1	Supplementary material		
2	Egr1 confers protection against drug-induced hepatotoxicity via transcriptional		
3	upregulating of Acaa2		
4	Xiaohong Lei, Qingling Xu, Chunmin Li, Baolin Niu, Yanan Ming, Jing Li, Yingyue		
5	Tang, Xiaoyun Li, Jieting Tang, Jing Wu, Yi Ju, Lvfeng Yao, Bin Wang, Qi Miao, Wei		
6	Zhong, Yang zhi, Lirong Xu, Chaojun Li, Xiaobo Li, Yimin Mao		
7			
8	Correspondence		
9	Address correspondence to:		
10	Yimin Mao, M.D		
11	Division of Gastroenterology and Hepatology; Shanghai Institute of Digestive Disease;		
12	NHC Key Laboratory of Digestive Diseases; Renji Hospital, School of Medicine,		
13	Shanghai Jiao Tong University, Shanghai 200001, China. Email:		
14	<u>maoym11968@163.com</u> .		
15	Xiaobo Li, Ph.D		
16	Department of Physiology and Pathophysiology, School of Basic Medical Sciences,		
17	Fudan University, 130 Dong'an Rd, Shanghai, 200032, China. Email:		
18	xbli@fudan.edu.cn.		
19	Chaojun Li, Ph.D		
20	State Key Laboratory of Reproductive Medicine, Centre for Global Health, School of		
21	Public Health, Nanjing Medical University, Nanjing, 211100, China Email:		
22	lichaojun@njmu.edu.cn.		

24 Supplementary Tables and Figures

25

26 **Table S1**

27 Characteristics and Clinical data of the DILI patients for IHC

	DILI	
Sex		
Male	10	
Female	14	
Age	53.13±10.13	
Implicated drugs in causing DILI		
TCM/HDS	17	
NSAID	6	
Ibuprofen	1	
Diclofenac	1	
APAP	3	
Details unknown	1	
Cold medication (details unknown)	1	
Latency (day)	36.67±27.93	
Liver biochemistry at onset of DILI		
ALT (U/L)	1445.73±2686.27	
AST (U/L)	637.22±598.63	
ALP (U/L)	148.63 ± 80.98	
TBIL (µmol/L)	115.5±107.26	

HDS, herbal and dietary supplements; TCM, traditional Chinese medicines; Age,

29 latency and liver biochemistry are shown as mean \pm SEM

30

31 Table S2

32 Characteristics and Clinical data of the DILI patients for ELISA

	DILI	
Sex		
Male	9	
Female	12	
Age	54±16.02	
Implicated drugs in causing DILI		
TCM/HDS	13	
Antituberculosis drugs	2	
Antitumor drug	3	
Fluose fine hydrochloride	1	
Cefaclor	1	
Cyclosporine	1	
Latency (day)	44.29±33.43	
Liver biochemistry at onset of DILI		
ALT (U/L)	728.77±525.38	

	$JJ4.02\pm J21.40$	
ALP (U/L)	198.38±166.53	
TBIL (µmol/L)	20.63±13.10	

- 33 HDS, herbal and dietary supplements; TCM, traditional Chinese medicines; Age,
- 34 latency and liver biochemistry are shown as mean \pm SEM

- **Table S3**
- **Primer sets used for qPCR**

Speci	Gene	Forward (Sequence 5'-3')	Reverse (Sequence 5'-3')
es			
mouse	36b4	GGGCATCACCACGAAAA TCTC	CTGCCGTTGTCAAACACCT
mouse	Gapdh	TGAAGGTCGGTGTGAACG	CGTGAGTGGAGTCATACTG
		G	GAA
mouse	Egrl	GTCCTTTTCTGACATCGC TCTGA	CGAGTCGTTTGGCTGGGATA
mouse	Acaa2	AAGAAAGGCAAACAGAC CA	AGAACTGAGGGGGCAAAAGC
mouse	ND-1	CCGGCCCATTCGCGTTAT TCTTTA	AAGCGTGGATAGGATGCTC GGATT
mouse	Egrl	CCAACAGCCCTTTCACTT	TTATGCCAACTTGATGGTCT
	exon2	А	А

b Relative *Egr1* mRNA levels in liver tissue of *Egr1*^{fl/fl} and *Egr1*^{LKO} AILI mice (n=4 44 mice/group, t test). Immunohistochemical staining images of Egr1 in the liver tissue of

45 AILI $Egr I^{\text{fl/fl}}$ and $Egr I^{\text{LKO}}$ mice (scale bar = 100 µm). Red arrows represent positive 46 staining.

