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Abstract 

In type 2 diabetes mellitus (T2DM) and its related disorders like obesity, the abnormal protein 
processing, oxidative stress and proinflammatory cytokines will drive the activation of inflammatory 
pathways, leading to low-grade chronic inflammation and insulin resistance (IR) in the periphery and 
impaired neuronal insulin signaling in the brain. Studies have shown that such inflammation and impaired 
insulin signaling contribute to the development of Alzheimer’s disease (AD). Therefore, new therapeutic 
strategies are needed for the treatment of T2DM and T2DM-linked AD. Melatonin is primarily known for 
its circadian role which conveys message of darkness and induces night-state physiological functions. 
Besides rhythm-related effects, melatonin has anti-inflammatory and antioxidant properties. Melatonin 
levels are downregulated in metabolic disorders with IR, and activation of melatonin signaling delays 
disease progression. The aim of this Review is to highlight the therapeutic potentials of melatonin in 
preventing the acceleration of AD in T2DM individuals through its therapeutic mechanisms, including 
antioxidative effects, anti-inflammatory effects, restoring mitochondrial function and insulin sensitivity. 

Key words: Melatonin; Type 2 diabetes; Alzheimer’s disease; Mitochondria; Anti-inflammatory; Insulin resistance 

Introduction 
Metabolic disorders, including type 2 diabetes 

mellitus (T2DM) and obesity-related insulin 
resistance (IR) accelerate not only cerebrovascular 
disease and stroke, but also neurodegenerative 
diseases, especially the development of Alzheimer’s 
disease (AD) [1, 2]. It is generally accepted that brain 
IR leads to failure of response to insulin, eventually 
causing impairments in metabolic and immune 
functions. Globally, the epidemics of T2DM and AD 
are increasing, which bring huge costs in economic 

burden and human life suffering. Hence, it is 
necessary to develop preventive or disease-modifying 
agents based on pathological studies of these diseases. 
The link between T2DM and AD was shown in 
Figure 1. 

Exogenous melatonin has been investigated as a 
therapeutic agent for many diseases. Notably, the 
metabolic effects of melatonin in T2DM and obesity 
have been of interest [3, 4]. Also, decreased melatonin 
production and secretion were shown to be related to 
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neurological diseases like schizophrenia, stroke, and 
AD [5, 6]. Besides the various physiological roles of 
melatonin in endocrine and neurological disorders, 
numerous actions of melatonin have been proven safe 
in animal models and human beings at a wide-range 
dosage window. In this review, the therapeutic 
efficacy of melatonin in reversing IR on T2DM and 
AD will be discussed. Moreover, whether melatonin 
will be beneficial in halting AD progression in T2DM 
individuals will be summarized. We hope this review 
will highlight the therapeutic potentials of melatonin 
for the treatment of T2DM and AD. 

T2DM is one of the risk factors for AD onset. The 
underlying mechanism is suggested to be the 
dysfunction of insulin signaling [7]. Insulin resistance 
was also observed in AD patients that did not have 
T2DM [8]. The insulin receptor is responsible in 
enhancing glucose uptake, mitochondrial function 
and replacement, anti-apoptosis, and autophagy via 
MAPK, AKT signaling pathways, and Nrf2 activation 
against oxidative stress [9-11]. Therefore, Insulin is 
not only a hormone for glucose homeostasis, but also 
a key regulator in neuronal generation, repair, and 
functions [12]. 

Association between pathogenesis of 
T2DM and AD 

High levels of blood glucose elevate the risk of 
dementia in both diabetic and nondiabetic individuals 
by rates of 40% and 10%, respectively [13]. Obesity, a 
T2DM-related disease, has also been shown to 
increase the risk of AD and dementia in the elderly 
population [14] In the following section, the 
pathological links between T2DM and AD, especially 
the mechanisms of the development of T2DM to AD 
including inflammation and defective insulin 
signaling, will be summarized. 

