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Abstract 

Background: Autophagy regulates many cell functions related to cancer, ranging from cell proliferation 
and angiogenesis to metabolism. Due to the close relationship between autophagy and tumors, we 
investigated the predictive value of autophagy-related genes. 
Methods: Data from patients with hepatocellular carcinoma were obtained from The Cancer Genome 
Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) databases. A regression 
analysis of differentially expressed genes was performed. Based on a prognostic model, patients were 
divided into a high-risk or low-risk group. Kaplan-Meier survival analyses of patients were conducted. The 
immune landscapes, as determined using single-sample gene set enrichment analysis (ssGSEA), exhibited 
different patterns in the two groups. The prognostic model was verified using the ICGC database and 
clinical data from patients collected at Zhongnan Hospital. Based on the results of multivariate Cox 
regression analysis, 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/inosine 
monophosphate (IMP) cyclohydrolase (ATIC) had the largest hazard ratio, and thus we studied the effect 
of ATIC on autophagy and tumor progression by performing in vitro and in vivo experiments. 
Results: Fifty-eight autophagy-related genes were differentially expressed (false discovery rate 
(FDR)<0.05, log2 fold change (logFC)>1); 23 genes were related to the prognosis of patients. A 
prognostic model based on 12 genes (ATG10, ATIC, BIRC5, CAPN10, FKBP1A, GAPDH, HDAC1, 
PRKCD, RHEB, SPNS1, SQSTM1 and TMEM74) was constructed. A significant difference in survival rate 
was observed between the high-risk group and low-risk group distinguished by the model (P<0.001). The 
model had good predictive power (area under the curve (AUC)>0.7). Risk-related genes were related to 
the terms type II IFN response, MHC class I (P<0.001) and HLA (P<0.05). ATIC was confirmed to inhibit 
autophagy and promote the proliferation, invasion and metastasis of liver cancer cells through the 
AKT/Forkhead box subgroup O3 (FOXO3) signaling pathway in vitro and in vivo. 
Conclusions: The prediction model effectively predicts the survival time of patients with liver cancer. 
The risk score reflects the immune cell features and immune status of patients. ATIC inhibits autophagy 
and promotes the progression of liver cancer through the AKT/FOXO3 signaling pathway. 
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Introduction 
Worldwide, liver cancer is responsible for the 4th 

highest number of cancer-related deaths, and the 
number of new liver cancer cases diagnosed annually 
is the 6th highest among all cancers [1]. The 5-year 

survival rate of patients with liver cancer is only 18%, 
and it is the second most lethal cancer after pancreatic 
cancer. Furthermore, the long-term survival rate of 
patients with liver cancer varies substantially among 
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countries and regions [2, 3]. The molecular 
characteristics of liver cancer cells and the clinical 
prognosis of liver cancer are very different from those 
of other cancers, which leads to challenges in 
predicting the prognosis of patients with liver cancer 
[4, 5]. 

Autophagy increases the viability of tumor cells 
and exacerbates tumor progression [6]. Numerous 
studies have reported a connection between 
autophagy and the human immune system and 
immune-related functions. Recent studies have 
reported that autophagy reduces cell surface 
inhibition of antitumor immune responses and 
promotes immune evasion in pancreatic cancer [7]. 
Based on the close relationship between autophagy 
and immunity, we analyzed autophagy and 
immune-related functions in this study. In summary, 
autophagy plays an important role in tumorigenesis 
and tumor progression, and immunotherapy will be 
an important strategy for tumor treatment in the 
future [8]. 

Due to the close relationship between autophagy 
and tumors, we designed this study to explore the 
relationship between autophagy and the prognosis of 
patients with liver cancer. Here, we identified genes 
that are closely related to the prognosis of patients 
with liver cancer using bioinformatics methods such 
as Cox regression analysis and survival analysis, 
provided ideas for subsequent mechanistic studies, 
and established models for predicting survival. 

The results of multivariate Cox regression 
analysis revealed the largest hazard ratio for 
5-aminoimidazole-4-carboxamide ribonucleotide 
formyltransferase/inosine monophosphate (IMP) 
cyclohydrolase (ATIC), suggesting that ATIC is 
closely related to patient prognosis. Therefore, we 
chose ATIC for further verification. ATIC is 
considered related to autophagy, but experimental 
evidence is not available to prove the relationship 
between ATIC and autophagy [9]. In the present 
study, we determined the relationship between ATIC 
and tumor cell autophagy by performing in vivo and 
in vitro experiments. We found that ATIC inhibited 
autophagy and promoted liver cancer progression by 
modulating the AKT/Forkhead box subgroup O3 
(FOXO3) pathway. 

This article identified autophagy-related genes 
related to the prognosis of liver cancer, analyzed the 
relationship of prognosis-related autophagy genes 
with immune cells and immune-related functions, 
and constructed a model to predict the survival of 
patients with liver cancer in the clinic using 
bioinformatics methods. Furthermore, we have 
suggested that ATIC inhibits autophagy and 
promotes liver cancer progression through the 

AKT/FOXO3 pathway. 

Materials and Methods 
Data collection 

The mRNA sequencing data of 50 normal 
samples and 374 liver cancer samples and clinical data 
from 374 patients with liver cancer were downloaded 
from The Cancer Genome Atlas (TCGA) [10]. Then, 
mRNA sequencing data from 240 patients with liver 
cancer were downloaded from the International 
Cancer Genome Consortium (ICGC) [11]. After 
excluding patients with incomplete data, 365 patients 
from TCGA database and 231 patients from the ICGC 
database were included in the analysis. A list of 256 
autophagy-related genes was obtained from the 
Human Autophagy Database [12]. The expression 
levels of autophagy-related genes were extracted from 
TCGA sequencing data. 

