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Abstract 

Bone marrow-derived mesenchymal stem cells (BM-MSCs) are multipotent stromal cells that have a 
critical role in the maintenance of skeletal tissues such as bone, cartilage, and the fat in bone marrow. In 
addition to providing microenvironmental support for hematopoietic processes, BM-MSCs can 
differentiate into various mesodermal lineages including osteoblast/osteocyte, chondrocyte, and 
adipocyte that are crucial for bone metabolism. While BM-MSCs have high cell-to-cell heterogeneity in 
gene expression, the cell subtypes that contribute to this heterogeneity in vivo in humans have not been 
characterized. To investigate the transcriptional diversity of BM-MSCs, we applied single-cell RNA 
sequencing (scRNA-seq) on freshly isolated CD271+ BM-derived mononuclear cells (BM-MNCs) from 
two human subjects. We successfully identified LEPRhiCD45low BM-MSCs within the CD271+ BM-MNC 
population, and further codified the BM-MSCs into distinct subpopulations corresponding to the 
osteogenic, chondrogenic, and adipogenic differentiation trajectories, as well as terminal-stage quiescent 
cells. Biological functional annotations of the transcriptomes suggest that osteoblast precursors induce 
angiogenesis coupled with osteogenesis, and chondrocyte precursors have the potential to differentiate 
into myocytes. We also discovered transcripts for several clusters of differentiation (CD) markers that 
were either highly expressed (e.g., CD167b, CD91, CD130 and CD118) or absent (e.g., CD74, CD217, 
CD148 and CD68) in BM-MSCs, representing potential novel markers for human BM-MSC purification. 
This study is the first systematic in vivo dissection of human BM-MSCs cell subtypes at the single-cell 
resolution, revealing an insight into the extent of their cellular heterogeneity and roles in maintaining 
bone homeostasis. 

Key words: single-cell RNA sequencing (scRNA-seq); mesenchymal stem cell (MSC); bone marrow; osteogenesis; 
chondrogenesis; adipogenesis 
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Introduction 
The human bone tissue is a complex system that 

consists of diverse cell types including osteoblast/ 
osteocyte, osteoclast, and chondrocyte (collectively 
known as “bone cells”), together with various 
supporting cells such as adipocyte, fibroblast, and 
hematopoietic cells among others. A delicate balance 
of bone formation/resorption is critical for 
maintaining bone health, and therefore bone cells 
must work together to maintain bone strength and 
mineral homeostasis. Despite the extensive study of 
bone cells, their underlying biology remains poorly 
understood. While osteoclasts are of hematopoietic 
origin and derived from the “monocyte/macrophage- 
preosteoclast-osteoclast” differentiation trajectory [1], 
the detailed origins of osteoblast/osteocyte and 
chondrocyte are not as well characterized. 

Currently, cells that give rise to osteoblast/ 
osteocyte, chondrocyte, and adipocyte are generally 
referred to as “mesenchymal stromal/stem cells” 
(MSCs), which are non-hematopoietic bone marrow 
stromal cells with fibroblast colony-forming unit 
(CFU-F) and multi-differentiation capacity [2]. 
Typically, the human bone-marrow derived MSCs 
(BM-MSCs) are isolated with a combination of 
non-specific cell-surface markers such as high level of 
CD271, CD44, CD105, CD73, CD90, and low 
level/absence of CD45, CD34, CD14 or CD11b, CD79a 
or CD19, and human leukocyte antigen HLA-DR [3,4]. 
Among these markers, CD271 shows great efficiency 
to sort MSCs either alone or in combination with 
negative selection of markers such as CD45 [5,6]. 
Additionally, LEPR (leptin receptor, or CD295) is used 
for isolating BM-MSCs in transgenic labeling mice 
[7,8]. Although these cell markers are candidates for 
isolating BM-MSCs, recent evidence suggests that the 
BM-MSCs are a heterogeneous group of cells for some 
cell markers. For instance, Akiyama et al. [9] 
demonstrated that a small portion of BM-MSCs 
express CD45 and CD34, which are traditionally 
regarded as negative markers. Meanwhile, some 
studies also suggested that only around 50% of MSCs 
are positive for CD105 [10,11], a cell marker 
previously considered universally expressed by MSCs 
derived from different tissue [12]. 

The extent of the cellular heterogeneity among 
the BM-MSCs is not well-defined, although a few 
studies have proposed some novel subtypes. One 
study reported a subset of cultured mouse BM-MSCs 
that are distinct from regular BM-MSCs based upon 
differential attachment to plastic culture dishes, 
proliferation, and self-renewal patterns [9]. Another 
study examining cultured human BM-MSCs 
demonstrated that CD264 marks a subpopulation of 
aging human BM-MSCs with differential fibroblast 

colony forming efficiency [13]. Several other efforts 
have attempted to deconvolute the heterogeneity of 
BM-MSCs through the identification of the 
differentiation trajectory associated with a given 
subpopulation. For example, one study found that 
effective chondrocyte differentiation could only be 
induced in human MSCA-1+CD56+ BM-MSCs, while 
adipocytes are derived only from MSCA-1+CD56− 
BM-MSCs in vitro [14]. Another study identified 
“skeletal stem cells” in both mice and humans, which 
give rise to bone, stroma, and cartilage cells in vivo in 
mice, but not adipocytes or myocytes [15,16]. 

Single-cell RNA sequencing (scRNA-seq) has 
recently emerged as a powerful approach to study cell 
heterogeneity in complex tissues. scRNA-seq 
measures transcriptional profiles of many cells at 
single-cell resolution, which can be clustered to 
distinguish and classify cell subtypes, infer 
developmental trajectories, and identify novel 
regulatory mechanisms [17,18]. scRNA-seq 
technology represents a major advancement beyond 
the conventional bulk RNA-seq transcriptomics 
approach which attempts to infer biological 
mechanisms from average gene expression, weighted 
by the unknown proportions of unknown cell 
subtypes, across a heterogeneous cell population. 
Several studies have applied scRNA-seq to bone 
marrow stroma cells. However, these studies were 
either conducted in mice [7,19] or cultured cells from 
human subjects [20,21], which may not accurately 
represent the transcriptional profile of human 
primary BM-MSCs in vivo [22,23]. 

