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Figure 9. Contrast of immunotherapy responses between the high ferroptosis score groups and low ferroptosis score groups. (A) Kaplan-Meier survival 
curves showed the survival differences between the high ferroptosis score cluster and the low ferroptosis score cluster in SKCM after immunotherapy. (B) Survival status of 
patients in cohorts with different ferroptosis scores after immunotherapy. Alive status is represented by blue, and dead status is represented by red. (C) Time-dependent ROC 
curves of the 1-, 2-, and 3-year models of patients with SKCM under immunotherapy. (D) Nomogram of patients survival rate prediction. (E-G) Calibration curves of the 
nomogram. (H-I) The scatter diagram shows that the ferroptosis score was associated with the ESTIMATE stromal and immune cell scores. (J) Box plots of HLA gene expression 
grouped by ferroptosis score. (K) Heat map of the correlation between ferroptosis score, immunological characteristic and immune infiltration cell. (L-N) The violin diagram 
indicates the z-score of CD8+ T cells, T helper cells and tumor-infiltrating lymphocytes (TILs) depicted by high and low ferroptosis scores. 
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Figure 10. Immunogenic features of different ferroptosis score groups in the immunotherapy cohort. (A) Box plots of distinct TME immune cells grouped by 
ferroptosis score. The immune cell composition was quantified using CIBERSORT. (B) Association between ferroptosis score and 4 immune checkpoints. (C-F) The box plots 
indicate that there was a difference in PD-L2, TIM-3, and CD86 expression levels between clusters with high and low ferroptosis scores. (G-H) GSEA-enrichment plot of the 5 
most enriched immune pathways and 5 most enriched cancer hallmark pathways. 

 
Drugs targeting ferroptosis to treat cancer are 

gradually being discovered. Erastin and RSL3 are 
compounds that were originally found by phenotypic 
screening, and they have selective lethal effects on 
genetically engineered tumor cells. RSL3 is a GPX4 
inhibitor. Inhibition of HSF1-HSPB1 pathway activity 
can promote erastin induction of ferroptosis in human 
cervical cancer cells, osteosarcoma cells and prostate 
cancer cells [43]. Diffuse large B-cell lymphoma and 
renal cell carcinoma have also been found to be 
effectively targeted by ferroptosis inducers [59]. 
Sorafenib can induce ferroptosis and inhibit the 
growth of liver cancer cells [47]. Through the 
prediction of ferroptosis drugs and the correlation 
analysis between compound activity and RNA 
expression, we constructed a model of the interaction 
between GPX4 and cyclophosphamide. The functional 
enrichment analysis of the targets on which 
cyclophosphamide acts confirmed that the pathways 

related to these targets are processes that are affected 
by chemical substances. 

Next, we focused on exploring the molecular 
mechanism of ferroptosis regulators, as well as their 
relationship with tumor immunity. Elastin treatment 
of GPX4-knockout cancer cells is strongly associated 
with immune pathways such as the IL-1 and IL-2 
pathways. The importance of GPX4 in immune cells 
has been studied. Antigen-specific CD8+ and CD4+ T 
cells lacking GPX4 cannot spread. Knockout of GPX4 
in myeloid cells can increase intestinal epithelial cell 
gene mutations through the accumulation of ROS and 
thus stimulate intestinal tumors and invasion [60, 61]. 
GPX4 inhibitors, including RSL3 and DPI10, can 
directly inhibit the accumulation of ROS and lead to 
ferroptosis [15], but there has been no basic research 
on the relationship between GPX4-knockout tumor 
cells and immune cells. Wang et al. found that after 
treating mouse tumor models with PD-L1 inhibitors, 
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the tumor volume was significantly reduced and ROS 
levels considerably increased [62]. After the addition 
of the ferroptosis inhibitor lipoxstatin-1, the effect of 
these PD-L1 inhibitors was diminished, indicating 
that ferroptosis plays an important role in 
immunotherapy. Researchers believe that the main 
mechanism underlying this effect is that IFNγ 
released by CD8+ T cells downregulates the 
expression of SLC3A2 and SLC7A1 in tumor cells and 
inhibits the uptake of cystine by tumor cells. Our 
correlation results show that SCL3A2 expression is 
negatively correlated with the infiltration score of 
CD8+ T cells in tumor tissues, which provides some 
evidence for this hypothesis. The high correlation of 
HMOX1 with CD86 and PDCD1 LG2 also suggests 
that interactions between tumor cell ferroptosis and 
immune cells need to be studied in more detail. In 
addition to the promotion of ferroptosis by CD8+ T 
cell release factors, CD8+ itself can take up fatty acids 
through CD36, so that CD36 loses its anti-tumor 
effector function, and it also induces CD8+ to move 
toward ferroptosis and reduce intracellular cytokine 
production, which we thought can be a new target 
and explore more [63]. HMOX1, or heme oxygenase 
(HO)-1, is a critical mediator of ferroptosis that can 
respond to electrophilic stimulation and is known for 
its anti-inflammatory effects [64]. Previous studies 
have shown that HMOX1 is elevated in various 
malignant tumors, can prevent drugs from 
attenuating the increase in ROS, and can also promote 
tumor cell proliferation and metastasis [65]. However, 
it plays different roles in diverse cancers due to drug 
resistance, the effects of the cancer itself or other 
mechanisms [66-70]. Combined with the 
abovementioned clear correlation between HMOX1 
protein interactions and immune scores, we believe 
that before verifying HMOX1 as a target for cancer 
treatment, it is necessary to explore the role of 
HMOX1 in the tumor immune microenvironment and 
ferroptosis. 

