and EZH2, resulting in an 
immunosuppressive, desert type microenvironment. 
DNMT1 and EZH2 expression levels were then 
compared between normal, N-A-HCC and A-HCC 

samples, while activating activated CD4T cells and 
inhibiting monocyte and neutrophil. DNMT1 and 
EZH2 expression levels were revealed to be correlated 
with changes in immune cells in the TIM and may 
improve the TIM state by inhibiting its expression. 
Through drug sensitivity analysis, we found that 
A-HCC patients were generally sensitive to 
teniposide, PX−12, LRRK2−IN−1, and GSK−J4 drugs, 
which can help clinicians better select treatment 
strategies. Among these four drugs, teniposide has 
not been reported in HCC studies. In our study, we 
found that teniposide has a potential therapeutic 
effect on A-HCC by down-regulating the expression 
of A-HCC core genes (DNMT1 and EZH2), thereby 
reversing the malignant degree of A-HCC and 
improving the prognosis. 

In conclusion, we employed the expression 
levels of m6A regulators to construct a risk model that 
can accurately predict the prognosis of A-HCC 
patients and aid further understanding of the TIM 
state in A-HCC. The model can also predict the 
sensitivity of A-HCC patients to immunotherapy and 
drug therapy, which can greatly help guide future 
clinical selection of A-HCC targeted therapy and 
immunotherapy. Our finding also demonstrated that 
DNMT1 and EZH2 can be exploited as core genes of 
A-HCC and that teniposide can be used for the 
treatment of A-HCC. 
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