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Abstract 

Ferroptosis, a new form of programmed necrosis characterized by iron-dependent lethal accumulation of 
lipid hydroperoxides, is associated with many human diseases. Targeting amino acid (AA) availability can 
selectively suppress tumor growth and has been a promising therapeutic strategy for cancer therapy. 
Compelling studies have indicated that AA metabolism is also involved in ferroptosis, closely regulating its 
initiation and execution. This manuscript systematically summarizes the latest advances of AA 
metabolism in regulating ferroptosis and discusses the potential combination of therapeutic strategies 
that simultaneously target AA metabolism and ferroptosis in cancer to eliminate tumors or limit their 
invasiveness. 
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Introduction 
Ferroptosis is defined as iron-dependent 

regulatory necrosis orchestrated by multiple 
molecular and metabolic pathways [1]. Briefly, the 
regulatory mechanism of ferroptotic cell death mainly 
involves three parts: lipid peroxides (LPOs) 
generation, LPOs scavenging, and the repair of 
damaged plasma membranes [2]. In the process of 
lipid peroxidation, the abundance of free iron, 
hydrogen peroxide, polyunsaturated fatty acids 
(PUFAs) and PUFA-rich phospholipids control the 
sensitivity to ferroptosis [2-3]; The LPOs eliminating 
mechanisms mainly involves three pathways, 
including the cystine-glutamate antiporter transport 
system (system Xc-)/cysteine (Cys)/glutathione 
(GSH)/glutathione peroxidase 4 (GPX4), ferroptosis- 
suppressor-protein 1 (FSP1)/coenzyme Q (CoQ10), 
and GTP cyclohydrolase1 (GCH1)/tetrahydro-
biopterin (BH4) axes [4]. Some molecules such as 
tumor suppressor protein p53, nuclear factor 
erythroid 2-related factor 2 (NRF2), breast cancer gene 
1 related protein 1 (BAP1), lncRNAs, etc. can act 
through regulating the activities of the defense system 

at the transcriptional or post-transcriptional level to 
control ferroptosis sensitivity [3-4]; Ferroptotic cell 
death is booted by LPOs-induced membrane rupture. 
The endosomal sorting complex required for 
transport III (ESCRT-III) exerts a key part in repairing 
the damaged plasma membranes and control 
ferroptosis sensitivity [5]. Since definition, ferroptosis 
has been implicated to be associated with the 
occurrence and development of various human 
diseases such as tumorigenesis, infection, immune 
diseases, neurodegeneration, and tissue ischemia- 
reperfusion injury [6-8]. Especially for drug-resistant 
cancer cells, multiple experimental cancer models 
have demonstrated that they can be effectively killed 
by ferroptosis inducers, such as some small molecules 
and clinical drugs that target FSP1 and GPX4, deprive 
GSH or improve the iron pool. Nevertheless, smart 
cancer cells can always evolve alternative pathways to 
avoid this disadvantage. Therefore, exploring 
ferroptosis combination therapy might open up new 
therapeutic avenues for resensitizing cancer cells and 
eliminating drug-resistant clones. Studies have 
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confirmed some synergy effects between ferroptosis 
and current cancer treatments, such as Roh’s research 
[9] found that ferroptosis inducers can work 
synergistically with cisplatin to suppress the growth 
of head and neck tumors in mice; Wang’s study [10] 
found that ferroptosis activators and anti-PD-L1 
antibody nivolumab synergistically induce melanoma 
growth inhibition in vitro and in vivo; Moreover, 
studies have confirmed that ferroptosis inducers 
enhance radiotherapy sensitivity of melanoma [11], 
lung cancer and glioma [12-13], breast cancer [14] and 
nasopharyngeal carcinoma [15]. 

Studies about tumor metabolic reprogramming 
have been continually updated recently. As the amino 
acid (AA) metabolic network is the most complex and 
highly interconnected with other pathways, AA 
metabolic reprogramming has garnered considerable 
attention [16-17]. AAs can not only serve as substrates 
for protein synthesis but also participate in energy 
production, macromolecular synthesis, signal 
transduction pathways, and the maintenance of 
cellular redox homeostasis [18-19]. Emerging studies 
have revealed that AA availability is also involved in 
ferroptosis process and controls the susceptibility of 
tumors to ferroptosis. This review focuses on the 
regulation of ferroptosis by AA metabolism, and 
explores the potential of the combined strategies that 
target ferroptosis and AA metabolism to eradicate 
drug-resistant cancer. 