Identification of differentially expressed genes 
and prognosis-related genes 

The “limma” R package was used to perform the 
differential expression analysis. The screening 
conditions were a log2 fold change (logFC)>1 and 
false discovery rate (FDR)<0.05. The survival R 
package was used to identify prognosis-related genes. 
The genes that were both differentially expressed and 
related to prognosis were determined. A protein 
interaction network was generated for the 
overlapping genes. The “igraph” and “reshape2” R 
packages were used to calculate the correlations 
between the expression levels of overlapping genes 
and to determine the correlation network (correlation 
threshold: 0.4). 

Construction of prognostic models 
We used both LASSO regression and 

multivariate Cox regression analyses to establish 
prognostic models based on TCGA data. Then, we 
used ICGC data to verify the established models. 
According to the model, ICGC samples were divided 
into a high-risk and low-risk group. The predictive 
power of the models was evaluated by performing a 
survival analysis, ROC curve analysis and 
independent prognostic analysis. The "Rtsne" R 
package was used for principal component analysis 
(PCA), and t-stochastic neighbor embedding (t-SNE) 
was used for dimensionality reduction and data 
visualization. After the two models were tested and 
compared, the prognostic model established using the 
LASSO regression method had better predictive 
power. Therefore, we used the prognostic model 
established using the LASSO regression method for 
subsequent analyses. 
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Identification of risk-related genes, gene set 
enrichment analysis and immune cell 
infiltration analysis 

The “limma” R package was used to analyze the 
differentially expressed genes in the high-risk and 
low-risk groups. Then, GO functional enrichment 
analysis and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway enrichment analysis were 
performed with the risk-related genes obtained from 
the analysis of TCGA and ICGC data. Gene set 
enrichment analysis was performed using the 
“clusterProfiler” and “org.Hs.eg.db” R packages, and 
a P value<0.05 and q value<0.05 were used as 
thresholds. 

According to a previous study, gene expression 
levels in tumors are related to local immune cell 
activity and immune-related functions [13]. Therefore, 
we used the single-sample gene set enrichment 
analysis (ssGSEA) function in the “GSVA” R package 
to calculate the immune-related scores for each 
sample and the relationship between the 
immune-related scores and risk scores. We used the 
same method to calculate the relationship between 
immune cell infiltration and the expression of the 
representative gene ATIC in the model. 

Cell culture and transfection 
Huh7, HepG2 and HCCLM3 liver cancer cells 

were obtained from Shanghai Cell Bank (Shanghai, 
China). The cell lines had recently been authenticated 
and tested for mycoplasma. Huh7, HepG2 and 
HCCLM3 cells were grown in DMEM (Invitrogen, 
Carlsbad, CA). All media were supplemented with 
10% fetal bovine serum (Invitrogen). Jtsbio 
(Guangzhou, China) constructed and synthesized the 
siRNA and shRNA lentivirus vector specific for ATIC. 
The sequence of the shRNA is the same as siRNA 3: 

ATIC-siRNA 1: forward, 5'-CCUGCAAUCUCU 
AUCCCUUTT -3'; reverse, 5'-AAGGGAUAGAGAUU 
GCAGGTT -3' and; 

ATIC-siRNA 3: forward, 5'-GGUGUCGUCGAC 
AAGUCAUTT -3'; reverse, 5'-AUGACUUGUCGACG 
ACACCTT -3'. 

For ATIC overexpression, the full-length ATIC 
cDNA was amplified by PCR and cloned into the 
expression vector pcDNA3.1 (Invitrogen). The empty 
vector was used as a control. Transfection was 
performed using Lipofectamine 3000 reagent 
(Invitrogen). Forty-eight hours after transfection, cells 
were harvested for further analysis. 

RNA extraction and RT-qPCR analysis 
Total RNA was extracted from the prepared 

tissues and cells using TRIzol reagent (Invitrogen). 
Complementary DNA was synthesized using a 

PrimeScript RT kit (TaKaRa, Dalian, China). Then, 
SYBR Green Master Mix (Applied Biosystems, Foster 
City, CA, USA) was used to perform RT-qPCR with 
the ABI PRISM 7900 Sequence Detection System 
(Applied Biosystems). The data were calculated using 
the 2-ΔΔCt method, and GAPDH was used as an 
endogenous control. The primer sequences are as 
follows: 

ATIC-F: 5'- CACGCTCGAGTGACAGTG- 3'; 
ATIC-R: 5’- TCGGAGCTCTGCATCTCCG- 3’; 

GAPDH-F: 5'-GTCTCCTCTGACTTCAACA 
GCG -3'; and GAPDH-R: 5'- ACCACCCTGTTGCTG 
TAGCCAA-3'. 

Transmission electron microscopy 
Conventional electron microscopy was 

performed as described below. Cells were fixed with 
2.5% glutaraldehyde and then postfixed with 1% 
osmium tetroxide. The samples were dehydrated in a 
series of ethanol solutions and embedded in 
Embed812 resin. Ultrathin sections were cut with a 
diamond knife. Next, the sections were mounted on 
copper grids and double-stained with uranyl acetate 
and lead citrate. The number of autophagic vacuoles 
was determined for a minimum of 100 cells. 

Detection of cell viability and migration 
Cell Counting Kit 8 (CCK-8) was used to 

measure cell viability. An Infinite M200 
spectrophotometer (Tecan) was used to detect the 
absorbance of each sample at 450 nm. Transwell 
assays were conducted to assess cell migration. 
BioCoat Matrigel Invasion Chambers (BD Biosciences) 
were used to assess cell invasion. Three random areas 
were assessed to determine the cell counts in the cell 
migration and invasion experiments. An annexin 
V-FITC apoptosis detection kit (Invitrogen) was used 
for annexin V and propidium iodide staining of cells, 
and the percentage of apoptotic cells was determined 
using flow cytometry (Beckman, USA). Forty-eight 
hours after transfection, the cells were stained with 
propidium iodide and assessed using fluorescence- 
activated cell sorting (FACS) to assess the cell cycle. 
LY294002 (T2008), MK2206 (T1952) and SC79 (T2274) 
were purchased from Topscience (Shanghai, China). 