Inflammation 
Chronic inflammation is thought to participate 

in the pathogenesis of T2DM. In metabolic disorder 
like T2DM, the adipose-resident macrophages are 
polarized towards a pro-inflammatory (M1-polarized) 
phenotype, increasing the expression of inflammatory 
mediators, including interleukin-6 (IL-6), tumor 
necrosis factor-α (TNF-α), and IL-1β. These 
proinflammatory cytokines can cross the blood brain 
barrier, causing brain insulin resistance [15]. Notably, 
inflammation also underlines hypothalamic 
dysfunction in obesity [16]. It was found that insulin 
receptor substrate 1 (IRS-1) inhibition by amyloid β 
(Aβ) oligomers, a pathological hallmark of AD, via 
TNF-α/JNK activation showed impaired brain insulin 
signaling in AD and promoted proinflammatory 
signaling [17]. The IkB kinase (IKK), a stress kinase, 
was found to be activated by TNF-α in peripheral 
metabolic tissues and AD brains [18]. Recently, a 
multiplexed immunoassay revealed neuroinflamma-
tory changes along with diabetic symptoms using 
different models, including APPswe/PS1dE9 
(APP/PS1) mice with high-fat diet (HFD), APP/PS1 
with db/db mice, and APP/PS1 with STZ, which 
found that the levels of both chemokines like MIP-1α, 
MIP-1β, and MCP-1, and proinflammatory cytokines 
like Il-1α, Il-3, and IFN-γ were upregulated in these 
AD pathology-associated T2DM models [19]. The 
broad range of cytokines promoted neuronal injury, 
BBB breakdown, and brain insulin resistance. The 
peripheral mediators including cytokines and 
adipokines may link the peripheral and central 
inflammatory, as shown in Figure 2, so the 
approaches which combat these dysregulated 
signaling events may have the potential to treat T2DM 
and AD. 

 

 
Figure 1. The link between AD and T2DM. Pathological mechanisms associated with T2DM might accelerate AD progression. Insulin resistance, inflammation, oxidative 
stress, michondrial dysfunction, and aging are related to diabetes, which possibly contributed to AD development. 
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Figure 2. Overlap inflammation signaling in AD and T2DM. Microglial activation by Aβ oligomers stimulates production/release of TNF-α. TNF-α receptor activation 
promotes stress kinases including JNK, IKK, and PKRs, which in turn blocks the insulin actions. 

 
Neuroinflammation can be triggered by Aβ 

deposition and tau hyperphosphorylation [20]. It is 
involved in microglia activation that primarily targets 
Aβ phagocytosis. However, sustained microglial 
activation leads to accumulation of inflammatory 
mediators and danger-associated molecular patterns 
(DAMPs), limiting Aβ clearance, resulting in more 
plaque accumulation and neuronal dysfunction [21, 
22]. Inflammation is suggested to be linked to insulin 
resistance. Insulin resistance can increase levels of 
advanced glycation end products (AGEs), which 
cause upregulation of GSK-3β and activation of 
NF-κB pathway, thus induces ROS and 
pro-inflammatory cytokine production [23]. These 
pro-inflammatory cytokines were observed to inhibit 
phagocytosis thus enhance Aβ accumulation, while 
NF-κB signaling pathway activates AGEs binding to 
in turn increase Aβ expression [24, 25]. 

Defective insulin signaling 
In both human and rodents, high dietary fat 

intake could increase oxidative stress and ROS 
production in skeletal muscles, leading to the 
development of peripheral IR in T2DM [26]. IR is a 
hallmark of obesity and T2DM, which is also found in 
the brains of AD patients [1]. Indeed, many studies 
suggest that the incidence of AD is higher in obesity 
and T2DM patients. In obesity and diabetes, the 
signaling pathway IR/insulin-like growth factor (IGF) 
was altered [27]. Insulin-degrading enzyme (IDE) is 