Amino acid metabolism in cancer 
As the basis of protein synthesis and the 

intermediate metabolites that ignite other biosynthetic 
pathways, cancer cells with AA metabolic addiction 
have received an increasing attention in recent years 
[20]. Studies have found that tumor cells usually rely 
on the supply of exogenous AAs, and this is not 
limited to essential amino acids (EAA) [21]. Tumor 
cells have developed diverse mechanisms to maintain 
the abundant supply of AAs, including bidirectional 
transfer [22-23], micropinocytosis [24-25], or utilizing 
extracellular free AAs [26-27]. Abnormal 
up-regulation of AA uptake and metabolism has been 
observed in many cancers [17]. Therefore, it seems 
feasible to make tumor cells auxotrophic and then 
selectively lethal via interfering with AAs availability. 
Targeting AA metabolism such as interference with 
AA synthesis, degradation and transfer has been 
practiced in preclinical and clinical settings of cancer 
treatment, which provides numerous targets for 
anti-cancer drug development. For example, a study 
on colon cancer found [28] that targeting the 
methionine transporter solute carrier family 43A2 
(SLC43A2) improved the expression of dimethylation 
at lysine 79 of histone H3 (H3K79me2) and signal 

transducer and activator of transcription 5 (STAT5) in 
T cells, thereby restoring T cell immunity. Another 
study [29] also found that elevating L-arginine 
concentrations promoted the survival ability of CD8+ 
T cells and their anti-tumor activity in mice. Werner's 
research [30] also confirmed that the arginine (Arg) 
transporter human cationic amino acid transporter-1 
(hCAT-1) is a key component for activating efficient T 
cells to regulate the adaptive immune response in 
tumor immunity. These findings, including but not 
limited to, suggest that targeting cancer AA 
metabolism pathways may provide an immuno-
therapeutic approach. It is worth mentioning that the 
efficacy of metabolic inhibitor monotherapy may be 
limited, in that the metabolic changes of cancer cells 
exposed to AA deprivation may make the cells 
survive. Therefore, future prospects of AA 
deprivation therapy may involve combinations with 
other agents. 

Amino acid metabolism and ferroptosis 
The trade of metabolites between ferroptosis and 

cancer cells is increasingly recognized as a critical 
aspect of tumor metabolism. Evidence has 
demonstrated that AA metabolism is critical for 
ferroptosis [31]. Here we discuss the most prominent 
AAs involved in regulating ferroptosis and their 
possible regulatory mechanisms in cancer. 

Cyst(e)ine metabolism 
Cys is a sulfur-containing proteinogenic AA 

whose free thiol group confers unique properties on 
protein functional sites [32]. Cells have developed 
several mechanisms to keep a ceaseless supply of Cys. 
Tumor cells obtain Cys primarily via the uptake of 
cystine, a precursor of Cys, by system Xc- [33]. In 
addition, Cys could be directly assimilated via 
excitatory amino acid transporter 3 (EAAT3) and 
SLC1A4 transporter (ASCT1) [34-35]. Endogenous 
Cys is synthesized by the trans-sulfuration pathway, 
which is mainly catalyzed by cystathionine γ-lyase 
(CSE) and cystathionine β-synthase (CBS) [36-39]. 
Also, Cys could be obtained through autophagic 
breakdown of GSH and proteins [40]. As a precursor 
of various biochemical processes, Cys actively 
participates in diverse metabolic pathways including 
GSH synthesis, protein s-cysteinylation, hydrogen 
sulfide (H2S) production, epigenetic regulation, and 
energy production [36]. 

Prior studies have indicated that Cystine/Cys 
depletion increases reactive oxygen species (ROS) 
production and induces ferroptosis, and certain 
cancers rely on Cystine/Cys metabolism to avoid 
ferroptosis [1, 32, 41]. In the context of ferroptosis, Cys 
not only acts as a potent antioxidant by itself but also 
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acts as an element of the major antioxidant GSH to 
maintain redox homeostasis [42-43]. The reducing 
ability of the thiol group in Cys conferred its 
protective role against lethal ROS accumulation 
[44-45]. Cys could be catabolized by two main 
pathways [36]. In the first catabolic pathway, Cys 
could be degraded into compounds such as pyruvate 
and α-ketoglutarate (α-KG) by CBS and CSE. The 
former is metabolized to acetyl-coenzyme A 
(acetyl-CoA) and subsequently enters the 
tricarboxylic acid (TCA) cycle or is utilized to 
synthesize lipids, whereas the latter acts as an 
intermediate of TCA cycle or is used to synthesize 
glutamate (Glu) [46-49]. Recently, it was reported that 
coenzyme A (CoA), a metabolite of Cys, cooperates 
with GSH to regulate ferroptosis in genetically 
engineered mice by controlling lipid metabolism [32, 
50]. However, the precise mechanism of anti- 
ferroptotic function of CoA is not discussed in the 
article. Studies have found that CoQ10, the derivative 
of CoA, also known as ubiquinone can be reduced by 
the oxidoreductase FSP1 to ubiquinol, a lipophilic 
radical-trapping antioxidant that halts the 
propagation of lipid peroxides [51-52]. Therefore, 
CoA might act through generating CoQ10 to perform 
anti-ferroptotic function. 