Colony formation assay 
The treated liver cancer cells were cultured in a 

6-well plate. After 14 days, the culture medium was 
discarded, and the cells were washed twice with PBS. 
Then, paraformaldehyde was used to fix the cells at 
room temperature for 20 minutes, 0.1 mM crystal 
violet was added, the cells were stained for 10 
minutes, washed twice with PBS, and the results were 
analyzed under a microscope. 
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Western blot analysis 
The anti-p-PI3K antibody (ab182651), anti-PI3K 

antibody (ab140307), anti-AKT antibody (ab8805), 
anti-p-AKT antibody (ab38449), anti-LC3 antibody 
(ab192890) and anti-GAPDH antibody (ab8245) were 
purchased from Abcam. Antibodies against caspase 3 
(19677-1-AP), caspase 7 (27155-1-AP), caspase 9 
(10380-1-AP), FOXO1 (66457-1-Ig), FOXO3 (66428-1- 
Ig), and ATIC (10726-1-AP) and secondary antibodies 
(SA00001-1 and SA00001-2) were purchased from 
Proteintech (Wuhan, China). Cell samples were lysed 
in sodium dodecyl sulfate (SDS, Beyotime, Shanghai, 
China). The protein concentration was determined 
with the Enhanced BCA Protein Assay Kit (Beyotime), 
and proteins were separated by SDS-polyacrylamide 
gel electrophoresis and transferred to a poly-
vinylidene fluoride (PVDF) membrane (Millipore, 
Bedford, MA, USA). After blocking with 5% skim 
milk for 1 hour, membranes were incubated with a 
specific primary antibody overnight at 4 °C and then 
incubated with the secondary antibody at room 
temperature for 2 hours. Protein bands were detected 
using an enhanced chemiluminescence (ECL) system 
(Pierce Biotech, Rockford, Illinois, USA). An 
anti-GAPDH antibody (1:1,000, Sigma, St. Louis, 
Missouri, USA) was used to detect GAPDH as a 
loading control. 

Xenotransplantation and lung metastasis 
models 

For these experiments, 6-week-old BALB/c nude 
mice were used. The treated liver cancer cells were 
washed and suspended, and a single-cell suspension 
of 1×107 cells/0.1 ml was inoculated into the armpits 
of nude mice. The long diameter (a) and short 
diameter (b) of subcutaneous xenograft tumors were 
measured every 5 days. The tumor volume was 
calculated using the formula V = ab 2/2. After 5 
weeks, the nude mice were sacrificed, and the tumors 
were extracted. In another experiment, differently 
treated cells in the logarithmic growth phase were 
selected, and a cell suspension was prepared and 
injected through the tail vein. The nude mice were 
sacrificed after one month, and the lung tissues were 
collected for hematoxylin-eosin (H&E) staining. 
Generally, 1-5*106 cells/200 µl were used. The animal 
studies were approved by the Animal Research 
Committee of Wuhan University. 

Statistical analysis 
All statistical analyses were performed using 

GraphPad Prism 8.0 software (GraphPad Software, 
San Diego, California, USA) and SPSS 24.0 software 
(SPSS Inc., Chicago, Illinois, USA). Each experiment 
included at least three independent experiments. The 

continuous variable data are presented as the means ± 
standard deviations (SD). Statistical analysis was 
performed using unpaired Student’s t-test to compare 
the continuous variables. To compare the categorical 
variables, χ2 test was performed to assess the 
pathological and clinical characteristics of the ATIC 
high/low groups. The differences between the 
experimental groups were assessed using Student’s 
t-test or one-way ANOVA. Survival time between 
groups was evaluated using Kaplan–Meier method or 
univariate Cox regression analysis. A two-sided P 
value was calculated, and a probability level of 0.05 
was considered statistically significant. ∗P < 0.05; 
∗∗P< 0.01; ***p < 0.001. 

Results 
Identification of differentially expressed genes 
related to autophagy and the prognosis 

To better show the experimental process, we 
establish a flow chart (Fig. 1A). We first identified 58 
genes that were abnormally expressed in tumors 
compared with normal tissues, of which 4 genes 
exhibited abnormally low expression and 54 genes 
displayed abnormally high expression (logFC>1 and 
FDR<0.05) (Fig. 1B and C). Forty-three prognosis- 
related genes were screened using a univariate Cox 
regression analysis (Fig. 1D). The intersection of the 
two gene sets resulted in 23 overlapping genes (Fig. 
1E and Table S1). 

The overlapping genes were all expressed at 
high levels in tumor tissues (Fig. 1F), and they were 
all factors contributing to an unfavorable prognosis 
(Fig. 1G). We generated a protein interaction network 
to explore the interactions and coexpression 
relationships between the overlapping genes. 
MAPK3, SQSTM1, CASP8 and HSP90AB1 were the 
core genes in the network and showed research 
potential (Fig. 1H). In the coexpression network, the 
lines between genes represent coexpression 
relationships, and red represents a positive 
correlation. IKBKE and PRKCD had the strongest 
coexpression relationship (Fig. 1I). 