Our current work is the first systematic 
scRNA-seq analysis of freshly isolated human CD271+ 
bone marrow mononuclear cells (BM-MNCs). We 
have successfully identified LEPRhiCD45low BM-MSCs 
in the CD271+ BM-MNC population and further 
revealed distinct subpopulations in LEPRhiCD45low 
BM-MSCs along with their differentiation 
relationships and functional characteristics. By 
comparing the expression pattern of LEPRhiCD45low 
BM-MSCs with CD45hi hematopoietic cells, we have 
also identified several potential novel markers for 
human BM-MSC purification. Our findings provide 
significant insight into the identities and complexities 
of human BM-MSCs in vivo. 

Methods 
Study population 

The clinical study was approved by the Medical 
Ethics Committee of Central South University, and 
written informed consents were obtained from each 
participant. The study population consists of two 
Chinese subjects who underwent hip replacement 
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surgery at the Xiangya Hospital of Central South 
University in 2019, including one 84-year-old male 
with osteoarthritis and normal bone mineral density 
(BMD; BMD T-score: -0.9 at lumbar vertebrae, 2.7 at 
total hip) and one 67-year-old female with 
osteoporosis (BMD T-score: -3.3 at lumbar vertebrae, 
-3.7 at total hip). Study participants were screened 
prior to surgery based on a detailed questionnaire, 
medical history, and a physical examination. Subjects 
were excluded from the study if they had preexisting 
chronic conditions which may influence bone 
metabolism including diabetes mellitus, renal failure, 
liver failure, hematologic diseases, disorders of the 
thyroid/parathyroid, malabsorption syndrome, 
malignant tumors, and previous pathologic fractures 
[24]. During hip replacement surgery, surgeons 
collected the bone marrow from the femoral shafts 
from each subject and transferred the samples to our 
laboratory immediately following the procedure. The 
samples were stored at 4 °C and processed within 24 
hours after collection. 

Experimental animals 
Female C57BL/6J mice were purchased from 

Jackson Laboratory (Bar Harbor, ME, USA). All mice 
were housed in pathogen-free conditions and fed with 
autoclaved food, and all experimental procedures 
were approved by the Ethics Committee of Xiangya 
Hospital of Central South University. 

BMD measurement 
BMD (g/cm2) at the lumbar spine (L1-L4) and 

the total hip (femoral neck and trochanter) were 
measured with a duel energy x-ray absorptiometry 
(DXA) fan-beam bone densitometer (Hologic QDR 
4500A, Hologic, Inc., Bedford, MA, USA). According 
to the World Health Organization definition [25] and 
the BMD reference established for Chinese 
populations [26], subjects with a BMD of 2.5 SDs 
lower than the peak mean of the same gender (T-score 
≤ -2.5) were determined to be osteoporotic, while 
subjects with -2.5 < T-score < -1 are classified as 
having osteopenia and subjects with T-score > -1.0 are 
considered healthy. 

Human bone marrow cell dissociation 
Bone marrow derived mononuclear cells 

(BM-MNCs) were extracted from the marrow cavity 
of femoral shafts using a widely applied dissociation 
protocol 5,6]. Briefly, the bone marrow was attenuated 
with PBS (1:2) and mixed gently. The mixture was 
then equally layered onto equal volume of Ficoll (GE 
health care, Chicago, IL, USA), and the buffy coat was 
isolated by centrifugation (440 g, 35 min, 4 °C). The 
separated buffy coat was transferred into a new 15 ml 
centrifuge tube and washed with PBS. After 

discarding the supernatant, red blood cells were lysed 
with RBC Lysis Buffer (Thermo Fisher, Waltham, MA, 
USA). After washing twice with PBS, the remaining 
MNCs were further purified with CD271 magnetic 
MicroBeads (Miltenyi Biotec, Bergisch Gladbach, 
Germany) for positive selection [6]. 

Positive selection of human CD271+ BM-MNC 
BM-MNCs were incubated for 10 min at 4-8 °C 

with monoclonal antibody (mAb) against CD271. 
After washing, the cells were incubated with 
anti-IgG1 immunomagnetic beads for 15 min at 4 °C. 
The cell suspension was placed on a column in a cell 
separator (Miltenyi Biotec), and the positive fraction 
was subjected to a second separation step. The cells 
were then counted and assessed for viability with a 
Countstar® Rigel S3 fluorescence cell analyzer (ALIT 
Life Science Co., Ltd, Shanghai, China). 

Isolation of murine BM-MSCs 
Cells were isolated from flushed bone marrow 

from female C57BL/6 mice (8 weeks) and dissociated 
using 21G needle. Cells were then plated in 75-cm2 
cell culture flasks containing 10 mL of MesenCultTM 
basal expansion medium with 10× Supplement 
(Stemcell, Vancouver, Canada), 100 U/mL penicillin- 
streptomycin, L-glutamine 2 mM, and incubate at 37 
°C 5% CO2 for one week. 0.1% MesenPureTM 

(Stemcell) was added for the depletion of CD45+ cells. 
Stromal cells were allowed to reach 80%-90% 
confluency before passage or planting. 

Flow cytometry 
Cells were resuspended in 100 μL of staining 

medium, followed by staining with fluorochrome- 
conjugated antibodies on ice for 20 minutes. The 
antibodies used in this study to identify MSCs were 
anti-CD45-FITC (eBioscience, clone 30-F11, 0.5 
µg/test), anti-Ter119-FITC (eBioscience, clone TER- 
119, 0.25 µg/test), anti-CD31-FITC (eBioscience, clone 
390, 1 µg/test), and anti-CD56-PE (R&D Systems, 
clone # 809220, 0.5 µg/test). Cells were analyzed on a 
Sony MA900 Cell Sorter, where CD45/Ter119/CD31- 
cells were identified as BM-MSCs, and CD56 was 
used to separate CD56+ and CD56- cell subtypes. 