important for insulin and Aβ clearance. IR can lead to 
hyperinsulinemia, which saturates IDE for insulin and 
Aβ degradation. Thus, dysfunction in Aβ degradation 
caused by IR increases risk of AD onset [28]. In AD 
brains, over-activation of N-methyl-D-aspartate 
(NMDA) receptors by Aβ oligomers is a key factor 
resulting in excessive ROS production, followed by 
excessive Ca2+-induced mitochondrial dysfunction. 
Brain insulin signaling acts to block Aβ 
oligomers-induced neuronal oxidative stress, via 
activation of AKT and prevention of aberrant NMDA 
receptor signaling [29, 30]. Moreover, Aβ oligomers 
desensitize the insulin receptors from plasma 
membrane in cultured hippocampal neurons, 
reducing tyrosine kinase activity of the insulin 
receptor protein, which is important for tyrosine 
phosphorylation and subsequent activation of insulin 
receptor substrates (IRS), like mTORC1, PI3K, and 
Akt [31]. The IR in the brain is shown in Figure 3. 
Therefore, the agents which can stimulate brain 
insulin signaling may facilitate neuroprotection in AD 
and preserve normal brain functions. 

Insulin signaling is essential in proper brain 
function like memory formation. Impaired brain 
insulin signaling can cause cognitive decline in 
human and animal models. Post-mortem AD 
displayed hyperphosphorylated Tau-containing 
neurons and insulin accumulated tauopathies [32]. 
Conversely, insulin resistance can in turn induce Tau 
hyperphosphorylation. Compared to normal 
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individuals, higher levels of phosphorylated Tau in 
cerebrospinal fluid (CSF) were observed in cognitive 
dysfunction subjects due to systemic insulin 
resistance [33]. A mechanism underlying this 
phenomenon involves a Tau kinase, the glycogen 
synthase kinases 3β (GSK3β), regulated by insulin 
through AKT pathway [34]. Insulin resistance due to 
chronic exposure of high insulin levels of neurons, or 
eventual decrease in insulin levels in brain, reduces 
AKT phosphorylation, leading to an activation of 
GSK3β, inhibition of Tau phosphatases, ultimately 
Tau phosphorylation [35, 36]. 

Physiological roles of melatonin 
Melatonin is essential in the management of 

circadian rhythms of healthy metabolism. There are 
two specific receptors of melatonin, MT1 and MT2, 
encoded by MTRN1A and MTRN1B, respectively 
[37]. When melatonin binds to MT1 and MT2, the 
subunits α and β/γ dissociate to trigger downstream 
signaling pathways including adenylyl cyclase (AC), 
phospholipase C (PLC), and phospholipase A2 
(PLA2) [38]. It has been shown that disturbance of 
melatonin signaling is implicated in development of 
T2DM raised by IR [39-42]. Impairment of sleep and 
circadian systems are involved in T2DM and obesity 
etiology, suggesting the prevalence of metabolic 
disorders in the individuals with irregular lifestyle 

like light at night, night-shift working, unusual meal 
timing, are increasing [43, 44]. Thus, a combination of 
the chronobiotic and cytoprotective effects of 
melatonin may be an innovative strategy in T2DM 
treatment. The beneficial effects of melatonin on 
different models of T2DM are shown in Table 1. 

Satiety and appetite regulation 
Melatonin is important for the secretion of 

metabolic hormones leptin and ghrelin to regulate 
satiery and appetite. Leptin is a regulator for the 
anorexigenic response. In hypothalamic neurons, it 
manages energy homeostasis via activation of leptin 
receptors (LepR), followed by activation of Janus 
kinase2 (JAK2) and signal transducer and activator of 
transcription 3 (STAT3) pathways [63, 64]. Increasing 
levels of leptin can down-regulate the adipose mass 
while leptin resistance may occur in obesity 
individuals. Recently, it was shown that MT1 
signaling could modulate leptin signaling. Rats with 
melatonin deficiency were observed to have leptin 
resistance and increased body weight, and these 
defects were reversed with melatonin administration 
[65, 66]. MT1 knock-out mice showed more daily food 
intake that led to increased body weight compared 
with the wild type mice, indicating that MT1 is critical 
in feeding behavior53. 

 
 

 
Figure 3. Insulin signaling pathway implicated in T2DM and AD. The diagram shows the defective insulin signaling. IR may result from impairment of insulin receptor 
function, tyrosine dephosphorylation of insulin receptor and IRS, as well as the disturbance of glucose transportation, which in turn decreases synaptic activity. 
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Table 1. Pharmacological studies of melatonin on different T2DM models. 