In the second catabolic pathway, cysteine 
dioxygenase (CDO1) catalyzes Cys transformation 
into taurine [53]. CDO1 competes for Cys with 
glutamate-cysteine ligase (GCL), thereby shunting 
Cys used for GSH synthesis to taurine production 
[53-54]. CDO1 has been demonstrated to decrease the 
intracellular level of GSH, thus enhancing ROS 
generation in cancer [55]. Silencing or inactivating 
CDO1 helps to restore cellular GSH contents to avoid 
ROS and lipid peroxidation, which increases the 
resistance to ferroptosis, and promotes tumor 
proliferation [54-56]. Therefore, restoring CDO1 
function or increasing the expression of CDO1 protein 
in tumors may render tumor cells more vulnerable to 
ferroptosis, resulting in decreased tumor viability and 
growth. Although numerous studies indicate that 
CDO1 has tumor-suppressive properties, divergent 
evidence in glioblastoma [55] highlights the necessity 
for additional research to determine the true impact of 
Cys-derived compounds on cancer metabolic 
reconstruction. 

Targeting the Xc- system-mediated absorption of 
cystine is a classical approach to induce cell 
ferroptosis in basic studies. The clinical development 
of drugs targeting Cystine/Cys metabolic pathways 
to treat ferroptosis-related diseases may provide an 
avenue for future translation of this concept. It is still 
unknown whether human cancer is also susceptible to 

Cystine/Cys depletion-induced ferroptosis in clinic 
practice. A recent study demonstrates that the 
trans-sulfuration pathway is a direct advantage for 
cancer cells in maintaining redox equilibrium and 
evading ferroptosis. The trans-sulfuration pathway 
can produce endogenous Cys to synthesize GSH 
when cystine import is inhibited [57-59]. 

Cysteine persulfide (CysSSH) and cysteine 
polysulfides (CysSSnH, n > 1), which are Cys 
derivatives, have been proposed as powerful 
antioxidants and cytoprotective agents based on their 
superior nucleophilicity and reducibility [60]. Study 
has found that CysSSnH can up-regulate the 
transcription of antioxidant genes, including the 
transcription of enzymes involved in GSH production 
to increase the level of GSH [61]. In light of these 
findings, we reasonably speculate that CysSSH and 
CysSSnH are also very likely to participate in the 
ferroptotic regulation, despite the lack of direct 
reports on this currently. In this process, the key 
enzymes 3‐mercaptopyruvate sulfurtransferase 
(MPST), CBS, CSE and cysteinyl-tRNA synthetase 
(CARS) [62] that contribute to the production of 
CysSSH and CysSSnH may play an important role. 
Consistently, a screening of genome-wide siRNAs for 
ferroptosis inhibitors found that knockdown of CARS 
leads to the activation of trans-sulfuration pathway 
and ferroptosis resistance [58, 63]. 

Moreover, mitochondrial cysteine desulfurase 
(NFS1) can metabolize Cys and produce a sulfur 
carrier [36]. NFS1 degrades Cys and releases sulfide to 
generate iron-sulfur (Fe-S) clusters, a cofactor of 
various essential proteins and enzymes in cells. Cells 
rely on increased NFS1 expression to maintain the 
continuous supply of Fe-S clusters when exposed to 
high oxygen concentration, as confirmed in metastatic 
or primary lung tumors [64]. Although NFS1 has been 
shown to inhibit tumor growth via triggering the 
iron-starvation response, this state of iron deficiency 
can also protect cells from ferroptosis [36, 64]. 
Therefore, targeting NFS1 seems to be a promising 
strategy to trigger ferroptosis for cancer treatment. 
Homma [65] also discovered a new mechanism by 
which Cys resists ferroptosis. This study discovered 
that Cys preservation conferred resistance of GSH 
depleted cells to ferroptosis through CDGSH iron 
sulphur domain-containing proteins (CISDs). CISDs 
exerted anti-ferroptotic function by suppressing free 
iron toxicity and the subsequent lipid peroxidation 
with the assistance of Cys. This study revealed a 
potential therapeutic strategy for eradicating 
ferroptosis-resistant cells by concurrently inhibiting 
GSH synthesis and CISDs activity (Figure 1). 
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Figure 1. The regulation of cysteine metabolism in ferroptosis. Cysteine regulates ferroptosis through multiple pathways. In the H2S oxidation pathway, cysteine can be 
degraded into compounds which are used to synthesize fatty acids. PUFAs that undergo lipid peroxidation are involved in ferroptosis. The continuous supply of Fe-S clusters by 
mitochondrial NFS1 stopped the iron-starvation response. GCL can catalyze cysteine to form the antioxidant GSH. CDO, which catalyzes the conversion of cysteine to taurine, 
can compete with GCL for cysteine, thereby limiting GSH synthesis and promoting ROS. In addition, Cyst(e)ine could regulate ferroptosis independently of GSH by activating 
Rag-mTORC1-4EBPs signaling axis and promoting GPX4 protein synthesis. Abbreviations: system Xc-: cystine-glutamate antiporter transport system; ASCT1: solute carrier 
family 1A4 transporter: EAAT3: excitatory amino acid transporter 3; Glu: glutamate; Ser: serine; Gly: glycine; Hcy: homocysteine; PUFA: polyunsaturated fatty acid; GSH: 
glutathione; Fe-S: iron-sulfur; NFS1: cysteine desulfurase; GPX4: glutathione peroxidase 4; H2S: gasotransmitter hydrogen sulfide; ROS: reactive oxygen species; GCL: 
glutamate-cysteine ligase; CDO: cysteine dioxygenase; CBS: cystathionine β-synthase; CSE: cystathionine γ-lyase; GS: glutathione synthase; γ-GC: γ-glutamyl-cysteine; CSA: 
cysteine sulfinate. 