We suspect that ferroptosis regulators may be 
independent prognostic factors in cancer. Considering 
previous studies, we can see that ferroptosis has been 
studied in hepatocellular carcinoma, breast cancer, 
lung cancer, pancreatic cancer, gastric cancer, cervical 
cancer and other tumors exhibiting ferroptosis 
suppression [71]. In our previous study, we found 
that a prognostic model consisting of four genes 
(ABCB6, FLVCR1, SLC48A1 and SLC7A11) can 
effectively and independently predict the prognosis of 
patients with hepatocellular carcinoma [72]. To 
determine the current expansive role of ferroptosis 
regulators in cancer, we calculated the ferroptosis 
score based on the expression of the 30 regulators in 
each sample set. Previous prediction model 

constructions were performed with single-factor Cox 
regression analysis to identify prognosis-related 
genes [73, 74]; however, we first calculated the 
ferroptosis score and then screened related cancers. 
The results of the survival analysis showed that the 
ferroptosis score, as an independent prognostic factor, 
had high HR values in KRIP, LAML, SKCM, THCA, 
THYM, UCS and UVM. The K-M curve analysis and 
ROC verification of the prediction of THCA 
confirmed that the ferroptosis score is a satisfactory 
independent prognostic factor for THCA. Except for 
THYM (which is in the low ferroptosis group and the 
only sample available), the K-M curve and PFS 
analysis with ferroptosis considered a risk factor 
showed the feasibility of using the ferroptosis score 
for predicting the prognosis of the five other cancers. 
Similarly, the difference in the expression of 
ferroptosis regulators in TNM staging also suggests 
that it is related to tumor metastasis and progression. 
For cancers with high ferroptosis scores and poor 
prognosis, such as those similar to THCA, that is the 
clinical theoretical basis of basic research which needs 
more discoveries. 

Since ferroptosis regulators are significantly 
related to the immune cell infiltration score, 
ferroptosis regulators may be related to the patients’ 
immunotherapy response. Cancer immunotherapy 
functions a different mechanism than traditional 
radiotherapy, chemotherapy or targeted therapy, 
bringing new hope to cancer patients [75]. However, 
due to the different immunogenicity of each type of 
tumor and the complex immunosuppressive 
mechanism in the TME, tumor immunotherapy is 
based on significant cancer and individual 
differences. Considering the characteristics of 
melanoma, such as extensive T cell tumor infiltration 
and high TMB, immunotherapy is expected to be both 
highly practical and effective [76]. The anti-CTLA-4 
antibody ipilimumab and PD-1 inhibitors nivolumab 
and pembrolizumab for targeting immune 
checkpoints have been approved for the treatment of 
locally advanced or metastatic melanoma [77]. 

