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Abstract

Tripartite motif-containing 44 (TRIM44) has recently been implicated in various pathological processes in
numerous cancers, including lung adenocarcinoma (LUAD); however, its functional roles in
chemoresistance are poorly understood. Herein, TRIM44 knockdown sensitized LUAD cells to cisplatin
and enhanced cisplatin-induced apoptosis. Microarray analysis indicated that the “Role of BRCAI in DNA
damage” and the BRCA| gene expression were positively regulated by TRIM44, which was further verified
by immunofluorescence, qRT-PCR, and Western blotting. BRCA1 depletion effectively abolished
TRIM44-modulated cisplatin resistance and regulation of homologous recombination (HR) repair.
Interestingly, TRIM44 interacted with FLNA, an upstream regulator of BRCAI as specified by STRING V
11.5, and facilitated its stability and deubiquitination. FLNA was also found to be required for the
functions of TRIM44 in drug resistance. Using animal models, overexpression of TRIM44 was shown to
confer resistance to cisplatin in a BRCAI- and FLNA-dependent manner. TRIM44 expression levels in
tissues from cisplatin-resistant LUAD patients were significantly higher than those in tissues from
cisplatin-sensitive LUAD patients. Collectively, our study results demonstrate that the TRIM44/FLNA/
BRCAI axis is involved in cisplatin chemoresistance, providing potential therapeutic targets for LUAD
patients with cisplatin resistance.
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Introduction

Despite the fact that the incidence of lung cancer
has been surpassed by that of breast cancer, lung
cancer remains the leading cause of cancer-related
death worldwide [1, 2]. Approximately 45-55% of
non-small-cell lung cancers (NSCLCs, accounting for
85% of all lung cancers) are lung adenocarcinoma
(LUAD) [3]. Platinum compounds, such as cisplatin
[also known as cis-diamminedichloroplatinum (II),
CDDP), are front-line chemotherapeutic agents for
LUAD [4]. Cisplatin treatment gives patients a

dramatic survival advantage and works by inducing
DNA-platinum adduct formation and apoptotic
signaling in cancer cells; however, resistance limits its
clinical utility and effectiveness in patients with
LUAD [5, 6]. Thus, the identification of accurate
predictive markers for response or resistance and a
better understanding of the molecular mechanisms of
cisplatin chemoresistance are critical.

Tripartite motif (TRIM)-containing proteins are
typically characterized by a RING-finger domain, one
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or two B-box domains, and a coiled-coil domain [7].
TRIM44 is an atypical TRIM family protein that lacks
an N-terminal RING-finger domain but contains a
zinc finger domain found in ubiquitin hydrolases (ZF
UBPs) and ubiquitin specific proteases (USPs) [8].
Therefore, TRIM44 could function as a
““USP-like-TRIM” to deubiquitinate and stabilize
associated proteins [8-12]. TRIM44 is involved in the
virus-mediated immune response, neurodegenerative
diseases, developmental disorders and malignant
diseases, including lung cancer [12-15]. Increasing
evidence indicates that TRIM44 plays pivotal roles in
tumor progression, as it can potentiate the
proliferation, migration and invasion of cancer cells
and can induce drug resistance and radioresistance
[9-11, 15-27]. Regarding chemotherapy resistance,
only one publication showed that TRIM44 conferred
the resistance of hepatocellular carcinoma cells to
doxorubicin by regulating the NF-xB signaling
pathway [27]. Our previous report revealed that
TRIM44 increased the metastatic and proliferative
capacity of lung cancer cells by inducing epithelial-to-
mesenchymal transition and accelerating the G1/S
phase transition [15]; however, the functions and
mechanisms of TRIM44 in LUAD chemoresistance,
including cisplatin resistance, are still unclear.

Breast cancer susceptibility gene 1 (BRCAI), a
tumor suppressor strongly associated with familial
cancers, was initially cloned in 1994 [28]. The BRCA1
protein functions in numerous cellular and
biochemical processes involved in the maintenance of
chromosomal stability and tumor repression through
its involvement in DNA damage-induced repair, the
cell cycle, transcription, chromatin remodeling,
epigenetic control, transcriptional regulation and
apoptosis [29-31]. In the DNA damage response
(DDR), BRCA1 plays a critical role in DNA damage
repair processes, including the activation of double-
strand breaks (DSBs) repair. Platinum-induced DNA
cross-linking can result in DNA DSBs, a leading lethal
type of DNA damage [32, 33]. Next, homologous
recombination (HR) repair, a major system required
for DNA DSBs, is induced by BRCA1 [32, 33]. BRCA1
promotes the recruitment of the recombinational
repair protein RAD51 to damage sites [34]. By
searching the homologous chromatid, the generation
of RAD51-coated filaments at DNA damage sites can
induce DNA strand repair [33]. The properties of
RAD51 foci indicate the multimeric nucleoprotein
complexes engaged in HR [35]. It has been reported
that following exposure to the DNA cross-linking
agent cisplatin, BRCA1 contributes to increased
chemoresistance of cancer cells [36-38]. Moreover, a
high BRCA1 expression level predicts the poor
efficacy of cisplatin-based neoadjuvant chemotherapy

in cancer patients [39]. To date, the mechanism and
factors that regulate the effects of BRCA1 on HR
repair have not been fully elucidated.