The established model has satisfactory 
predictive power 

We used LASSO regression analysis and 
multivariate Cox regression analysis to construct 
prognostic models. The LASSO regression analysis 
identified 12 genes (ATG10, ATIC, BIRC5, CAPN10, 
FKBP1A, GAPDH, HDAC1, PRKCD, RHEB, SPNS1, 
SQSTM1 and TMEM74) (Fig. 2A and B). Based on 
these 12 genes, a prognostic model was constructed to 
predict patient survival. The risk score was calculated 
by multiplying the expression of each gene in the 
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model by the corresponding coefficient and then 
adding the sum. The following formula was used to 
calculate the risk score obtained from the LASSO 
regression analysis: 

Risk score = EXATG10*0.265 + EXATIC*0.216 + 

EXBIRC5*0.065 + EXCAPN10*0.034 + EXFKBP1A*0.114 + 
EXGAPDH*0.019 + EXHDAC1*0.230 + EXPRKCD*0.018 + 
EXRHEB*0.185 + EXSPNS1*0.189 + EXSQSTM1*0.094 + 
EXTMEM74*0.147 (EX, expression). 

 

 
Figure 1. Differentially expressed and prognosis-related genes. (A) Flow chart. Heat map (B) and volcano plot (C) of differentially expressed genes (DEGs). (D) 
Prognosis-related genes. (E) Venn diagram. (F) Heat map of overlapping genes. (G) Hazard ratios of overlapping genes. (H) Protein interaction network. (I) Protein coexpression 
network. Red, high expression; green, low expression. 
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Figure 2. Construction and verification of the prognostic models. (A) Cross validation plot for the penalty term in the LASSO regression analysis. (B) LASSO regression 
coefficients for different values of the penalty parameter. (C) Hazard ratios of genes in the multivariate Cox regression analysis. Survival curves for the high-risk group and the 
low-risk group of patients in TCGA (D) and ICGC cohorts (E) based on the LASSO regression model. Survival curves for TCGA (F) and ICGC cohorts (G) based on the 
multivariate Cox regression model. ROC curves of TCGA (H) and ICGC cohorts (I) categorized with the LASSO regression model. ROC curves of TCGA (J) and ICGC cohorts 
(K) categorized with the multivariate Cox regression model. Distribution of risk scores (L and N) and survival statuses (M and O) in TCGA (L and M) and ICGC cohorts (N 
and O). PCA (P) and t-SNE analysis (Q) of patients in TCGA cohort. PCA (R) and t-SNE analysis (S) of patients in the ICGC cohort. 

 
The prognostic model established based on the 

multivariate Cox regression analysis included 10 
genes. ATIC, HDAC1, HSP90AB1, MAPK3, RHEB, 
SPNS1 and SQSTM1 were independent factors 
affecting the prognosis (Fig. 2C). The following 

formula was used to calculate the risk score from this 
model: 

Risk score = EXATIC*0.535 + EXCASP8*-0.400 + 
EXFKBP1A*0.391 + EXHDAC1*0.422 + EXHSP90AB1*-0.321 + 
EXMAPK3*-0.563 + EXPRKCD*0.216 + EXRHEB*0.415 + 
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EXSPNS1*0.972 + EXSQSTM1*0.252. 
We used data from the ICGC database to verify 

the model established based on TCGA data. Patients 
in the TCGA group and the ICGC group were divided 
into a high-risk group and a low-risk group according 
to the risk score. The risk score was related to the 
patient’s disease stage and grade (Table 1). 
Furthermore, the difference in the prognosis of the 
two groups was calculated. The difference in survival 
between the high-risk group and the low-risk group 
was more obvious for the model established using the 
LASSO regression analysis than for the model 
established using the Cox regression analysis (Fig. 
2D-G). 

 

Table 1. Correlation between the risk score and 
clinicopathological characteristics of patients from TCGA and 
ICGC databases 

Characteristic TCGA cohort ICGC cohort 
High risk Low risk χ2 High risk Low risk χ2 

No. of patients 182 183  115 116  
Age   0.120   0.061 
≥65 y 67 82  81 68  
<65 y 115 101  34 48  
Sex   0.882   0.480 
Male 122 124  87 83  
Female 60 59  28 33  
Stage   0.010   0.006 
I 69 101  13 23  
II 48 36  45 60  
III 51 32  43 28  
IV 1 3  14 5  
Unknown 13 11  0 0  
T   0.004    
T1 74 106  NA NA  
T2 54 37  NA NA  
T3 45 33  NA NA  
T4 9 4  NA NA  
Unknown 0 3  NA NA  
N   0.615    
N0 128 120  NA NA  
N1 2 2  NA NA  
Unknown 52 61  NA NA  
M   0.712    
M0 134 129  NA NA  
M1 1 2  NA NA  
Unknown 47 52  NA NA  
Grade   <0.001    
Grade 1 17 38  NA NA  
Grade 2 77 98  NA NA  
Grade 3 76 42  NA NA  
Grade 4 10 2  NA NA  
Unknown 2 3  NA NA  

 
ROC risk curves were drawn, and the area under 

the curve (AUC) values were calculated to evaluate 
the predictive performance of the model. For the 
LASSO regression model, the 1-, 2-, and 3-year AUC 
values for TCGA patients were 0.768, 0.714 and 0.696, 
respectively (Fig. 2H). The ICGC group was used to 
test the efficacy of the model, and the AUC values 
were 0.745, 0.761 and 0.739, respectively (Fig. 2I). The 

AUC values of the model established based on the 
LASSO regression analysis were slightly lower than 
those of the model established based on the 
multivariate Cox regression (Fig. 2J and K). Therefore, 
the model established based on the LASSO regression 
analysis had better predictive performance, and the 
model was further verified and analyzed. In addition, 
we found that the hazard ratio calculated through the 
multivariate COX and the univariate COX regression 
analysis are opposite, such as MAPK3. We believe 
that this contradiction is due to Simpson’s Paradox, 
which was proposed by British statistician E.H. 
Simpson in 1951. It refers. Therefore, we gave up the 
model established by multivariate COX regression 
analysis, and used the model established by LASSO 
regression for the further analysis. The distribution of 
risk scores among patients in TCGA cohort was 
symmetrical (Fig. 2L). The distribution of patient 
survival statuses showed that the survival time of 
patients in the high-risk group was shorter than that 
of patients in the low-risk group (P<0.01, Fig. 2M). 
When ICGC patient data were used for verification, 
the same distribution was observed (Fig. 2N and O). 
We conducted PCA and t-SNE analysis to show the 
clustering of risk scores more clearly. In both TCGA 
and ICGC groups, patients in the high-risk and 
low-risk groups were clearly distributed in different 
clusters (Fig. 2P-S). 