Bone sectioning, immunostaining, and 
confocal imaging 

Freshly dissected bones were fixed in 4% 
paraformaldehyde overnight, followed by 
decalcification in 10% EDTA for 1 week, and then 
dehydrated using a series of graded ethanol and 
embedded in paraffin. Samples were then cut into 
5-µm-thick longitudinally oriented sections, 
deparaffinized in xylene, and rehydrated in 
decreasing concentrations of ethanol followed by 
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distilled water. After deparaffinization and antigen 
retrieval, sections were blocked in PBS with 5% 
bovine serum albumin (BSA) for 1 hour and then 
stained overnight with the following primary 
antibodies: goat-anti-LepR (R&D: AF497, 10 µg/mL) 
and rabbit-anti-CD56 (Proteintech: 14255-1-AP, 
1:2000). Next, samples were incubated with 
appropriate secondary antibodies, including donkey 
anti-goat Alexa Fluor 555 and donkey anti-rabbit 
Alexa Fluor 647 (all from Invitrogen, 1:400). Slides 
were mounted with anti-fade prolong gold 
(Invitrogen) and images were acquired with a Zeiss 
LSM780 confocal microscope. 

Cell capture and cDNA synthesis 
After isolation of human CD271+ BM-MNCs, we 

applied the Chromium single cell gene expression 
platform (10x Genomics, Pleasanton, CA, USA) for 
scRNA-seq experiments. Cell suspensions were 
loaded on a Chromium Single Cell Controller (10x 
Genomics) to generate single-cell gel beads in 
emulsion (GEMs) by using Single Cell 3' Library and 
Gel Bead Kit V3 (10x Genomics, Cat# 1000092) and 
Chromium Single Cell A Chip Kit (10x Genomics, 
Cat#120236) according to the manufacturer’s 
protocol. Briefly, single cells were suspended in 0.04% 
BSA–PBS. Cells were added to each channel, captured 
cells were lysed, and the released RNA were barcoded 
through reverse transcription in individual GEMs27. 
GEMs were reverse transcribed in a C1000 Touch 
Thermal Cycler (Bio Rad, Hercules, CA, USA) 
programmed at 53 °C for 45 min, 85 °C for 5 min, and 
held at 4 °C. After reverse transcription, single-cell 
droplets were broken, and the single-strand cDNAs 
were isolated and cleaned with Cleanup Mix 
containing DynaBeads (Thermo Fisher Scientific). 
cDNAs were generated and amplified, and the quality 
was assessed using the Agilent 4200. 

Single cell RNA-Seq library preparation 
Single-cell RNA-seq libraries were prepared 

using Single Cell 3’ Library Gel Bead Kit V3 following 
the manufacturer’s guide (https://support.10x 
genomics.com/single-cell-gene-expression/library-pr
ep/doc/user-guide-chromium-single-cell-3-reagent-k
its-user-guide-v3-chemistry). Single Cell 3’ Libraries 
contain the P5 and P7 primers used in Illumina bridge 
amplification PCR. The 10x Barcode and Read 1 
(primer site for sequencing read 1) were added to the 
molecules during the GEM-RT incubation. The P5 
primer, Read 2 (primer site for sequencing read 2), 
Sample Index and P7 primer were added during 
library construction. The protocol was designed to 
support library construction from a wide range of 
cDNA amplification yields spanning from 2 ng to >2 

μg without modification. Finally, sequencing was 
performed on an Illumina Novaseq6000 with a 
sequencing depth of at least 100,000 reads per cell for 
a 150 bp paired end (PE150) run. 

Pre-processing of scRNA-seq data 
Raw FASTQ files were mapped to the Reference 

genome (GRCh38/hg38) using Cell Ranger 3.0 
(https://support.10xgenomics.com/single-cell-gene-
expression/software/pipelines/latest/what-is-cell-ra
nger). To create Cell Ranger-compatible reference 
genomes, the references were rebuilt according to 
instructions from 10x Genomics (https://www.10x 
genomics.com), which performs alignment, filtering, 
barcode counting and UMI counting. Following 
alignment, digital gene expression (DGE) matrices 
were generated for each sample and for all samples. 
Merged 10x Genomics DGE files were generated 
using the aggregation function of the Cell Ranger 
pipeline. All cells in different batches were merged 
and normalized by equalizing the read depth among 
libraries. Only confidently mapped, non-PCR 
duplicates with valid barcodes and unique molecular 
identifiers were used to generate the gene-barcode 
matrix (Figure S1A-B). For further quality control, we 
excluded cells that had fewer than 150 detected genes. 
We then calculated the distribution of genes detected 
per cell and removed any cells in the top 2% quantile. 
We also removed cells where >20% of the transcripts 
were attributed to mitochondrial genes (Figure 
S1C-D). After removing disqualified cells from the 
dataset, the data were normalized by the total 
expression, multiplied by a scale factor of 10,000, and 
log transformed. 

Dimensionality reduction and data 
visualization 

To visualize the data, we first calculated the ratio 
of binned variance to mean expression for each gene 
and selected the top 2,000 most variable genes. Next, 
we performed principal component analysis (PCA) 
and reduced the data to the top 20 PCs. Finally, we 
performed non-linear dimensionality reduction for 
the dataset to project the cells in 2D space based on 
gene expression data of the highly variable genes 
using t-SNE [28]. 

Clustering and differential gene expression 
analysis 

We performed a graph-based clustering of the 
previously identified PCs using the Louvain Method 
[29], and the clusters were visualized on a 2D map 
produced with t-SNE. For each cluster, we used the 
Wilcoxon rank-sum test to identify significantly 
differentially expressed genes (DEGs) when 



Int. J. Biol. Sci. 2021, Vol. 17 
 

 
http://www.ijbs.com 

4196 

compared to the remaining clusters (Bonferroni 
correction was used to adjust for multiple hypothesis 
testing, adjusted p value < 0.05 was regarded as 
significant, paired tests when indicated). To visualize 
how well the cluster-specific DEGs (marker genes) 
defined each cluster, we constructed the violin plot, 
feature plot (tSNE plot colored by expression level of 
indicated genes), and heatmap (top 10 genes with 
highest average log-transformed fold change – logFC) 
using the Seurat R packages [30,31]. 

Pathway enrichment analysis and trajectory 
analysis 

To investigate the biological processes and 
signaling pathways associated with each cluster 
(subtype), we performed GO and KEGG enrichment 
analysis on the identified cluster-specific DEGs by 
using the clusterProfiler R package [32]. To visualize 
the results, we used the ComplexHeatmap and GOplot R 
packages. We then applied Monocle for trajectory 
inference and pseudotime analysis [33,34]. The 
principle of these analyses is to determine the pattern 
of the dynamic process experienced by the cell 
population and to order the cells along their 
developmental trajectory based on differences in the 
expression profiles of highly variable genes. 