 
Recent research discovered that cystine/Cys can 

activate Rag-mTORC1-4EBPs signaling axis and 
promote GPX4 protein synthesis to prevent cell 
ferroptosis in a GSH-independent manner. This study 
elucidated a regulatory mechanism that linked 
cystine/Cys availability to GPX4 protein synthesis 
and provided a new idea for using combinatorial 
therapy of ferroptosis inducers and mTORC1 
inhibitors in cancer therapy [66]. Cys metabolism is 
closely connected to that of glutamine (Gln) since 
serine (Ser), and glycine (Gly) can be derived from 
Gln and contribute to homocysteine (Hcy) and Cys 
syntheses through the one-carbon metabolism 
pathway [67-68]. A study on Hcy found that it can 
promote ferroptosis via enhancing GPX4 methylation 
[69]. 

In conclusion, tumor resistance to ferroptosis 
caused by Cys deprivation can be reversed by 
concurrently targeting exogenous uptake and 
endogenous synthesis. It is necessary to explore 
additional and newer methods of targeting Cys 
metabolism to kill tumor cells more efficiently in the 
future. Cystine/Cys and Gln together form a 
metabolism network of AAs capable of providing the 
core metabolic pathways underlying key cancer 
processes. The production of Gln and its role in 

bioenergetics and signaling are addressed in the next 
section. 

Glutamine metabolism 
Gln is the most abundant AA in the human body 

and the most critical non-toxic carrier in the ammonia 
cycle [70]. In 2011, Hanahan and Weinberg [20] 
proposed the concept of tumor cell energy metabolic 
reprogramming in the new ten characteristics of 
tumor cells. Although glucose metabolic 
reprogramming plays a crucial biological significance 
in tumors, some tumor cells do not entirely rely on 
glucose metabolism to obtain energy [71]. Subsequent 
studies have demonstrated that Gln is an important 
fuel, and also an important raw material for rapidly 
growing tumor cells [71-73]. 

After entering cell via the SLC1A5 (ASCT2), Gln 
mainly undergoes three metabolic routes [74]: first, 
Gln is converted to Glu catalyzed by glutaminase 
(GLS), which is used to produce GSH together with 
Cys and Gly, and the generated GSH and NADPH 
can be used to maintain redox homeostasis [75]; 
second, Gln acts as a raw material to provide 
precursors for synthesizing various nucleotides, AAs, 
proteins, lipids and other biologically important 
molecules [76-77]; third, Gln enters into the 
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mitochondria and is converted into α-KG catalyzed by 
GLS and glutamate dehydrogenase (GDH). α-KG 
participates in the TCA cycle to produce adenosine 
triphosphate (ATP) and replenish TCA cycle 
intermediates [77-79]. While being a non-essential 
amino acid (NEAA), Gln is essential for rapidly 
proliferating cells, such as cancer cells [80]. In vivo 
experiments in hepatomas and hepatic fibrosarcoma 
revealed that cancer cells consume Gln ten times 
faster than normal hepatocytes [81]. In this context of 
undersupply, many cancer cells reprogram their 
metabolism pathways to take up more Gln by 
upregulating Gln transporters or enhancing the 
expression or activity of Gln key metabolic enzymes 
[82], shifting Gln utilization from catabolic to 
anabolic, and facilitating the biosynthesis of 
macromolecules and organelles required for 
assembling new cells [20, 83-84]. 