Pharmacological effects Mechanisms Ref. 

Zücker diabetic fatty (ZDF) rats 
Decreased hyperleptinemia; raised hypoadiponectinemia; improved homeostasis HOMA-IR↓; insulin resistance↓; serum free fatty acid↓ [45] 
Attenuated low-grade inflammation and oxidative stress IL-6, TNF-α and CRP↓; inflammation↓; LPO↑; oxidative stress↓ [46] 
Promoted fat browning PGC-1α and UCP1↑; mitochondrial function↑ [47, 48] 
Reduced the oxidative status; reduced apoptosis susceptibility Respiratory control ratio (RCR)↑; nitrite levels↓; mitochondrial function↑ [35]  
Prevented impaired functions of hepatic mitochondria in diabetic obese animals ALT↓; glycogen and lipid accumulation↓; tate 3 respiration and RCR↑; 

oxidative stress↓; UCP2↓; mitochondrial function↑ 
[49] 

Combined of HFD and STZ treated rodents 
Prevented retinal damage in early T2DM NOS activity↓; TNFα↓; inflammation↓; oxidative stress↓; [50] 
Decreased apoptosis; improved cardiac function in T2DM SIRT1 signaling↑; PERK/eIF2α/ATF4 signaling↓; oxidative stress↓; ER 

stress↓ 
[51] 

Restored the vascular responses and endothelial dysfunction in diabetes Fasting blood glucose, total cholesterol and LDL levels↓; oxidative stress↓ [52] 
Increased lipid peroxidation; reduced hypertension and fatigue syndrome Lipid profiles↓; serum adiponectin↑; GLUT4, PGC-1α, mTFA and NRF↑; 

oxidative stress↓; insulin resistance↓ 
[53] 

HFD-fed rodents 
Reduced hyperglycemia Total cholesterol and triacylglycerols↓; blood glucose↓; insulin resistance↓; 

oxidative stress↓ 
[54, 55] 

Decreased hyperleptinemia; raised hypoadiponectinemia;  HOMA-IR↓; insulin resistance↓; glucose tolerance↑ [42] 
Prevented diabetic cardiomyopathy Caspase-3 and Bax↓; Bcl-2↑; insulin resistance↓; ER stress↓ [56] 
Improved metabolic flexibility Total cholesterol, triglycerides and LDL-cholesterol↓; IL-6 and TNFα↓; 

inflammation↓ 
[57, 58] 

Improved brain glucose homeostasis GSH↑; oxidative stress↓; AChE, iNOS, IL-6, MCP-1 and TNFα↓; 
inflammation↓ 

[45] 

T2DM patients 
NA GPx-1, CAT, GR and SOD-1↑; MDA↓; oxidative stress↓ [59, 60] 
NA CRP, IL-6 and TNF-α↓; inflammation↓ [47] 
Pinealectomized rats 
Increased energy expenditure; increased mitochondrial respiratory PGC-1α, CREB, AKT and CAMKII↑; mitochondrial biogenesis↑; 

mitochondrial function↓; insulin resistance↓ 
[61] 

Rat insulinoma INS-1 cells 
Prevented hyperglycemia; rescue β-cell viability glutathione peroxidase, SOD, glutathione reductase and catalase↑; 

mitochondrial function↑ 
[62] 

PA induced IR primary muscle cells 
Increased energy expenditure; increase mitochondrial respiratory UCP3, PGC-1α, CREB, AKT and CAMKII↑ mitochondrial function↑; insulin 

resistance↓ 
[61] 

 
 