Cross-species scRNA-seq data integration 
Two previous independent scRNA-seq datasets 

of mBM-MSCs were acquired from GEO database 
under the accession numbers of GSE128423 and 
GSE108892, respectively [7,19]. After acquiring the 
expression matrix, cells expressing LEPR were 
isolated as the LEPR+ mBM-MSC subset. We then 
applied canonical correlation analysis (CCA) to the 
top 2,000 genes with the highest dispersion shared 
between datasets using the Seurat alignment method 
to integrate scRNA-seq data of hBM-MSCs and 
mBM-MSCs [30,31]. The CCA method identifies 
shared correlation structures across different datasets 
by finding linear combinations of the features that 
have large correlation. Finally, we aligned the 
subspaces based on the first 30 canonical correlation 
vectors, resulting in reduced dimensionality for 
further analysis [7]. The batch effect was then assessed 
based on the correlation of average gene expression 
between the datasets. 

Results 
Cellular heterogeneity of the human CD271+ 
BM-MNCs 

To study the transcriptomic diversity of the 
BM-MSCs, we applied scRNA-seq on freshly isolated 
CD271+ BM-MNCs from the femoral shaft-derived 
bone marrow of two human subjects (one with 

osteoporosis and the other with osteoarthritis) (Figure 
1A). Cells were affinity isolated with CD271 
conjugated magnetic microbeads (see methods), and 
mRNA libraries were prepared and sequenced with 
the 10x Genomics Chromium system. After quality 
filtering (Figure S1A-C), we obtained an expression 
matrix of 14,494 cells where transcripts for the average 
number of genes detected per cell was 1,363. There 
was a strong correlation between the overall gene 
expression profiles of the two subjects (R = 0.96, 
Figure S1D-E), and therefore we combined the data 
from the two subjects for subsequent analyses. The 
graph-based clustering divided the cells into 15 
distinct clusters (clusters A-O), and the differentially 
expressed genes (DEGs) of each cluster were 
identified with the Wilcoxon rank-sum test (Figure 
S2A-B; Table S1 Sheet 1). 

Among the cell type clusters, clusters C and D 
expressed high levels of BM-MSC marker genes, 
including LEPR (leptin receptor), NGFR (CD271), 
ENG (CD105), THY1 (CD90), and NT5E  (CD73). 
Notably, LEPR had the strongest expression levels 
(Figure S2C). The remaining clusters are PTPRC 
(CD45) or HBA1 (hemoglobin-1) positive 
hematopoietic cells (Figure S2C). Specifically, based 
on the identified markers: 1) clusters A and B are 
CD11b/16/66bhi neutrophils; 2) clusters F, K, and N 
are CD14hiCD16low/hi monocytes; 3) clusters E, I, L, 
and M are CD19hi B cells; 4) cluster H is CD3hi T cells; 
5) cluster O is CD56hi NK cells; and 6) clusters G and J 
are HBA1hi nucleated red blood cells (RBCs) (Figure 
1B; Table S1 Sheet 1). These findings are consistent 
with previous reports that MSCs are the main source 
of LEPR expression in human bone marrow and 
CD271+ MNCs also express certain levels of CD45 
(Figure S2C) [6,35]. By comparing the gene expression 
pattern between LEPRhiCD45low BM-MSCs and other 
CD45hi hematopoietic cells, we discovered several 
potential surface markers for isolation of human 
BM-MSCs such as high expression of CD167b, CD91, 
CD130, CD118 and low expression or absence of 
CD74, CD217, CD148, CD68 (Table S1 Sheet 2). These 
results demonstrate that CD271+ MNCs are a 
heterogeneous cell population containing several cell 
types. 

Cellular taxonomy of BM-MSCs 
To investigate the cellular heterogeneity within 

BM-MSCs, we extracted LEPR+CD45- cells (clusters C 
and D, Figure S2A) from the original dataset for 
further analyses. The LEPR+CD45- BM-MSCs were 
divided into six distinct groups by an unbiased 
clustering analysis (Figure 1C and S2D). Based on 
known cell markers or functional genes, the different 
subtypes of BM-MSCs were annotated as: 1) 
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osteoblast precursor (cluster C1, expressing 
osteogenic markers including collagen 1 and ALPL 
[36,37]); 2) adipocyte precursor (cluster C2, expressing 
adiponectin and MGP [38,39]); 3) chondrocyte 
precursor (cluster C6, expressing CD56 and WIF1 
[14,40]); and 4) terminal-stage cells that do not express 
differentiation markers (clusters C3-C5) (Figure 1D). 

We studied the expression and function of the 
cluster-specific DEGs in the new BM-MSCs 
subpopulations (Figure 1D, Table S1 Sheet 3) and 

found several interesting results. 1) Besides known 
markers or functional genes such as ALPL and 
collagen 1, some novel genes were also highly 
expressed in the osteoblast precursor cells. For 
instance, MCAM (CD146) was differentially 
expressed in osteoblast precursors when compared 
with other cell subtypes. CD146 was recently reported 
as one of the markers for human osteoblast precursors 
[15]. 2) Along with ADPQ (adiponectin) and MGP, 
APOD (apolipoprotein D) was also highly expressed 

 

 
Figure 1. scRNA-seq analysis of human BM-MSCs. (A) Schematic summarizing an overview of the study. (B-C) t-SNE visualization of color-coded clustering of 14,494 
human CD271+ BM-MNCs. The labeled texts indicate the individual clusters. Dashed lines in (B) delineate LEPRhiCD45low BM-MSCs, which are further classified into subgroups 
shown in (C). The upper-right t-SNE plot in (C) shows the difference in BM-MSCs between the two subjects. (D) Violin plots showing relative expression levels of selected 
cluster-specific marker genes for osteoblast (top row), chondrocyte (middle row), and adipocyte (bottom row) precursors, respectively. (E-F) GO (E) and KEGG (F) 
enrichment analyses for osteoblast, chondrocyte, and adipocyte precursors. Dot plot shows the most significant terms. The size of dot indicates the gene ratio (enriched genes/ 
total number of genes). The color indicates the adjusted p value for enrichment analysis. Dashed boxes highlight the terms related to MSC functions. 
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in the adipocyte precursors. 3) Osteomodulin (OMD) 
was highly expressed in the chondrocyte precursors. 
Previous reports have shown that OMD induces 
endochondral ossification through PI3K signaling, 
and regulates the extracellular matrix during bone 
formation by reorganizing collagen fibrils and 
increasing aggrecan expression in chondrocytes 
[41-43]. Taken together, the findings suggest that 
OMD may potentially regulate chondrogenic 
differentiation. 