The risk score is an independent prognostic 
factor and is related to immune cells and 
immune function 

We performed univariate and multivariate Cox 
regression analyses to determine whether the risk 
score was an independent prognostic indicator. In 
TCGA and ICGC groups, the disease stage and risk 
score were independent factors affecting the 
prognosis (P<0.001, Fig. 3A-D). We further performed 
an enrichment analysis of differentially expressed 
genes (logFC>1, adjusted P<0.05). The results of the 
GO analysis showed that the genes were mainly 
involved in cell cycle-related functions, including 
nuclear division and chromatic segregation (Fig. 3E 
and F). The results of the KEGG pathway enrichment 
analysis showed that autophagy-related genes were 
closely related to the cell cycle (Fig. 3G and H). In 
addition, autophagy-related genes were also related 
to immune function in the GO analysis and KEGG 
analysis. Related GO terms included humoral 
immune response, chemokine production, IL-17 
signaling pathway and cytokine activity. 
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Figure 3. Analysis of the independent prognostic value of the risk score and its association with immune cell infiltration. (A) Univariate Cox regression analysis 
of TCGA cohort. (B) Multivariate Cox regression analysis of TCGA cohort. (C) Univariate Cox regression analysis of the ICGC cohort. (D) Multivariate Cox regression analysis 
of the ICGC cohort. GO functional enrichment analysis of TCGA (E) and ICGC cohorts (F). KEGG pathway enrichment analysis of TCGA (G) and ICGC cohorts (H). (I) The 
relationship between immune cell infiltration and risk score in TCGA cohort. (J) The relationship between immune function and risk score in TCGA cohort. (K) The relationship 
between immune cell infiltration and risk score in the ICGC cohort. (L) The relationship between immune function and risk score in the ICGC cohort. (M) The relationship 
between immune cell infiltration and ATIC expression in TCGA cohort. (N) The relationship between immune function and ATIC expression in TCGA cohort. (O) The 
relationship between immune cell infiltration and ATIC expression in the ICGC cohort. (P) The relationship between immune function and ATIC expression in the ICGC cohort. 
(Q) Candidate small-molecule compounds with therapeutic potential. (R) Drugs for which high-risk patients may show high resistance. ns, not significant. 

 

The differences in immune cells and functions 
were quantified and analyzed. Significant differences 
in the degree of activation of immune cells related to 
cellular immunity, including macrophages, natural 
killer (NK) cells, T helper 1 (Th1) cells, Th2 cells and 
regulatory T (Treg) cells, were observed between the 
high-risk group and low-risk group in TCGA cohort. 
In terms of immune-related functions, CCR and the 
type II IFN response, which are also related to cellular 
immunity, were significantly differentially activated 
between the high-risk and low-risk groups. In 
addition, immune terms related to antigen 

presentation, such as APC costimulation and MHC 
class I, were also significantly differentially enriched 
between the two groups (Fig. 3I and J). In the ICGC 
cohort, the degree of activation of macrophages and 
Th2 cells was obviously different between the 
high-risk and low-risk groups, similar to the result 
from TCGA. The changes in immune function in the 
ICGC group were the same as those in TCGA data, 
and a significant enrichment of MHC class I and the 
type II IFN response was observed in both cohorts 
(Fig. 3K and L). 
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Figure 4. Verification of the differential expression of risk-related genes in tissues and cells. (A) Multivariate Cox regression analysis of genes in the LASSO 
regression model. (B) Expression of risk-related genes in liver cancer tissues and adjacent normal tissues (HPA database). (C) ATIC immunohistochemistry and quantitative 
results for patients from Zhongnan Hospital. 

 
For the key gene ATIC in the model, we divided 

patients into a high expression group and a low 
expression group according to the expression level of 
ATIC. In TCGA cohort, ATIC expression was related 
to the infiltration of CD8+ T cells, macrophages and 
mast cells (Fig. 3M). ATIC was related to immune 
checkpoints and type I and type II IFN response 
immune functions (Fig. 3N). In the ICGC cohort, ATIC 
was still associated with CD8+ T cells and NK cells, 
but not with macrophages (Fig. 3O). In the ICGC 
cohort, ATIC was related to immune checkpoints and 
the IFN response, consistent with the results obtained 
from TCGA data (Fig. 3P). 

Based on the differentially expressed genes 
between the high-risk group and the low-risk group, 
we generated a connectivity map to identify small 
molecules with therapeutic potential using the online 
tool cMAP (Table S2). Among them, meclofenamic 
acid, UNC-0321, fananserin and icariin showed great 

therapeutic potential. Doxorubicin and erlotinib are 
used to treat liver cancer. For high-risk patients, these 
two drugs may exert a better effect (Fig. 3Q and R). 