Ghrelin plays an essential role in orexigenic 

behavior. Plasma levels of ghrelin elevate before each 
daytime meal, decrease after mealtime, and increase 
progressively during fasting overnight, 
demonstrating that ghrelin release triggers appetite 
initiation. Growth hormone secretagogue receptor 
(GHSR) activated by ghrelin up-regulates the 
intracellular levels of PIP3 and Ca2+ via triggering 
PLC and PKC [67]. Increasing Ca2+ influx activates 
hypothalamic calcium/calmodulin-dependent 
protein kinase kinase 2 (CaMKK2), followed by 
AMPK activation [68, 69]. Ghrelin exhibits rhythmic 
secretion under feeding or fasting conditions. An 
immunohistochemical study showed that rats which 
had undergone pinealectomy almost completely 
abolished ghrelin secretion in the arcuate nucleus 
(ARC) region [70]. However, ghrelin levels in the 
plasma of exogenous melatonin treatment or removal 
of pineal gland were not significantly different from 
the control group. Thus, it is considered that the 
interaction between ghrelin and melatonin may be 
indirect. As mentioned above, serotonin acts as a 
melatonin precursor and mediates the regulation of 
appetite, thermogenesis, and higher level of mental 
functions like memory and learning. It is possible that 
ghrelin attenuates melatonin release by disrupting 

serotonin biosynthesis and secretion from pineal 
gland. 

Circadian clock and food intake 
Animals can sense the time of food availability. 

The ghrelin, glucocorticoids, and glucagon secreted 
before mealtime are classified as pre-feeding timers. 
Meanwhile, hormones like insulin and leptin which 
are secreted after food intake are called post-feeding 
timers [71]. Avoiding excessive energy intake during 
rest phase is critical for healthy metabolism [69]. 
Although melatonin is not strictly recognized as a 
metabolic hormone, melatonin plays important roles 
in glucose homeostasis. Melatonin can indirectly 
modulate feeding behavior on the circadian clock. In 
mice and rats, melatonin administration decreases 
adipose mass and body weight [72]. In diet-induced 
obesity zebrafish, melatonin stimulated the 
anorexigenic and inhibited the orexigenic signaling 
[73]. Thus, the lesion of circadian oscillations may 
disturb the control of energy balance, thus causinging 
metabolic diseases like obesity and T2DM. 

Mitochondria biogenesis and bioactivity 
As previously mentioned, melatonin is an 

ancient antioxidant. As for the subcellular distribution 
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of melatonin, the rank of its concentrations from high 
to low is mitochondria, cell membranes, nuclei, and 
cytosol in brain [74]. It is reasonable that antioxidants 
such as melatonin are efficient in decreasing total 
oxidative burden, as ROS is highly produced in 
mitochondria. In addition, it is proposed that 
melatonin is highly effective as a mitochondria-target 
antioxidant [75, 76]. The potency of classic 
antioxidants being limited even in high doses may be 
due to their difficulty in accessing mitochondria. 
Therefore, melatonin can be a good candidate to 
increase the therapeutic effectiveness via 
anti-oxidative activity. 

Mitochondrial dysfunction may accelerate the 
AD onset that accompanies aging [77]. A key direct 
association between aging and mitochondrial 
function was observed in many models. In rats, aging 
leads to brain mitochondrial dysfunction, comprising 
of changes in expression levels of mitochondrial genes 
and decreased activities of respiratory chain related 
enzymes [78]. Also, age-related mitochondrial 
impairment was observed in amyloid-based 
transgenic mouse models, which act through 
inhibition of oxidative phosphorylation [79, 80]. 
Melatonin increased mitochondrial bioactivity, which 
subsequently attenuated Aβ accumulation and 
synaptic dysfunction and exhibited neuroprotective 
effects in AD mice [81, 82]. Also, melatonin 
administration was effective in AD models through 
triggering free radical scavenging cascades [83, 84]. 
Melatonin treatment on APP/PS1 mice was 
elucidated to restore the membrane potential, 
mitochondrial respiratory rates, and ATP levels in 
cortex, hippocampus, and striatum [85]. These 
evidences suggest melatonin or activating melatonin 
receptor signaling can be a potential strategy in 
delaying AD progression. 