To study the shared and distinct biological 
processes between different cell type clusters, we 
performed GO and KEGG functional term enrichment 
analysis of DEGs in osteoblast, chondrocyte, and 
adipocyte precursors (Table S2). Several enrichment 
terms for bone development were detected in the 
osteoblastic and chondrocyte precursors including 
“ossification”, “osteoblast differentiation”, etc. The 
adipocyte precursors were enriched for terms such as 
“non-alcoholic fatty liver disease” and 
“thermogenesis” (Figure 1E-F) [44,45]. These results 
demonstrate that human BM-MSCs consist of a 
heterogeneous cell population with several different 
subtypes, which are characterized by distinct 
biological processes. 

In contrast, the remaining subgroups (clusters 
C3-C5) of the BM-MSCs did not express any 
differentiation markers, and the GO enrichment 
analyses did not detect any significant terms related 
to differentiation processes. Members of ribosomal 
protein (RP) gene family, which encodes 
ribonucleoprotein, were highly expressed in clusters 
C3 and C4 (Table S1 Sheet 3). Previous evidence 
suggests that the expression of ribonucleoprotein is 
required for maintenance of self-renewal potency of 
stem cells [46]. These clusters were enriched for GO 
terms related to ribonucleoprotein, RNA 
degeneration, and cell apoptosis (Figure S3A). These 
results partially support the claim that these clusters 
contain cells at terminal stage which lack the capacity 
for cellular differentiation. We noted that although 
cluster C5 had high expression levels of LEPR, a small 
fraction of the cells in this group also expressed low 
levels of CD45 and were enriched for immune cell 
related terms such as “neutrophil cell activation” and 
“leukocyte migration” (Figure S2E and S3A). This 
suggests that CD45+ immune cells may have 
contaminated this cluster, and therefore we excluded 
this cluster (C5) from further analysis. 

Dynamic gene expression patterns at different 
developmental stages of BM-MSCs 

In order to better understand the differentiation 
relationships between BM-MSCs subtypes, we 
reconstructed the developmental trajectory by 

inferring the dynamic gene expression patterns at 
different developmental stages. The estimated 
developmental trajectory showed multiple branches, 
representing the multi-lineage differentiation 
potential of BM-MSCs (Figure 2A). By comparing the 
distribution of the cell population along the 
pseudotime, we found that osteoblast precursors 
(cluster C1) were more enriched in the early stage of 
pseudotime compared with the other clusters, while 
adipocyte and chondrocyte cells were evenly 
distributed along the pseudotime (Figure 2B). 
Pseudotime ordering of cell type clusters revealed a 
continuum of gene expression between the early and 
late stages of BM-MSC differentiation (Figure 2C). 
When the dynamic gene expression patterns between 
osteoblast and adipocyte markers were compared, the 
osteoblast markers decreased over pseudotime, while 
the adipocyte markers remained unchanged or 
increased (Figure 2D). These findings suggest that 
osteoblast precursors are only differentiated at the 
early stage of BM-MSC development, while 
adipogenesis is continuous across different stages. We 
also noticed that clusters C3 and C4 were mostly 
represented at the later stage of the pseudotime 
(Figure 2B). By analyzing the gene expression pattern, 
we found that G2M genes [47] were expressed at 
lower levels in these two clusters (Figure 2E). 

Osteoblast precursors induce angiogenesis 
during coupling with osteogenesis 

Previous studies have reported that osteoblasts 
may regulate angiogenesis [48,49], but this 
phenomenon has not yet been explored at the 
single-cell level. Interestingly, transcripts for some 
secreted factors associated with the vascular system 
(e.g., VCAN and ANGPTL4 [50,51]) were highly 
expressed in the osteoblast precursors, (Figure 3A). 
This result suggests that osteoblast precursors may 
induce angiogenesis concurrently with osteogenesis. 
In supporting this, the cluster marker genes of 
osteoblast precursors were enriched for not only 
osteogenesis related GO terms, but also for functional 
processes related to angiogenesis such as “regulation 
of vasculature development” and “positive regulation 
of angiogenesis” (Figure 1E and 3B). We further 
investigated the genes enriched for these biological 
processes and identified 32 genes regulating 
osteogenesis (e.g., COL1A1/A3, COL6A1/A3, 
VCAN, IGFBP3, etc.), 16 genes for angiogenesis (e.g., 
ADM, EGR1, NGFR, etc.), and 11 shared genes 
including MDK, JUNB, ENG, IGTB2, APOB, etc. 
(Figure 3C; Table S3 Sheet 1). Among these genes, 
some have a much higher expression level in the 
osteoblast precursors compared with other cells. 
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Figure 2. Dynamic gene expression patterns of human BM-MSCs. (A) Reconstructed principal component graph of cell differentiation trajectory of BM-MSCs, colored 
by subpopulation identities. The upper-right trajectory plot in the square indicates the direction of pseudotime. (B) Distribution of each cell subpopulation along the pseudotime. 
(C) Continuum of dynamic gene expression in pseudotime of BM-MSCs. Heatmap shows top 50 genes with most significant expression changes. Pixel color indicates the 
expression level (logFC). (D) Expression level of osteogenic (top) and adipogenic (bottom) genes with respect to pseudotime coordinates. Blue lines depict the LOESS regression 
fit of the normalized expression values. (E) Expression pattern of G2M genes of BM-MSCs. 