ATIC is expressed at high levels in liver cancer 
tissues 

The results of the multivariate Cox regression 
analysis showed that ATIC and HDAC1 exerted 
significant effects on the prognosis (P<0.05, hazard 
ratio>1) (Fig. 4A). The immunohistochemical staining 
results were downloaded from the Human Protein 
Atlas (www.proteinatlas.org) and used according to 
their data usage policy [14]. The expression of ATIC, 
HDAC1, RHEB, SPNS1 and TMEM74 in liver cancer 
tissues was significantly higher than that in normal 
liver tissues (Fig. 4B). Immunohistochemistry 
indicated that ATIC was expressed at high levels in 
tumor tissues but weakly expressed in adjacent 
normal tissues (Fig. 4C). 
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High ATIC expression is associated with a 
poor prognosis 

Since the hazard ratio of ATIC was greater than 
that of other genes and it had a large coefficient in the 
established model, we decided to functionally verify 
the effects of ATIC. According to follow-up and gene 
expression data from TCGA, high ATIC expression 
was closely related to a poor prognosis (P<0.001, Fig. 
5A). Compared with the normal liver cell line LO2, 
the HepG2 and Huh7 cell lines showed significantly 
higher expression of ATIC (Fig. 5B). We collected 
tumor samples and paracancerous samples from 52 
patients with liver cancer from the Biological 
Repositories, Zhongnan Hospital of Wuhan 
University and verified that ATIC was expressed at 
significantly higher levels in liver cancer tissue 
samples (P<0.001, Fig. 5C). 

 

Table 2. Correlation between ATIC expression and the 
clinicopathological characteristics of patients with liver cancer 

Characteristics ATIC P/χ2 value 
Low High 

Age (y) 62.12±10.667 59.77±8.887 0.393 
Sex   0.760 
Male 19 18  
Female 7 8  
HBV infection   0.734 
Yes 21 20  
No 5 6  
AFP   0.780 
≥400 15 14  
<400 11 12  
Tumor diameter (cm) 3.819±1.828 4.735±1.617 0.062 
TNM classification   0.061 
I 2 0  
II 13 7  
III 8 13  
IV 3 6  
PVTT   0.405 
Yes 12 15  
No 14 11  
Lymphatic invasion   0.048 
Yes 7 14  
No 19 12  

PVTT, portal vein tumor thrombosis; HBV, hepatitis B virus; AFP, 
alpha-fetoprotein. 

 
High levels of ATIC-associated aggressive liver 

cancer pathology will lead to a poor prognosis in 
terms of patient survival. We analyzed the association 
between ATIC and the clinicopathological 
characteristics of patients with liver cancer. As shown 
in Table 2, ATIC expression was associated with 
lymph node invasion (P = 0.048) and the prognosis 
(Fig. S1). However, ATIC expression was not 
associated with age (P = 0.393), sex (P = 0.760) and 
portal vein tumor thrombosis (PVTT, P = 0.405) (Table 
2). We also analyzed the relative risk of ATIC in the 
prognosis of liver cancer. The results of the Cox 
regression analysis showed that, compared with 
patients with liver cancer in the low ATIC expression 

group, high ATIC expression was closely related to a 
poor prognosis of patients with liver cancer (P=0.002). 
The multivariate Cox regression analysis further 
confirmed that ATIC expression was significantly 
correlated with the prognosis of patients with liver 
cancer (P=0.006) (Table 3). 

We used HepG2 and Huh7 cell lines for the next 
experiment. After transfection, expression levels of 
the ATIC mRNA and protein were significantly 
decreased (Fig. 5D). The western blot results were 
consistent with the PCR results, showing that ATIC 
was expressed at high levels in liver cancer tissues 
(Fig. 5E) and liver cancer cell lines (Fig. 5F). The 
siRNA reduced the level of the ATIC mRNA and 
protein (Fig. 5G). 

 

Table 3. Univariate and multivariate Cox regression analyses of 
various prognostic parameters in patients with liver cancer 

 Univariate analysis Multivariate analysis 
P HR 95% CI P HR 95% CI 

Age 0.345 1.020 0.979-1.062    
Sex (male) 0.590 0.798 0.351-1.814    
HBV 0.412 1.432 0.608-3.371    
TNM classification <0.001 7.021 3.686-13.372 0.001 4.407 1.870-10.383 
Tumor diameter 0.003 1.386 1.115-1.721    
PVTT 0.001 4.286 1.798-10.217 0.006 5.969 1.686-21.128 
Lymphatic invasion 0.068 0.501 0.238-1.052    
AFP 0.001 5.048 1.990-12.807 0.029 4.297 1.157-15.967 
ATIC 0.002 1.593 1.186-2.139 0.006 2.099 1.243-3.544 

HR, Hazard ratio; CI, confidence interval. 
 

Knockdown of ATIC promotes autophagy and 
apoptosis and inhibits malignant tumor 
behaviors in vitro 

 The negative control siRNA (siRNA NC) and 
siRNA 3 were transfected into the liver cancer cell 
lines Huh7 and HepG2, and the CCK-8 assay was 
used to detect cell proliferation. After ATIC 
knockdown, cell proliferation decreased significantly 
(P<0.05, Fig. 6A). Liver cancer cells were transfected 
with shRNA NC and the ATIC shRNA. The results of 
the colony formation experiment showed that after 2 
weeks of culture, the number of colonies formed by 
the cells with ATIC knockdown was significantly 
lower than the number of colonies formed by control 
cells (P<0.05, Fig. 6B). Transwell and wound healing 
experiments showed that ATIC knockdown reduced 
the invasion and migration of cells (Fig. 6C and D). 
Consistent with the results of the enrichment analysis, 
ATIC knockdown affected the cell cycle of tumor cells 
(Fig. 6E). Apoptosis and autophagy are closely 
related. ATIC knockdown induced cell apoptosis (Fig. 
6F). After the transfection of pcDNA/ATIC, the level 
of ATIC protein increased significantly (Fig. 6G). The 
levels of LC3 I and LC3 II reflect cell autophagy. An 
increase in the proportion of LC3 II represents an 
increase in the level of autophagy. After ATIC 



Int. J. Biol. Sci. 2021, Vol. 17 
 

 
http://www.ijbs.com 

4452 

knockdown, the levels of cleaved caspase 3 in cells 
increased, and at the same time, the proportion of the 
autophagy-related protein LC3 II increased (Fig. 6H). 
The levels of cleaved caspase 7 and 9 did not change, 

indicating that ATIC not only alters the level of 
autophagy but also affects the caspase 3-related 
apoptosis pathway. 