Gln metabolism is tightly linked to ferroptosis 
regulation [85]. To date, the precise physiological 
function of Gln in ferroptosis remains unknown. 
Gao’s study [86] found that Gln may be an inducer of 
ferroptosis, fueling ferroptosis through its specific 
metabolism, glutaminolysis. Glutaminolysis refers to 
a series of intracellular biochemical reaction processes 
driven by Gln, in which Gln is converted to Glu, 
aspartic acid, carbon dioxide, pyruvate, lactic acid, 
alanine, citric acid, and other products catalyzed by 
key enzymes, such as GLS, GDH, and aspartate 
aminotransferase 2 (GOT2) and subsequently used as 
a fuel for TCA cycle and lipid biosynthesis [86-87]. 
Gao’s research team further demonstrated that L-Gln, 
but not D-Gln, is responsible for this type of cell death 
[86]. When lack of Gln or glutaminolysis is inhibited, 
cystine starvation or preventing cystine import cannot 
induce ferroptosis, ROS accumulation, or lipid 
peroxidation [86, 88]. Meanwhile, high-dose 
extracellular Gln alone cannot induce ferroptosis. 
Ferroptosis can be induced only when Gln is 
available, accompanied by cystine deprivation [86]. 

Consistent with previous research, deprivation 
of cystine or Cys or inhibition of the system Xc- 
induced ferroptosis by depleting cellular GSH and 
accordingly increasing ROS, and concurrently 
accelerated the death process through Glu 
accumulation, the glutaminolysis product [3, 89]. The 
glutamate-cysteine ligase catalytic subunit (GCLC) 
inhibits ferroptosis by participating in the first step of 
GSH synthesis. However, Yun et al. [89] found that 
GCLC plays a GSH-independent, non-classical role in 
preventing ferroptosis by regulating Glu pool under 
cystine deprivation. GCLC mediates γ-glutamine 
peptide synthesis, limits Glu accumulation, and thus 
protects against ferroptosis. In addition, GCLC 

activity is regulated by NRF2, a pivotal transcriptional 
regulator. This study indicates how cells save 
themselves under cystine or Cys starvation 
conditions, but it does not explain how Glu 
accumulation promotes ferroptosis. 

The function of glutaminolysis in ferroptosis 
could also be explained by the discovery that α-KG, a 
product of glutaminolysis, could substitute Gln to 
function in Cys deprivation-induced lipid ROS 
accumulation and ferroptosis [75, 88]. Furthermore, 
TCA metabolites downstream of α-KG, including 
malate, fumarate, and succinate, were all able to 
substitute the function of Gln in regulating lipid ROS 
accumulation [87]. Notably, compared with Gln 
status, glucose status has a greater impact on TCA 
cycle metabolites upstream of α-KG, such as citrate, as 
the role of glutaminolysis in TCA cycle is primarily to 
replenish TCA cycle intermediates [79, 88]. 
Interestingly, it has been demonstrated that 
ferroptosis requires mitochondrial GLS2 rather than 
cytosolic GLS1, although both enzymes catalyze 
glutaminolysis [86] (Figure 2). 

At present, studies on Gln starvation therapy 
have confirmed that Gln transporter inhibitor GPNA 
[89], GLS inhibitor compound 968 [90], CB-839 [91-92], 
and transaminase GOT1 inhibitor aminooxyacetic 
acid (AOA) [76] can significantly inhibit ferroptosis. 
Gene interference or pharmacological inhibition of 
ASCT2 has been shown to decrease the growth of 
prostate cancer [93], gastric cancer [94], and 
triple-negative breast cancer [95]. However, since 
compensatory responses are triggered, blocking a 
single Gln transporter is insufficient to prevent tumor 
growth [17]. Therefore, blocking the uptake or 
degradation of Gln in multiple ways may become a 
more viable therapeutic strategy for ferroptosis- 
associated diseases. 

Branched-chain amino acids metabolism 
Branched-chain amino acids (BCAAs), including 