 
Notably, we found that MDK, CD105, and 

ADAMTS9 were highly expressed and frequently 
enriched in multiple functional terms related to 
osteogenesis and angiogenesis (Figure S3B). It has 
been shown that MDK is positively associated with 
angiogenesis while inversely associated with 
osteogenesis [52,53], potentially via MAPK and PI3K 
signaling [54]. High expression of CD105 has been 
shown to disrupt angiogenesis in tumor tissue, and 
CD105- BM-MSCs are more prone to differentiate into 
adipocytes and osteocytes [11,55]. ADAMTS9 is 
expressed during ossification and also may regulate 
angiogenic signaling induced by VEGF [56,57]. Our 
results together with the previous evidence suggest 
that the co-regulation of osteogenesis and 
angiogenesis by osteoblast precursors is a complex 
network involving multiple genes whose regulatory 

effects are sometimes in opposite directions. 
The KEGG pathway analysis revealed that the 

osteogenesis and angiogenesis genes were enriched in 
the PI3K-Akt, MAPK, Rap1, AGE-RAGE, Relaxin, and 
TNF signaling pathways, in which PI3K-Akt signaling 
had the most genes enriched (Figure 3D). The genes 
COL1A1, PGF, and JUN were highly expressed and 
were also enriched in multiple pathways, indicating 
that these genes may be essential in the various cell 
signaling networks. We also found that PI3K-Akt 
signaling and osteogenesis share a large proportion of 
common genes, suggesting that this pathway may 
have a significant role in regulating osteogenesis of 
BM-MSCs (Figure 3E). On the other hand, the MAPK, 
PI3K-Akt, and Rap1 signaling pathways share 
comparable proportions of genes with angiogenesis 
(Figure 3E). Furthermore, COL4A2, HGF, IGBT1, and 
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ID1 are essential factors connecting the genetic 
network between the different pathways and 
biological processes (Figure 3F). These results suggest 
that osteogenesis and angiogenesis in osteoblast 
precursors are likely mediated by multiple genes and 
pathways, and particularly through PI3K-Akt 
signaling pathways. 

Myogenesis potential of CD56+ chondrocyte 
precursors 

To partially confirm the existence of the CD56+ 
BM-MSCs, we performed flow cytometry analysis on 
murine bone marrow derived cells. The result 
confirmed that CD56+ fraction makes up about 8% of 
the total BM-MSCs (Figure 4A). Confocal 
immunofluorescence imaging of murine femur 
further demonstrated that CD56+ BM-MSCs 
(Lepr+CD56+ cells) were mainly located at the growth 
plate (Figure 4B and S3E). The DEGs in CD56+ 
chondrocyte precursors were enriched in GO terms 
related to both chondrogenesis (e.g., “cartilage 
development”, “chondrocyte differentiation”) and 
myogenesis (e.g., “muscle cell differentiation”, 
“myoblast differentiation”) (Figure 4C). There were 

46 DEGs enriched in terms related to chondrogenesis 
(e.g., IBSP, SPP1, A2M, IGTA10, etc.), 42 for 
myogenesis (e.g., ACTA2, ADARB1, CD9, VIM, etc.), 
and 13 shared genes for both processes (e.g., NPNT, 
MEF2C, ITGA8, TGFB1, etc.) (Figure 4D and S3C). 

Based on the KEGG pathway analysis, we 
determined that DEGs in the chondrocyte precursors 
were enriched in the PI3K-Akt, MAPK, Ras, Rap1, 
TGF-beta, Apelin, and Hippo signaling pathways 
(Figure 4E). TGF-beta signaling shared the largest 
number of genes with chondrogenesis, while the 
genes enriched in Apelin and Ras/Rap1 signaling 
overlapped mostly with myogenesis (Figure S3D). By 
investigating the overlapping genes between 
biological processes and signaling pathways, we 
found that FGFR1 and TGFB1 may be crucial genes 
connecting multiple pathways to both chondrogenesis 
and myogenesis (Figure 4F). Thus, the CD56+ 
chondrocyte precursor of the BM-MSC subpopulation 
is capable of both chondrogenesis and myogenesis, 
and these processes may be regulated by the 
TGF-beta, Apelin, and Ras/Rap1 signaling pathways. 

 

 
Figure 3. Functional analysis for ALPLhi osteoblast precursor. (A) Violin plots showing relative expression levels of VCAN and ANGPTL4. Osteoblastic cluster was 
highlighted by the red box. (B) Enriched GO terms associated with osteogenesis (top) and angiogenesis (bottom) in osteoblast precursors. Bar chart shows the number of genes 
enriched in each term. Color indicates the adjust p values. (C) Differential expression of osteogenesis- and (or) angiogenesis-related genes (rows) in osteoblast precursors 
compared to the other cells. Heatmap shows top 10 most significant DEGs in each category, where color indicates the relative expression levels between osteoblast precursors 
and other cells (z-score). (D) Gene expression pattern in enriched pathways. Squares show enriched DEGs in the corresponding terms (rows). Color indicates the expression 
value of the DEGs (average logFC). (E-F) Table of genes in biological processes and pathways. (E) Numbers outside the circles indicate the number of genes in that term. Width 
of curves connecting different terms is proportional to the number of shared genes. (F) Table of the specific genes enriched in each biological process and pathway. 



Int. J. Biol. Sci. 2021, Vol. 17 
 

 
http://www.ijbs.com 

4201 

 
Figure 4. Functional analysis for CD56hi chondrocyte precursor. (A) Flow cytometry dot plot showing proportion of CD56+ BM-MSC fraction in mouse. (B) 
Representative confocal immunofluorescent imaging showing distribution of Lepr+CD56+ BM-MSCs in murine femur at low (left) and high (right) magnification. Arrows marked 
Lepr+CD56+ cells (C) Enriched GO terms associated with chondrogenesis (top) and myogenesis (bottom) in chondrocyte precursor cells. Bar chart shows the number of 
enriched genes in each term. Color indicates the adjust p values. (D) Differential expression of chondrogenesis- and (or) myogenesis-related genes in chondrocyte precursors 
compared to the other cells. Dot plot shows top 10 most-significant DEGs in each category (Middle: Chondrogenesis; Bottom: Myogenesis; Top: Common for both), where dot 
color indicates the relative expression levels between chondrocyte precursors and other cells (z-score) and the dot size shows the proportion of cells expressing the indicated 
genes. (E) Gene expression pattern in enriched pathways. Squares show enriched DEGs in the corresponding terms (rows). Color indicates the expression value of the DEGs 
(average logFC). (F) Table of genes in biological processes and pathways. 

 

Transcriptional difference between human and 
mice BM-MSCs at single-cell level 

To investigate the difference of transcriptional 
profiles between BM-MSCs acquired from humans 

and mice (hBM-MSCs, mBM-MSCs, respectively), we 
integrated our single-cell human transcriptome data 
with two previous scRNA-seq studies of bone 
marrow components in mice [7,19]. Potential batch 
effects among different studies were reduced by 
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canonical correlation analysis (CCA) (see methods) 
[58,59], and the transcriptomic profiles from different 
datasets had high correlation (Figures 5A-C and 
S4A), suggesting that after the CCA integration, the 
batch effects between different studies were relatively 
small and were, therefore, unlikely to introduce 
notable bias into the downstream analysis. 