 

 
Figure 5. ATIC is expressed at high levels in liver cancer cells and tumor tissues and is associated with a poor prognosis. (A) Survival curve of patients with high 
and low ATIC expression (TCGA database). (B) ATIC expression in different cell lines. (C) ATIC mRNA levels in tumor tissues and adjacent normal tissues (patients treated at 
Zhongnan Hospital). (D) ATIC mRNA expression in cells transfected with the siRNA. (E) ATIC protein expression level in tumor tissues and adjacent normal tissues. (F) ATIC 
protein expression in different cell lines. (G) Protein expression level after ATIC knockdown. NC, negative control. ns, not significant. 
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Figure 6. ATIC knockdown inhibits the malignant behavior of tumor cells. (A) Cell viability detected using CCK-8 assays. (B) Representative micrographs and colony 
numbers from the colony formation assays. (C) Representative micrographs and cell numbers from the Transwell assays. (D) Wound healing assay results showing the differences 
in migratory capacities (left panel); statistical analysis of the wound healing assay results (right panel). (E) Cell cycle assays conducted using flow cytometry. (F) Apoptosis assays 
conducted using flow cytometry. (G) ATIC protein expression after transfection of pcDNA/ATIC. (H) Apoptosis and autophagy-related protein expression after transfection of 
the siRNA. FL caspase, full-length caspase; CL caspase, cleaved caspase. *, P<0.05; **, P<0.01; and ***, P<0.001. ns, not significant. 

 

ATIC knockdown inhibits tumor growth and 
metastasis in vivo, and overexpression of ATIC 
promotes the proliferation and migration of 
tumor cells 

After knocking down ATIC in Huh7 cells, 
intracellular autophagosomes (shown by the red 
arrow) were observed under a transmission electron 
microscope. The number of intracellular 
autophagosomes was significantly increased after 
siRNA treatment, consistent with the changes in LC3 
levels (Fig. 7A). In the transplanted tumor mouse 
model, the growth rate of tumor cells with ATIC 

knockdown was significantly slower than that of 
control cells, and the tumor volume was significantly 
smaller than that of the control group (Fig. 7B). The 
lung metastasis ability of tumor cells was significantly 
reduced after ATIC knockdown (Fig. 7C). The 
immunohistochemistry results showed lower 
expression of the ATIC and Ki67 proteins in tumors 
treated with the shRNA than in control tumors (Fig. 
7D). After the transfection of pcDNA/ATIC, the 
proliferation and migration of tumor cells were 
significantly increased (Fig. 7E-G). 
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Figure 7. ATIC inhibits autophagy and affects the malignant behavior of tumors in vivo and in vitro. (A) Autophagosomes observed using electron microscopy. (B) 
Statistical analysis of tumor volumes in the two groups. (C) Representative images of lung metastases observed in the two groups of nude mice. (D) H&E staining of xenograft 
tumors. (E and F) ATIC overexpression promoted tumor proliferation. (G) ATIC overexpression promoted tumor migration, as assessed using wound healing assays. *, P<0.05; 
**, P<0.01; and ***, P<0.001. 
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ATIC inhibits autophagy through the 
AKT/FOXO3 pathway 

KEGG (www.genome.jp/kegg/) pathway 
analysis showed that ATIC was associated with 
metabolic pathways, the cell cycle and the FOXO 
signaling pathway (Table S3). The literature suggests 
a close association between the FOXO pathway and 
autophagy [15, 16]; therefore, we tested the FOXO 
pathway after knocking down ATIC. FOXO3 induces 
autophagy by upregulating multiple autophagy- 
related genes [17]. However, the phosphorylation of 
FOXO3 results in its export from the nucleus and 
subsequent degradation. Therefore, phosphorylation 
of FOXO3 suppresses autophagy [18]. After knocking 
down ATIC, FOXO3 phosphorylation decreased, 
while the phosphorylation of FOXO1 and FOXO4 was 
not affected by ATIC knockdown. Because FOXO3 is 
regulated by SIRT1 or PI3K/AKT under certain 
conditions [19-21], we examined SIRT1 and 
PI3K/AKT activity. The FOXO3 phosphorylation 
observed in this study was mediated by activation of 
the PI3K/AKT pathway rather than SIRT1 (Fig. 8A). 
Overexpression of ATIC resulted in PI3K-induced 
AKT activation and FOXO3 hyperphosphorylation 
(Fig. 8B). The PI3K/AKT pathway inhibitors 
LY294002 and MK2206 were used for rescue 
experiments. LY294002 (50 uM) and MK2206 (2 uM) 
reversed the increase in cell proliferation and 
migration caused by ATIC overexpression (Fig. 8 
C-E). When cells were simultaneously treated with 
the siRNA and SC79, the number of autophagosomes 
observed under the transmission electron microscope 
was significantly reduced compared with siRNA- 
treated cells (Fig. 8F). Apoptosis induced by ATIC 
knockdown was also reversed by SC79 (Fig. 8G). After 
adding LY294002 or MK2206, the increase in p-AKT 
and p-FOXO3 levels caused by pcDNA/ATIC 
treatment was reversed. Similarly, the use of these 
inhibitors reversed the changes in LC3 protein levels 
caused by ATIC overexpression (Fig. 8H). 

Discussion 
Given the heterogeneous nature of HCC, a 

satisfactory risk assessment and clinical management 
of patients with liver cancer are difficult [22, 23]. 
Therefore, we want to establish a prognostic model to 
evaluate the risk and survival of patients and to 
provide guidance for clinical treatment. 