leucine, valine, and isoleucine, are a subclass of EAAs 
whose metabolism has been linked to specific cancer 
phenotypes [96]. BCAA metabolism changes can both 
affect intrinsic cancer properties of cells and represent 
systemic metabolic changes correlated with certain 
cancers [96]. After dietary intake, BCAAs are 
transported by L-type amino acid transporters (LATs) 
into the cell and are catabolized by highly reversible 
branched-chain amino acid transaminases (BCATs) 
[97-98]. BCAT exists in two isoforms, BCAT1 and 
BCAT2 [98]. BCAT2 is located in mitochondria and is 
ubiquitously expressed, while BCAT1 is located in 
cytosol, and its expression is restricted to certain 
organs, such as the brain [99]. 
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Figure 2. The regulation of glutamine metabolism in ferroptosis. After entering the cell via the ASCT2, Gln can be degraded and provide a precursor for TCA and 
PUFAs biosynthesis. System Xc- inputs cysteine to synthesize GSH and exchange Glu at the same time. GPX4 utilizes GSH to eliminate lipid peroxides that participate in 
ferroptosis. GCLC maintains the Glu pool homeostasis under cystine starvation by mediating the synthesis of γ-glutamine peptide, thereby limiting the accumulation of Glu and 
protecting against ferroptosis. Abbreviations: ASCT2: solute carrier family 1A5 transporter; Gln: Glutamine; Glu: glutamate; GLS: glutaminase; GDH: glutamate 
dehydrogenase; GOT1: aspartate aminotransferase 1; TCA: tricarboxylic acid; PUFAs: polyunsaturated fatty acids; system Xc-: Cystine-glutamate antiporter transport system; 
GSH: glutathione; GPX4: glutathione peroxidase 4; GCLC: glutamate-cysteine ligase catalytic subunit. 

 
Both BCAT1 and BCAT2 are highly active and 

reversible enzymes that catalyze all three types of 
BCAAs and their corresponding branched-chain keto 
acids (BCKAs) [100]. BCAT produces Gln and 
designated BCKA by transferring nitrogen to a-KG, 
and the produced Glu can be used to support AA and 
nucleotide pools [101]. In addition, the generated keto 
acids are further metabolized by several steps to 
acetyl-CoA and/or succinyl-CoA, which were used to 
replenish TCA cycle intermediates and participate in 
synthesizing fatty acids [98]. BCAAs at high 
concentrations have been demonstrated to increase 
ROS production and mitochondrial dysfunction by 
activating Akt-mTOR signaling pathway [102]. 
However, a recent study demonstrated that BCAT1 
could mediate EGFR tyrosine kinase inhibitors (TKI) 
resistance by producing GSH to counteract ROS 
accumulation [103]. Furthermore, another study also 
identified BCAT2 as a novel suppressor of ferroptosis, 
whose activation of ectopic expression could 
specifically antagonize system Xc- inhibition and 
protect liver cancer and pancreatic cancer cells from 
ferroptosis. Therefore, BCAT2 could serve to predict 
the responsiveness of cancer cells to the ferroptosis- 
inducing therapy [104]. Together, reprogramming of 
BCAA metabolism could change mitochondrial 
functions as well as gene expression, redraw other 
metabolic pathways, and change the levels of essential 

metabolites, including Glu, α-KG, BCAAs and ROS, 
therefore elevating cancer cell proliferation and 
enhancing drug resistance capacity [98]. 

Tryptophan metabolism 
As EAA, tryptophan (Trp) and its metabolites 

perform various nutritional and physiological roles 
and are intimately linked to regulating cancer, 
neurodegeneration, and other diseases [105]. As a 
building block of proteins, Trp is required for cell 
growth and maintenance. As a neurotransmitter and 
signaling molecule, Trp is required to transmit 
organismal responses to dietary and environmental 
signals [106]. The content of internal free Trp depends 
on the external food intake and the activity of Trp 
metabolic pathway. Among them, more than 95% of 
free Trp functions as a substrate to participate in the 
kynurenine (Kyn) pathway, which produces various 
metabolites with different biological activities. The 
rate-limiting step in the Kyn pathway is performed by 
three enzymes indoleamine-2,3-dioxygenase 1 (IDO1), 
IDO2, and tryptophan-2,3-dioxygenase (TDO). They 
consume Trp by converting Trp into 
N-formylkynurenine (NFK), which accordingly has a 
fundamental impact on cellular function and survival 
[106]. In cancer, aberrant activation of IDO1 and TDO 
results in suppression of anti-tumor immunity [107]. 
Therefore, drugs combining IDO1 inhibitors and 
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immune checkpoint inhibitors have been developed 
for enhancing anti-tumor immunity [108]. Although 
there are few reports about the metabolites or key 
enzymes of the Kyn pathway involved in regulating 
ferroptosis, a recent study revealed that IDO1 
deficiency contribute to ferroptosis resistance by 
activating the expression of SLC7A11, (xCT), while 
IDO1 overexpression could exacerbate the classical 
ferroptosis events [109]. 