To test whether heterogeneity exists between 
human and mice BM-MSCs, the integrated cross- 
species data were analyzed by an unbiased clustering. 
hBM-MSCs and mBM-MSCs were separated into 
different clusters (osteogenic, chondrogenic, adipo-
genic, and terminal in human; m1-m4 in mice) (Figure 
5B). We also observed significant differences in the 
gene expression pattern between human and mice 
BM-MSCs at single-cell level (Figure 5D, Table S1 
Sheet 4). The clustering and gene expression results 
suggested that even though the overall data had a 
large correlation based on average gene expression, 
there were still systematic differences between 
hBM-MSCs and mBM-MSCs transcriptomes at the 
single-cell level. There was a strong correlation 
between the average gene expression of subtypes in 
hBM-MSCs and mBM-MSCs except for human 
chondrogenic BM-MSCs (Figure 5E). This observation 

suggests that the overall gene expression pattern and 
differentiation trajectory of hBM-MSC derived 
chondrocyte precursors is less similar with those in 
the mBM-MSCs, when compared to other hBM-MSC 
subpopulations. 

Human and mice BM-MSCs often present 
different cell surface markers [3]. Consistent with this 
result, by comparing the DEGs between hBM-MSCs 
and mBM-MSCs, we revealed several CD markers 
with distinct expression patterns between human and 
mice BM-MSCs. For instance, CD317, CD36, and 
CD63 were highly expressed in hBM-MSCs, but not in 
mBM-MSCs; and vice versa for CD148, CD108, and 
CD20 (Figure S4B). 

Discussion 
While a growing body of evidence indicates that 

BM-MSCs have a central role in bone health, the 
underlying subtypes of BM-MSCs, especially in vivo in 
humans, remains largely unknown due to its 
heterogeneous characteristics. In the present study, 
we applied scRNA-seq analysis on freshly isolated 
human BM-MSCs and their niche hematopoietic cells. 
The use of freshly isolated human cells is a major 
advantage of this study, since any form of extra in 

 

 
Figure 5. Integrated cross-species analysis between human and mouse BM-MSCs. (A-B) t-SNE visualization of human and mouse BM-MNCs before (A) and after (B) 
CCA integration. The labeled texts indicate the datasets or subpopulations identified by clustering analysis. Human (h): data from this study; mice1 (m): data from Tikhonova et 
al. [7]; mice2 (m): data from Baryawno et al. [19]. (C) Correlations of gene expression among human and mouse BM-MSCs after CCA integration. Each dot represents an 
individual gene. Texts indicate highly expressed genes shared between the two species. The average gene expression level is plotted for each subject. Correlations were measured 
by Pearson correlation coefficients (R, p < 0.01). (D) Gene signature of human and mouse BM-MSCs, based on the relative gene expression level of top 20 most-significant DEGs 
for each species (z-score). (E) Correlations of gene expression between different subsets of human and mouse BM-MSCs identified by clustering analysis (Osteogenic, 
chondrogenic, adipogenic and terminal in human; m1-m4 in mice). Values in the table represent the Pearson correlation coefficients (R, p < 0.01). (F) Enriched signal pathways 
(KEGG terms) of human (top) and mice (bottom) BM-MSCs. Bar chart shows the number of enriched genes in each term. 
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vitro operations (e.g., freezing, culturing) could 
potentially alter the true transcription pattern [22] and 
thus lead to biased cell clustering/identification. In 
addition, our results along with previous evidence 
have highlighted that transcription profiles vary to a 
large degree between humans and mice [23]. 

Several studies have applied scRNA-seq on bone 
marrow stroma components or MSCs derived from 
various origins (e.g., bone marrow, adipocytes, 
umbilical cord). For instance, Tikhonova et al. [7] and 
Baryawno et al. [19] independently performed 
scRNA-seq on bone marrow stroma components 
(including BM-MSCs, vasculature, osteoblastic cells, 
etc.). Similar to their results, we also identified 
subtypes corresponding to multiple trajectories in 
BM-MSCs. Chan et al. [15,16], on the other hand, 
identified skeletal stem cells in humans and mice. 
They also demonstrated a Lin-PDPN-CD146+ 
osteogenic subset that only gives rise to osteoblasts/ 
osteocytes [15]. Similarly, we found that CD146 was 
differentially expressed in the osteogenic subset of 
BM-MSCs. Some studies also performed scRNA-seq 
on cultured human MSCs derived from various 
origins [20,21,62], but none of these studies focused on 
subtype identification. Compared with those studies 
that focused on mouse cells or in vitro cultured human 
cells, our results thus greatly expand the 
understanding of in vivo human BM-MSCs by 
presenting unbiased transcriptional profiles of 
distinct subpopulations including osteoblast, 
chondrocyte and adipocyte precursors as well as 
other components of the human BM-MSC cell 
population in vivo. 

Although the use of freshly isolated cells for 
scRNA-seq may preserve to the largest extent the 
accuracy of the transcriptomic profile, this approach 
also limits the total number of collected cells. 
Therefore, we used a single marker – CD271 – for 
positive sorting, instead of combining with 
CD45-negative selection, which would generate even 
less yield. Based on the scRNA-seq gene expression 
profiles, we demonstrated that the CD271+ BM-MNCs 
represent a heterogeneous cell population, which may 
be subdivided into BM-MSCs along with various 
hematopoietic cells that contribute to the formation of 
niche components. Our finding suggests that the 
BM-MSC isolation protocol based solely on positive 
selection is not ideal as the isolated cells consist of 
various cell types. Instead, positive selection 
combined with negative selection using CD45 or 
lineage markers (LIN) should be considered if the 
major purpose is to isolate BM-MSCs with a higher 
purity [5,63]. 