Autophagy is regulated by autophagy-related 
genes, and the abnormal expression of autophagy- 
related genes affects the occurrence and development 
of tumors by modulating autophagy [24]. Due to the 
relationship between autophagy-related gene 
expression and tumor progression, establishing a liver 

cancer prognostic model based on autophagy-related 
genes is reasonable. The prognostic model 
constructed in this study can predict whether a 
patient is at high risk of a poor prognosis and the 
long-term survival rate of the patient. Based on the 
results of GO and KEGG analyses, autophagy-related 
genes were closely related to mitosis and the cell 
cycle. Consistent with this finding, ATIC is known to 
affect the cell cycle and promote cell proliferation. 

Autophagy-related genes inhibit tumor growth 
by affecting immune cell infiltration, but few studies 
have assessed the relationship between autophagy 
and immune cell infiltration [25]. Results of the 
immune cell infiltration analysis suggest that the 
autophagy-related genes in the model are related to 
the tumor immune microenvironment, the activity of 
immune cells, and immune function, but the 
mechanisms underlying these relationships have not 
yet been completely elucidated. HDAC1 has been 
reported to affect antigen presentation and immune 
activation. Therefore, the relationship between 
autophagy-related genes such as ATIC, PRKCD and 
SPNS1 and immune function deserves further study 
[26]. We grouped patients according to the expression 
of ATIC and analyzed the difference in immune cell 
infiltration between the two groups. CD8+ T cells, 
macrophages, immune checkpoints and IFN immune 
responses were different between the two groups. The 
main immune cell related to immunotherapy is CD8+ 
T cells [27, 28]; thus, we speculate that ATIC is related 
to the tumor immune microenvironment and 
immunotherapy. Autophagy modulates immunity 
through many mechanisms, including abnormal 
autophagy interfering with the survival and activity 
of T cells or autophagy activation promoting and 
inhibiting the secretion of cytokines [29, 30]. These 
findings suggest that the induction or suppression of 
autophagy combined with immunotherapy may be a 
prospective treatment strategy [31]. 

We screened small-molecule drugs with 
therapeutic potential based on changes in the gene 
expression levels observed in patients in the high-risk 
group, but in vivo and in vitro experimental 
verification was not performed. Changes in the gene 
expression profile of cells treated with these 
small-molecule drugs were exactly the opposite of the 
gene expression profile of patients in the high-risk 
group. Thus, these small-molecule drugs exert a 
potential therapeutic effect on liver cancer. Among 
them, doxorubicin has been widely used as a clinical 
treatment for liver cancer [32]. Icariin was reported to 
inhibit tumor cell proliferation, but it has not been 
studied in liver cancer [33, 34]. We will conduct 
research on the treatment effects and resistance of the 
other molecules in the future. 
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Figure 8. ATIC inhibits autophagy through the AKT/FOXO3 pathway. (A) Western blot analysis of the AKT/FOXO3 pathway after ATIC knockdown. (B) Western 
blot analysis of the AKT/FOXO3 pathway after ATIC overexpression. (C) Cell viability assays after exposure to different treatments. (D) Colony formation assays with the 
indicated cells. (E) Transwell results. (F) Electron microscopy images of cells treated with siRNA 3 and SC79. (G) Apoptosis assay conducted using flow cytometry. (H) Western 
blot analysis of the AKT/FOXO3 pathway and LC3 levels in different treated cells. ns, not significant. 
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ATIC is related to tumor cell proliferation, 
rheumatoid arthritis and the efficacy of radiotherapy 
[35, 36]. No previous report has documented the 
correlations between ATIC and autophagy and the 
tumor immune microenvironment. In this study, we 
proved through in vivo and in vitro experiments that 
ATIC promotes the progression of liver cancer 
through the AKT/FOXO3 pathway. Our model is 
related to patient prognosis and immune cell 
infiltration, and it has been verified using external 
databases, which further proves the reliable 
prognostic ability of our model. Previous studies have 
shown that autophagy is related to immune cell 
infiltration and tumor immune tolerance [37, 38]. We 
found that ATIC, an autophagy-related gene, is 
related to immune cell infiltration by performing a 
bioinformatics analysis, but the specific mechanism 
remains unclear. We selected ATIC for verification in 
this study, but in subsequent studies, we will also 
verify the relationship between several other genes 
and the immune microenvironment and conduct 
in-depth research on the mechanism by which ATIC 
alters immune responses. 

In the analysis of the correlation between ATIC 
expression and the clinicopathological characteristics 
of patients with liver cancer, we found that ATIC 
expression is related to lymph node invasion and 
patient prognosis. The TNM stage of the high ATIC 
expression group was higher, but the difference was 
not significant. We propose that this result may be 
attributed to our small sample size, and we will 
include more patients in future studies. 

The prognostic model we established can 
effectively predict the prognostic risk of patients and 
provide guidance for clinical decision-making. For 
example, after a patient has undergone liver cancer 
resection, are adjuvant treatments such as 
transcatheter arterial chemoembolization (TACE) 
necessary [39]? If the patient is a high-risk patient 
based on the model score, other adjuvant treatments 
are also recommended, even if the tumor is a 
well-differentiated liver cancer. 

At the same time, we screened many genes with 
research value by performing a bioinformatics 
analysis. For example, HDAC1 is closely related to the 
prognosis of patients with liver cancer according to 
the results of the multivariate Cox regression analysis, 
but a report describing the mechanism by which it 
promotes tumor occurrence and tumor development 
has not been published. Therefore, we hope that the 
results of our analysis provide ideas for future 
research on the role of autophagy in tumors. 

The constructed prognostic model is potentially 
useful to predict the survival rate of patients, and the 
predictive performance has been verified in an 

external ICGC dataset to support its validity. We 
verified that the key gene ATIC affects tumor 
progression by modulating autophagy in vitro and in 
vivo, and the effect of ATIC on autophagy in liver 
cancer has been clarified here for the first time. 
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