Furthermore, recent research discovered that Trp 
metabolite, indole-3-pyruvate (I3P) can regulate 
ferroptosis [110]. Trp can be metabolized to I3P 
catalyzed by interleukin 4 induction 1 (IL4i1), a 
FAD-dependent oxidoreductase that metabolizes AAs 
and is linked to immune suppression in cancer. I3P 
protects against ferroptosis in at least two distinct 
ways: by directly scavenging free radicals and 
activating anti-oxidative stress pathways [110]. I3P 
can up-regulate the protein levels of SLC7A11, NQO1, 
ATF4, CYP1B1, and the AKR1C family at the 
transcriptional level. These proteins are all involved 
in oxidative stress response, which can induce cell 
resistant to ferroptosis-induced oxidative damage. 
Furthermore, compared with the metabolites derived 
from the catalyzation of other AAs by IL4il, I3P 
exhibited the highest radical scavenging potency 
against the exogenous stable radical 
diphenyl-2-pyridohydrazine (DPPH). Therefore, I3P 
might also be able to trap lipid peroxyl radicals 
directly to prevent ferroptosis [110]. Given that IL4i1 
activates anti-ferroptosis pathways through I3P and 
possibly other indoles, we speculate that blocking 
IL4i1-mediated Trp metabolism could be a useful 

anti-cancer therapeutic strategies (Figure 3). 

Other amino acids metabolism 
Other AAs, such as Arg, Ser, Gly, lysine (Lys), 

etc., also play a critical role in cell metabolism and 
cancer development. Arg could serve as a precursor of 
many biomolecules, such as creatine, nitric oxide, 
polyamines, proteins, and other AAs [10]. In recent 
years, Arg starvation has become a potential and 
novel clinical strategy for cancer therapy [111-112]. 
There is currently a lack of research on Arg 
metabolism in regulating ferroptosis. But numerous 
evidences indicate that Arg consumption is intimately 
linked to ROS production [113]. A study exploring the 
effect of Arg on lipopolysaccharide (LPS)-induced 
oxidative stress found that the intracellular GPX 
content was significantly increased after the addition 
of Arg, accompanied by a decrease in ROS and 
malondialdehyde (MDA) content, and this process 
was realized at least partially through arginase-1 
signaling pathway [114]. These findings indirectly 
imply that Arg metabolism is likely to participate in 
the regulation of ferroptosis. 

The de novo synthesis of Cys fails to perform 
without considering Ser and Gly in the one-carbon 
pathway [16]. Activating Ser synthesis pathway is 
directly correlated with GSH synthesis [115], as Ser 
itself participates in Cys synthesis, and serine-derived 
Gly is a component of GSH [19,116]. Along with its 
anabolic function in nucleotide synthesis and protein 
translation, Ser catabolism in mitochondria is crucial 
to maintain NADPH production and redox balance 
[117]. Therefore, it can be inferred that Ser and Gly 

 

 
Figure 3. The regulation of tryptophan metabolism in ferroptosis. Trp can be converted into NFK under the catalysis of IDO and TDO to regulate tumor growth. IDO 
aggravates ferroptosis by inhibiting xCT. In addition, Trp can also be metabolized to I3P under the catalysis of IL4i1 to prevent ferroptosis. Abbreviations: Trp: tryptophan; 
IDO: indoleamine-2,3-dioxygenase; TDO: tryptophan-2,3-dioxygenase; NFK: N-formylkynurenine; AHR: aryl hydrocarbon receptor; xCT: solute carrier family 7 member 11; 
I3P: indole-3-pyruvate; IL4i1: nterleukin 4 induction 1. 
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might be able to regulate ferroptosis by participating 
in GSH synthesis and redox reactions. Many studies 
have noted that tumors, such as melanoma, breast 
cancer, lung cancer, and Ewing’s sarcoma could 
activate the serine-glycine biosynthetic pathway to 
support their growth [118-121]. The de novo synthesis 
of serine-glycine has been established as an important 
factor in tumorigenesis. And the inhibition of 
serine-glycine biosynthesis could interfere with their 
redox state, leading to the ROS accumulation and cell 
death [121]. Nevertheless, there is still a lack of direct 
evidence that Ser or Gly can regulate ferroptosis. 

A recent study showed that Lys was also 
involved in the regulation of ferroptosis, which found 
that L-lysine α-oxidase, a member of the L-amino acid 
oxidase family, activates ferroptotic signal by 
catalyzing the oxidative deamination of L-lysine and 
ROS production [122]. The most updated situation of 
key enzymes/transporters or genes of AA 
metabolism that possibly participates in the 
regulation of ferroptosis are presented in Table 1. 

Perspectives and Conclusions 
Since the concept of “ferroptosis” was defined, 

people have continuously explored its therapeutic 
potential in lipid peroxidation diseases. In fact, it has 
been confirmed in many cancers that they are more 
susceptible to this iron-catalyzed necrosis. However, 
working hard to develop tolerance and escape various 
forms of death seems to be the eternal hallmark of 
cancer cells, and ferroptosis is no exception. The 
sensitivity of cell to ferroptosis is correlated with 
numerous biological processes, including AA 
metabolism. 