Interestingly, though we used CD271 as the cell 
surface marker for BM-MSC positive selection, the 

gene expression of CD271 was lower than expected 
(Figure S2C), suggesting that the protein expression 
may not be associated with the expression of the 
corresponding gene. Previous single-cell studies also 
showed similar results. For instance, Qin et al.’s 
results [64,65] showed that even after positive 
selection of Col2+ cells by FACS sorting, the single-cell 
gene expression of Col2 (Col2a1) is lower than 
expected. It is well known that the abundance of 
expressed proteins cannot always be inferred directly 
from mRNA readout alone [66]. New single-cell 
techniques have emerged which can simultaneously 
evaluate gene expression at both transcript and 
protein level, which may provide a more accurate 
characterization of cellular identity, states, and 
function [67]. 

Since BM-MSCs are heterogeneous for several 
existing cell markers [7,9], it is necessary to search for 
novel BM-MSC-specific cell markers (specifically and 
uniformly expressed in the major BM-MSC 
populations). By comparing the expression pattern 
between BM-MSCs and other niche hematopoietic 
cells, we confirmed the expression of classic cell 
markers including CD271, LEPR, CD105, and CD90 at 
the single-cell level. Notably, we found that LEPR had 
the highest expression level and was specific to the 
BM-MSC population, which is consistent with the 
results from mouse models [35]. We also detected 
some additional specifically expressed CD markers 
(e.g., CD167b, CD91, CD130, CD118) in BM-MSCs, 
which may potentially serve as novel surface markers 
for BM-MSC enrichment/purification. 

A systematic analysis of the BM-MSC trans-
criptional profiles revealed distinct subpopulations 
corresponding to osteogenic, chondrogenic, and 
adipogenic differentiation, as well as terminal-stage 
cells in the quiescent state. Further examination into 
the relationships between the highly expressed genes, 
biological processes, and signaling pathways in each 
subpopulation suggests that osteoblast precursors 
may have the capacity to induce vasculature 
development, and the chondrocyte precursors may 
have myogenic potential. Normally, the coupling of 
osteogenesis and angiogenesis is in the same 
regulation direction, i.e., vascular development will 
promote bone formation and vice versa [68]. However, 
several recent studies have already shown that in 
some cases the regulatory effect of these two 
biological processes could be opposite. For instance, 
even though VEGF stimulates vascularization, high 
amounts of VEGF could impair bone formation [69]. 
Similar patterns were found in BM-MSCs in this study 
where osteoblast precursors express CD105 and 
MDK, whose regulatory effect on osteogenesis and 
angiogenesis may be opposite, suggesting that the 
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coupling of osteogenesis and angiogenesis is a 
complex regulatory network where both positive and 
negative feedback may be included. It has been 
proposed that bone and muscle act as secretory 
endocrine organs affecting the function of one another 
through various pleiotropic genes and signaling 
pathways including (e.g., FGF-2, FGF-23, TGF-β, 
Wnt-3a) [70-72]. Our results demonstrated similar 
findings. For instance, we found that Wnt and TGF 
pathways may have important roles in 
chondrogenic-myogenic crosstalk in BM-MSCs. We 
also found that FGF receptor may contribute to the 
crosstalk through various pathways such as MAPK 
and Ras. 

Some interesting results were discovered when 
we analyzed the subtypes of BM-MSCs in-depth. We 
found that APOD was highly expressed in the 
adipocytic subtypes. Although APOD has not 
previously been linked to adipogenesis, other 
apolipoproteins, such as APOA and APOE [73,74] are 
known to modulate adipocyte metabolism. Therefore, 
it is conceivable that APOD may also regulate 
adipogenesis. We found that G2M genes were less 
expressed in the terminal stage BM-MSCs. Although 
this result somewhat suggested that the terminal cells 
might be quiescent stem cells, the stem cell markers 
were not differentially expressed in terminal cells. 
Therefore, the identity of terminal cells remains 
elusive, and worth further investigation. The 
scRNA-seq profiles of the BM-MSCs also revealed a 
continuum of dynamic gene expression pattern, 
indicating that osteogenesis occurs only at the early 
stages of BM-MSC development while the adipogenic 
and quiescent cells take a dominant place in the 
terminal stages (Figure 2B). These findings suggest 
that aging of BM-MSCs represents an important factor 
in the balance between the osteogenic and adipogenic 
differentiation. 

Although emerging studies have explored the 
single-cell transcriptome of both human and mouse 
BM-MSCs, few have considered the cross-species 
difference of transcriptome between h/m-BM-MSCs. 
Several studies have described such differences in 
other tissues at single-cell level [75,76]. By integrating 
our hBM-MSCs data with previous scRNA-seq data of 
mBM-MSCs, we were able to systematically analyze 
the shared and specific features of h/m-BM-MSCs. 
The findings suggest that some features are conserved 
across species, such as the high expression of Cxcl12, 
while other features such as the surface markers and 
genes regulating osteo-/adipo-genesis may be 
different. Understanding the systematic differences 
between h/m-BM-MSCs is essential, especially when 
attempting to adapt the conclusions from mouse 
models to humans or vise versa. 

We also note some limitations of our study 
design. Firstly, these findings are based on 
bioinformatic analysis of single-cell transcriptome, 
and without further molecular validations, some of 
these results are suggestive rather than conclusive, 
such as proposed cell markers or differentiation 
potentials. Other limitations of this study include 
batch effect and sample size. While the overall data 
did not show a significant batch effect, the 
transcription pattern of the BM-MSCs varied between 
the two human subjects (Figure S2D). We 
hypothesize that this may be explained by the gender 
and age differences. However, with limited sample 
size, it is difficult to deduce whether and/or how such 
differences are related to the disease status (e.g., 
osteoporosis vs. osteoarthritis) or other factors (e.g., 
age, gender, lifestyle, medical/medication history). In 
future studies, more subjects should be included to 
overcome potential batch effects and to explore how 
different health states and other factors affect the bone 
marrow microenvironment. 

Despite providing a detailed characterization of 
human BM-MSCs at single-cell resolution, the full 
trajectory of the osteoblastic lineage cells, as well as 
their balance and interaction with the osteoclastic 
lineage remain elusive. In our future studies, by 
combining scRNA-seq with scATAC-seq – a powerful 
tool to evaluate chromatin accessibility at the 
single-cell level, we will aim to unveil the complexity 
of osteoblastic-osteoclastic lineage interactions and 
gene expression regulations within/between the two 
lineages. In the meantime, deconvoluting the 
heterogeneity of BM-MSCs in vivo in humans 
represents an important and necessary advancement 
towards improving our understanding of bone 
physiological processes. 
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