- 47 **c**–**e** $Egr1^{\text{fl/fl}}$ and $Egr1^{\text{LKO}}$ mice were treated with 300 mg/kg APAP. After 12 h, liver and 48 serum samples were collected.
- 49 **c** Serum ALT, AST, and LDH levels in $Egr1^{fl/fl}$ and $Egr1^{LKO}$ mice after challenge with

50 APAP for 12 h (n = 4 mice/group,
$$t$$
 test).

- 51 **d** Liver sample obtained from AILI $Egrl^{fl/fl}$ and $Egrl^{LKO}$ mice were stained with H&E,
- followed by quantified the area of hepatocyte necrosis (scale bars = $500 \mu m$, *t* test).
- 53 e Liver sample obtained from $Egrl^{fl/fl}$ and $Egrl^{LKO}$ AILI mice were stained with
- 54 TUNEL, followed by quantified the numbers of TUNEL positive cells (scale bars = 500 55 μ m, *t* test).
- 56 f Western blot analysis of CYP2E1 levels in the liver tissues of Ad-Egr1 or Ad-GFP
- 57 pretreated AILI $Egr1^{\text{fl/fl}}$ and $Egr1^{\text{LKO}}$ mice, followed by quantified the protein levels
- 58 (n=3 mice/group, one-way ANOVA).
- 59 $\mathbf{g}-\mathbf{h} Egr I^{\text{fl/fl}}$ and $Egr I^{\text{LKO}}$ mice were treated with 300 mg/kg APAP. After 24 h, liver and
- 60 serum samples were collected.
- 61 g Serum ALT, AST, and LDH levels in $Egr I^{fl/fl}$ and $Egr I^{LKO}$ mice after challenge with
- 62 APAP for 24 h (n = 6 mice/*Egr1*^{fl/fl} group, n=4 mice/*Egr1*^{LKO} group, *t* test).
- 63 **h** Liver sample obtained from AILI $Egrl^{fl/fl}$ and $Egrl^{LKO}$ mice were stained with H&E,
- followed by quantified the area of hepatocyte necrosis (scale bars = $250 \mu m$, *t* test).
- 65 i-j C57BL/6J mice were injected with adenovirus encoding *Egr1* (Ad-Egr1) or control
- 66 (Ad-GFP) via tail vein prior to 300 mg/kg APAP administration. After 24 h, liver and

- 67 serum samples were collected.
- i Serum ALT, AST, and LDH levels of Ad-Egr1 and Ad-GFP mice after challenge with
- 69 APAP for 24 h (n = 6 mice/ group, t test).
- j Liver sample obtained from Ad-Egr1 and Ad-GFP mice were stained with H&E,
- followed by quantified the area of hepatocyte necrosis (scale bars = $250 \mu m$, *t* test).
- 72

- for 6h, APAP for 6 h, or APAP for 12 h.
- 80 **c** Heatmaps of the whole metabolomic profile of $Egr l^{\text{fl/fl}}$ AILI mice and $Egr l^{\text{LKO}}$ AILI
- 81 mice, and of Ad-Egr1 or Ad-GFP pretreated AILI $Egr1^{LKO}$ mice.
- d Genome-browser screenshots of Acadm, Abcd3, Hibch, Abcd2, Hadha, and Hadh
- 83 occupancy at *Egr1* gene loci.
- 84

76

77

78

86 Fig. S3

85

AML12 cells were treated with Ad-Egr1 and Ad-CON for 48 h and then challenged with 10 mM APAP for 6 h, followed by palmitate-BSA treated for 1 h. Palmitate oxidation stress OCRs were measured using Seahorse XF96 analyzer (n = 4/group). BSA was used as a control for PA-BSA.

93 Fig. S4

a Western blot analysis of CYP2E1 levels in Hepa1-6 cells, the numbers above
represent the quantified of the protein levels.

b Acaa2 was knocked down in Hepa1-6 cells at 24 h, then overexpressed Egr1 for 48 h
and followed by 10 mM APAP treatment for 3 h, finally PA-BSA or BSA treated for 1
h. Palmitate oxidation stress OCRs were measured using Seahorse XF96 analyzer.
Basal respiration was calculated according to instruction (n = 5–6/group, one-way
ANOVA). BSA was used as a control for PA-BSA.

- 103 **Fig. S5**
- 104 **a** Representative images of histological features (scale bar = $40 \mu m$) and corresponding
- 105 EGR1 staining patterns (scale bar = $100 \mu m$) in DILI patients. Red arrows indicated
- 106 positive staining.
- 107 **b** Distribution of interface hepatitis and corresponding EGR1 H-scores in patients with
- 108 DILI (*t* test).
- 109 c Distribution of cholestasis and corresponding EGR1 H-scores in patients with DILI
- 110 (*t* test).
- 111