The circadian clock is important in metabolism 
according to both human epidemiological and 
interventional studies. Disruptions of circadian genes 
lead to striking metabolic disturbances [86]. It is only 
recently understood that circadian disruption might 
contribute to diabetes and β-cell dysfunction [87]. In 
T2DM rats, melatonin supplementation combined 
with exercise showed increased expression of 
mitochondrial biogenesis and function-related genes, 
including mtTFA, PGC1-α, NRF-1, and NRF-2. 
Moreover, melatonin intake combined with exercise is 
effective in scavenging toxic free radicals, suggesting 
melatonin administration showed anti-diabetic effects 
via anti-oxidative pathways [53]. Recently, melatonin 
was shown to increase thermogenesis by enhancing 
mitochondrial biogenesis and respiration in 
intramuscular adipocytes of HFD-fed mice [88]. 
Notably, melatonin treatment prevented 

mitochondrial fission via SIRT1/PGC-1α activation in 
hyperglycemia-treated cells and streptozocin 
(STZ)-induced diabetic mice [89]. Melatonin is 
expected to reach maximal plasma levels after 30-60 
min in oral administration and 30-45 min in 
intravenous (IV) administration [90]. The elimination 
half-life (t1/2) for a dose of 0.5-6 mg melatonin in oral 
administration is approximately 46-65 min, while the 
t1/2 is about 28-61 min for IV administration of 100 
mg melatonin [90, 91]. Also, melatonin metabolism 
acts faster in children than adults. To improve the 
bioavailability of melatonin, the strategies including 
subcutaneous injection, oral transmucosal, intranasal, 
and transdermal can be considered [92]. 

Melatonin can possibly halt or even 
prevent the pathogenesis of 
T2DM-induced AD-like features 

In the previous sections, we have summarized 
that the mechanisms of metabolic diseases in 
decreasing cognitive functions may be related to 
oxidative stress, mitochondrial dysfunction, IR, and 
inflammation. In this section, we discuss the effects of 
melatonin in preventing T2DM (or related 
diseases)-induced AD pathology. As shown in Table 
2, different mechanisms of melatonin in treating AD 
are summarized. 

Melatonin can be secreted into the blood, CSF, 
brain and peripheral tissues. Melatonin (5-methoxy- 
N-acetyltryptamine) is a pleiotropic hormone derived 
from vertebrate pineal glands to regulate the circadian 
and seasonal rhythms, sleep, retinal functions and the 
immune system [106, 107]. The first step of melatonin 
biosynthesis is the hydroxylation of tryptophan to 
generate 5-hydroxytryptophan, and then 5-hydroxy-
tryptophan is decarboxylated to produce serotonin. 
Next, the arylakylamine N-acetyltransferase 
acetylates serotonin to N-acetylserotonin. Finally, 
N-acetylserotonin is methylated by O-methyl-
transferase to generate melatonin [108]. The synthesis 
of melatonin is regulated in a circadian manner. After 
biosythesis, melatonin is right to be transferred into 
the cerebrospinal fluid (CSF) and bloodstream. 
Melatonin exists like a transient state in the body that 
is rapidly metabolized in the body and its half-life is 
only around 20-30 min [109]. Melatonin has been 
observed to be a free radical scavenger, immune 
modulator, and neuroprotectant [110]. Melatonin 
treatment was found to improve cognitive function 
and reverse sleeplessness in neurodegenerative 
diseases, through Nrf2 activation and inhibition of 
proinflammatory cytokines [111]. In AD patients, Aβ 
accumulation and proinflammatory cytokines impair 
the BBB permeability.  
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Table 2. Pharmacological studies of melatonin on different AD models. 

Pharmacological effects Behavioral or cognitive changes Mechanisms Ref. 
Amyloid-beta induced AD rats 
Improved spatial learning and memory, 
synaptic plasticity; reduced astrogliosis and 
synaptotoxicity 

Less time to reach the platform in Morris water maze (MWM) test; more 
efficient in swimming path 

GFAP↓; Musashi1/Notch1/Hes1↑ [93, 
94] 

Inhibited neurotoxicity and astrocyte 
activation 

NA GFAP↓; MAP↑; Reelin/Dab1↑  [78] 

Improved spatial learning and memory Shorter latency in MWM test; increase of period in the III quadrant, raise 
of numbers of line crossings in central square arena in open field test; 
increase in the latency and decreased errors in step‐through test and step‐
down test 

GSK-3β, caspase-3, Aβ1-42 , BACE1 and 
p-tau↓; PP2A and Bcl-2↑; mitochondrial 
function↑ 

[95] 