As basic nutrients and energy sources, AAs 
contribute significantly to tumor proliferation and 
homeostasis by acting as intermediates in the 
metabolism of glucose, lipids and nucleotides. As new 
functions continue to be discovered, AA metabolism 
has exerted an increasing part in cancers. Numerous 
cancers exhibit a high requirement for specific AAs 
acquired exogenously or released endogenously. 
Thus, specific AA deprivation could shut down 
nutrient supply, resulting in AA starvation and cell 
death. Some AA starvation therapies designed 
according to the high demand of tumor cells for 
specific AAs have been introduced into clinical 
practice or are undergoing clinical evaluation, such as 
Arg, asparagine, Lys, methionine, phenylalanine, 
tyrosine and so on [130]. However, although AA 
depletion therapy has broad applicability in cancer 
treatment, metabolic inhibitor monotherapy may 
render cancer cells drug-resistant due to 
compensatory activation and cross-interference of 
metabolism pathway or reactivation of the silenced 

genes. 
 

Table 1. Key enzymes/transporters or genes that may participate 
in the regulation of ferroptosis in amino acid metabolism 

Compound/
Drug 

Target Mechanism Phase 
(status) 

Reference 

sorafenib system Xc- Prevents cystine import, 
causes GSH depletion 

Approval [123] 

erastin system Xc- Prevents cystine import, 
causes GSH depletion 

Phase I [1] 

sulfasalazine system Xc- Prevents cystine import, 
causes GSH depletion 

Approval [1] 

BSO GCL Inhibits GCL, inhibits GSH 
synthesis. 

Phase I [124] 

artesunate glutathione 
S-transferase 

Inhibits glutathione 
S-transferase, causes GSH 
depletion 

Approval [125] 

cyst(e)inase Cyst(e)ine Induces cyst(e)ine depletion  [32] 
CB-839, 
BPTES 
968 

GLS Inhibits the conversion of Gln 
to Glu 

Phase I/II [87, 91] 

AOA GOT1 Inhibits the conversion of Glu 
to  
a-KG  

 [87] 

ADI-PEG20 Arginine degrades and consumes Arg Phase III [126] 
CB-1158 Arginase Inhibiting arginase Phase II [127] 
GPNA, 
Tamoxifen 
Raloxifene 

ASCT2 Inhibits glutamine uptake  [91, 128] 

Gene Protein Mechanism Phase 
(status) 

Reference 

CDO1 cysteine 
dioxygenase 

enzyme that catalyzes the 
conversion of cysteine to 
taurine and reduces GSH 
synthesis 

 [53] 

CISD1 CDGSH 
iron-sulfur 
domain 1 

Inhibits mitochondrial iron 
transport into the matrix 

 [129] 

SLC7A11 Solute carrier 
family 7 
member A11, 
xCT 

a component of system Xc-, 
requires for cystine import 

 [82] 

CARS cysteinyl- 
tRNA 
synthetase 

knockdown causes increased 
transsulfuration pathway 
activity, and resistance to 
ferroptosis  

 [58] 

NFS1 cysteine 
desulfurase 

enzyme involves in 
synthesizing iron-sulfur 
clusters using sulfur from 
cysteine 

 [64] 

SLC1A5 solute carrier 
family 1 
member 5 

amino acid transporter 
feeding glutaminolysis 

 [86] 

GCLC glutamate- 
cysteine 
ligase 
catalytic 
subunit 

enzyme involves in GSH 
synthesis 

 [124] 

BCAT2 branched-cha
in amino acid 
transaminase
-2 

activation could antagonize 
system Xc- inhibition and 
protect from ferroptosis. 

 [104] 

I3P indole-3-pyr
uvate 

scavenges free radicals and 
activates anti-oxidative stress 
pathways 

 [110] 

LO L-lysine 
α-oxidase 

enzyme catalyzes the 
oxidative deamination of 
L-lysine to activate 
ferroptosis 

 [122] 

 
Targeting AA metabolism is currently moving 

towards combinatorial studies based on the 
synergistic drug interactions, such as the study of 
combining immunotherapy and metabolic inhibitors. 
Although the current research on the regulation of 
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ferroptosis by AA metabolism is limited, the 
combinatorial targeting of AA metabolism and 
ferroptosis has shown great promise in cancer 
treatment. While there are still some thorny issues for 
this mode of therapy that urgently need to be further 
studied. For example, it is necessary to clarify the 
metabolic dependence in specific cancer type, so as to 
select an appropriate AA target. Attention should also 
be paid to the crosstalk of AA metabolism between 
cancer cells and immune cells as well as normal cells 
in the surrounding environment, as ferroptosis may 
affect cancer immune surveillance in a dual way. A 
full understanding of metabolic flexibility and 
diversity of ferroptosis in cancers will help better 
guide drugs usage and cancer treatment. 
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