In 2019, Lang et al. proved that the combination 
of radiotherapy and immunotherapy can induce 
ferroptosis, indicating that ferroptosis is at the 
intersection of radiotherapy and immunotherapy and 
is thus of great significance for tumor treatment [78]. 
However, the impact of ferroptosis regulators on 
immunotherapy is not yet clear; thus, we focused on 
the relationship between the ferroptosis score and 
immunotherapy efficacy and its possible causes. 
Surprisingly, in the SKCM_DFCI_2015 cohort, the 
survival rate of the group with high ferroptosis scores 
compared with the group with low ferroptosis scores 
was nearly 32% lower after immunotherapy, and 
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there was a significant difference in the survival 
analysis results, which were based on the K-M curve. 
Nomogram is often used to predict the prognosis of 
cancer patients, and it is a visual prediction tool that 
contains multiple variables [79]. Therefore, we also 
visualized the survival of immunotherapy cohort 
with different ferroptosis scores in turn, and the 
predicted results were consistent with the real 
situation. We used the prognostic indicators of 
immunotherapy, TMB [49] and MSI [80] to conduct 
correlation analysis with ferroptosis regulators and 
made some interesting findings. Most ferroptosis 
regulators in the 33 types of cancer we analyzed were 
associated with MSI, TMB and immune checkpoint 
expression, especially in BRCA, DLBC, GBM, LGG, 
OV, PAAD, PCPG, PRAD, SARC, SKCM and UVM. 
The results of our analysis showed that patients with 
high ferroptosis scores in the immunotherapy cohort 
had poor survival status; thus, high ferroptosis scores 
were a risk factor in this immunotherapy cohort. This 
finding supported previously obtained results. After 
analyzing the clinical characteristics of the two groups 
of patients, we found that those with high ferroptosis 
scores had higher immune cell infiltration scores, 
particularly related to CD8+ T cells, T helper cells and 
TILs. Simultaneously, a correlation between the 
ferroptosis score and four types of immune 
checkpoints, TIM-3, CD40, CD86 and PDL-2, was also 
observed, and these checkpoints all exhibited higher 
expression in people with high ferroptosis scores. In 
the immune GSVA analysis, genes related to immune 
pathways were almost all enriched when the 
ferroptosis score was high. Wang's group further 
analyzed patients with melanoma and concluded that 
their prognosis was negatively correlated with the 
expression of SLC3A2 and positively correlated with 
the expression of IFNγ and CD8 [62]. T cell-mediated 
promotion of tumor ferroptosis is not only a novel 
mechanism for tumor immunotherapy but also a 
promising and powerful strategy for antitumor 
therapy when ferroptosis promotion treatment is 
combined with a checkpoint blockade. For the cancer 
types reported in this study, researchers should focus 
on the interaction between ferroptosis, inflammation 
and immunity in the TME. In addition, in the design 
of therapeutic compounds, scientists should also 
consider the interaction between ferroptosis and the 
TME. 

Our research has some limitations. Pan-cancer 
analysis was used to evaluate the roles of ferroptosis 
regulators in many respects, but it is difficult to 
explain the mechanism of each cancer type with 
precision. We intend to examine the regulation of 
ferroptosis regulators in various cancer types, the 
characteristics of the immune microenvironment, and 

their relationship with prognosis and immuno-
therapy. In addition, all the data in our study were 
obtained from the TCGA and GEO databases, but 
some cancer types cannot be analyzed completely 
because of insufficient data (including THCA cohort 
which didn’t receive immunotherapy) or the lack of 
adjacent tissue controls. What’s more, it needs more 
datasets to verify the correspondence between 
ferroptosis score and ferroptosis status in cancer cells. 
For the online webserver construction of the 
nomogram, it needs more information about 
variables, and the selection of other treatments is 
ignored in the process of building prognostic 
nomogram. Due to space limitations, we cannot 
discuss each regulator in detail, and more information 
is needed and can be obtained through drug 
combination analysis. 

Conclusion 
We systematically sorted and identified 30 

ferroptosis regulators, comprehensively analyzed the 
differences in the posttranscriptional protein levels of 
ferroptosis regulators in different cancers, established 
a protein-protein expression network, and showed 
that ferroptosis regulators are significantly associated 
with cancer hallmark pathways, tumor immunity 
mechanisms, and tumor immune microenvironment 
components. Additionally, the ferroptosis score was 
calculated based on ferroptosis regulators by GSVA. 
The results indicated that the ferroptosis score is an 
independent prognostic marker for incidence and 
recurrence with superior predictive performance, and 
patients with higher ferroptosis scores may have a 
lower survival rate. Moreover, we linked ferroptosis 
with immunotherapy, proving that the ferroptosis 
score can be a potential biomarker of the immune 
response in the tumor microenvironment and the 
therapeutic response to immunotherapy. 
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