Improved memory, hindered anxiety, and 
attenuated hippocampal cell damage 

Increased number of arm entries in Y-maze test; increased number of 
open arm entries and time spent in open arms in EPM test 

SIRT1↑; COX2 and TFAM↑ [80]  

Scopolamine induced amnesia mice 
Improved spatial learning and memory Shorter escape latency in MWM test; longer latency time in passive 

avoidance test (PAT) 
ChAT, CHT and VAChT↑ [96] 

Recovered cognitive impairment Shorter escape latency in MWM test; longer latency time in PAT MBP, BDNF, and TrkB↑ [97] 
Attenuated synaptic dysfunction, memory 
impairment neuroinflammation 

Shorter escape latency in MWM test; increased number of arm entries in 
Y-maze test 

CREB and BDNF ↑; Akt and ERK ↑; GFAP, 
TNFα and IL6 ↓; JNK, Nrf2 and HO-1 ↓ 

[98] 

Tg2576 mice overexpressed APP 
Ameliorated amygdala-dependent 
emotional memory 

No changes in behavioral tests PSD95↓; Arc, pCREB and c-Fos↑ [99] 

Activated lymphatic system NA Aβ↓ [100, 
101] 

AD transgenic mice 
Induced cognitive enhancement and brain 
resilience 

Novel object recognition (NOR) test NF-κB, TNFα, IL-1β↓; amyloid and p-tau↓; 
Gas6 and SIRT1↑ 

[85] 

Improved episodic memory; reduced 
neuroinflammation; inhibited reactive 
microgliosis 

Less time spent exploring the new object amyloid aggregates↓ [102] 

STZ-induced AD like rats 
Prevented memory impairment; 
downregulated AD-like 
hyperphosphorylation 

Shorter escape latency in MWM test MDA↓; SOD and GSH‐Px↑; antioxidation 
function↑ 

[103] 

Ameliorated memory; prevented brain 
insulin resistance 

Shorter escape latency in MWM test p-tau, BACE1 and PS1↓; AKT and GSK-3β↑ [104] 

Aged mice 
Improved hippocampal neuronal 
homeostasis 

 NA SIRT1, FOXO1, MT1 and MT2↑; p53, ac-p53, 
MDM2, and DKK1↓ 

[105] 

 
 
The BBB breakdown, accompanying increased 

levels of ROS, metalloproteinase (MMP)-2, and IFNγ, 
could enhance the circulating neurotoxins enter the 
brain due to selectivity loss, and finally exacerbate AD 
progression [112]. The disruption of BBB has also been 
observed in T2DM individuals by changing its 
permeability and integrity [106, 107]. In addition, the 
permeability of BBB increased via alteration of the 
tight junction protein expression in STZ-induced 
diabetic rats [113]. In obese individuals, the 
macrophage infiltrated in adipocytes undergo M1 
proinflammatory state, leading to excessive secretion 
of proinflammatory cytokines and chemokines, which 
can cross the BBB and affect brain functions [114]. 
Melatonin has protective effects in brain 
microvascular endothelial cell via MMP-9 and 
nicotinamide adenine dinucleotide phosphate 
(NADPH) oxidase-2 expression [115, 116].  

In HFD-induced cognitive impairment mice, 
melatonin was shown to prevent the oxidative stress 
in hippocampus through decreasing the level of GSSG 
and increasing GSH/GSSG ratio [117]. In 
STZ-induced rats which displayed AD features, 
melatonin was effective in decreasing both Aβ 

formation and tau proteins hyperphosphorylation in 
hippocampus, as well as reducing the 
phosphorylation of IRS1 and restoring the 
phosphorylation of glycogen synthase kinase 3β 
(GSK3β) [104]. These observations indicate that 
melatonin may be protective in individuals suffering 
from diabetes and slow down the progression to AD, 
via restoring insulin signaling. Moreover, the role of 
melatonin in GSK3β regulation elucidated that GSK3β 
would interact with presenilin-1 to prevent 
neurodegeneration in AD [118, 119]. Chronic 
melatonin exposure could attenuate the tau protein 
hyperphosphorylation via activating PI3K/Akt/ 
GSK3β in Aβ42 treated mice. It was also reported that 
melatonin could prevent T2DM-induced cognitive 
deficits in rats through anti-neuroinflammatory 
activity. In the combination of HFD and STZ-induced 
cognitive dysfunction rats, melatonin treatment was 
shown to significantly reduce the expression levels of 
the neuroinflammatory mediated factor including 
IL-6, TNF-α, iNOS and COX-2, along with inhibiting 
the expression of NF-κB and IKK phosphorylation, as 
well as mitigating increasing mitochondrial function 
[120]. Besides, the neuroinflammation found in 
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HFD-induced T2DM rat could be reversed with 
melatonin treatment, accompanying with repression 
of iNOS, IDO1, and AChE, indicating that the 
antioxidant and anti-inflammatory effects of 
melatonin can be applied in fighting against 
neuroinflammation associated with T2DM [58]. It is 
belived that melatonin will be a potential strategy in 
both T2DM and AD therapy through reversing IR 
(Figure 4). 

Safety of melatonin 
Melatonin can act as a broad spectrum 

antioxidant partially due to its lipophilic and 
hydrophilic properties, which can cross the barriers 
easily within subcellular organelles. Although limited 
data concluded the safety of exogenous melatonin, it 
can be suggested as a safe drug. Melatonin showed no 
significant adverse effects on adolescents, children, or 
preterm infants except high doses or long-time 
administration [121, 122]. In children with epilepsy, a 
dosage of 9 mg per day for 4 weeks may have adverse 
effects including headache, diarrhea, hypothermia, 

dizziness, rash, and gastrointestinal symptoms [123]. 
In seasonally breeding mammals, melatonin was 
shown to decrease estrogen secretion in long-breeders 
but increase estrogen levels in short-breeders [124, 
125]. However, the side effects of melatonin on 
reproduction of human beings remain unknown. 
Since the dosage of melatonin in pregnancy subjects is 
not studied, it is not recommended for pregnant 
women to use melatonin [126]. It is hypothesized that 
melatonin may affect the ovaries but the exact 
mechanisms need to be determined [127]. 

Conclusion and perspectives 
Melatonin acts like a master clock in the 

suprachiasmatic nuclei (SCN) and is associated with 
multi-oscillatory network in mammal organisms 
[128]. Based on existing studies, deviant circadian 
rhythms and poor sleep quality may increase the risk 
of metabolic and cognitive diseases. Some reports 
have suggested that endogenous melatonin showed 
protective effects on endocrine and neurological 
systems. Melatonin is also important in regulating the 

 

 
Figure 4. Melatonin in prevention against insulin resistance of AD and T2DM. In T2DM, a parallel inflammatory mechanism leads to brain insulin resistance and 
cognitive dysfunction in AD. Melatonin can be an agent in halt the progression of AD in T2DM by targeting insulin signaling. 
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secretion of metabolic hormones like leptin and 
ghrelin, which are key mediators in energy 
homeostasis. In experimental models of AD, the 
neurodegenerative symptoms were prevented by 
melatonin via the removal of toxic proteins by the 
brain glymphatic system. These studies indicated that 
melatonin is beneficial in T2DM and AD, although it 
remains inconclusive whether melatonin treatment in 
patients might raise any adverse effects. 

Numerous studies have demonstrated that 
T2DM could accelerate and exacerbate AD. There are 
overlapping mechanisms of T2DM and AD including 
oxidative stress, mitochondrial dysfunction, IR, and 
inflammation. IR is a characteristic of T2DM, and a 
potential indicator of AD. Melatonin seems to meet 
the criteria of exhibiting highly significant protective 
actions against these conditions, especially in T2DM 
induced AD, by targeting the metabolic pathways 
regulated by brain insulin. Currently, the adverse 
effects of melatonin is yet to be elucidated in detail but 
most of the effects of melatonin have been proven to 
be safe in human and animal models at various dose 
ranges. Considering the high efficacy of melatonin in 
increasing mitochondrial bioactivity and insulin 
sensitivity, it provides an insight to investigate the 
clinical efficacy and safety of melatonin in halting the 
progression of AD in T2DM individuals. 
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