Herein, we revealed for the first time that
TRIM44 is implicated in cisplatin resistance via
cell-based assays, animal models and analyses of
tissue specimens derived from LUAD patients.
Notably, TRIM44 knockdown enhanced the
sensitivity of LUAD cells to cisplatin in vitro and in
vivo. Mechanistically, TRIM44 was shown to control
the effect of BRCA1 on HR repair and BRCA1
expression by increasing FLNA stability. Our findings
indicate an important role of the TRIM44/FLNA/
BRCAL1 axis in chemoresistance in LUAD.

Results

TRIM44 confers cisplatin resistance in LUAD
cells

To investigate whether there is a link between
TRIM44 expression and cisplatin resistance, cisplatin-
sensitive cells (A549 cells) were exposed to cisplatin at
different concentrations for 24 h and to 10 pM
cisplatin for different amounts of time. Intriguingly,
cisplatin treatment significantly increased the TRIM44
expression in A549 cells in a dose- and
time-dependent manner (Figure 1A). Furthermore,
compared to that in cisplatin-sensitive cells (A549
cells), TRIM44 expression in cisplatin-resistant cells
(A549/DDP cells) was considerably elevated (Figure
1B). Thus, A549/DDP cells were utilized for the
loss-of-function model, while A549 cells were used for
the gain-of-function model. We silenced TRIM44
expression in A549/DDP cells using two independent
TRIM44 shRNAs. Then, we generated stable TRIM44
shRNA-expressing  clones  [shTRIM44-1 (also
designated shTRIM44) and shTRIM44-2] and a control
shRNA-negative control-expressing clone (shNC).
Successful knockdown of TRIM44 was validated by
qRT-PCR and Western blotting (Figure 1C-D). When
treated with cisplatin at various concentrations, the
viability of TRIM44 knockdown cells was lower than
that of the corresponding shNC cells, as assessed by
the CCK-8 assay (Figure 1E). Plate colony formation
assay and EdU assay revealed that TRIM44 depletion
impaired cisplatin-resistant LUAD cell proliferation
(Figure 1F-G). Then, we evaluated the role of TRIM44
in cisplatin-induced apoptosis by flow cytometric
analysis and Western blotting. In line with our
expectations, TRIM44 knockdown dramatically
enhanced the apoptosis of A549/DDP cells after
treatment with cisplatin. Increased expression of the
proapoptotic protein (Bax), and decreased expression
of the antiapoptotic protein (Bcl-2) occurred
concomitantly (Figure 1H-I).
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Figure 1. TRIM44 knockdown reverses cisplatin resistance in cisplatin-resistant LUAD cells. (A) The protein expression of TRIM44 after treatment with different
concentrations of cisplatin for 24 h (upper panel) or 10 pM cisplatin for different time periods (lower panel) in A549 cells. (B) mRNA (upper panel) and protein (bottom panel)
expression of TRIM44 in A549 and A549/DDP cell lines. (C-D) TRIM44 mRNA (C) and protein (D) expression in A549/DDP cells transfected with shNC, shTRIM44-1 and
shTRIM44-2. (E) CCK-8 analysis showed the viability of the above cells following 48 h cisplatin treatment. (F) The indicated cells were treated with cisplatin for 14 days at a
dosage of 10 pM. Colonies were stained with crystal violet (left panel). The bar graphs show the statistical analysis of the number of colonies (right panel). (G) EdU assay of shNC,
shTRIM44-1 and shTRIM44-2 cells in the presence of cisplatin (10 uM). (H) Representative images (left panel) and bar graphs showing the statistical analysis (right panel) of
Annexin V-APC/7-AAD staining of the designated cells that were treated for 24 h with 10 pM cisplatin. (I) Protein expression of apoptosis-related molecules. Data are shown
as the mean * SD. P > 0.05 was considered not significant (N.S.), *P < 0.05, **P < 0.01, and ***P < 0.001.

For the gain-of-function model, qRT-PCR and  vector plasmid (Figure S1A-B). Next, TRIM44-
Western blotting showed that A549 cells were stably ~ overexpressing clones (TRIM44) and a control-
transfected with TRIM44 overexpression or control  expressing clone (Ctrl) were established. In contrast,
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TRIM44 overexpression increased the chemo-
resistance of cisplatin-sensitive cells, as determined by
the CCK-8 (Figure SI1C), plate colony formation
(Figure S1D) and EdU (Figure S1E) assays. As
expected, high expression of TRIM44 was related to
decreased apoptosis, as further proven by flow
cytometric analysis (Figure S1F) and apoptotic marker
evaluation (Figure S1G). Our results indicated that
TRIM44 is critical for the resistance of LUAD cells to
cisplatin.

TRIM44 promotes BRCAI expression and the
effect of BRCAI on HR repair

To investigate the mechanism by which TRIM44
induces cisplatin resistance, microarray analysis was
conducted to screen the global gene expression
profiles of shNC and shTRIM44. In total, 490
upregulated and 722 downregulated genes were
found after TRIM44 knockdown (Figure 2A). “Disease
or Functions Annotation” analysis of the differentially
expressed genes (DEGs) (P < 0.05 and absolute fold
change > 2) via IPA software showed that TRIM44
might play roles in cell growth and proliferation,
DNA replication, recombination, repair, and the cell
cycle (Figure S2A). Moreover, “Canonical Pathway
analysis” of IPA software revealed that multiple
pathways might be regulated by TRIM44. Among
them, the “Role of BRCA1 in DNA damage” ranked first
according to the P value (Figure 2B). In detail, 11
genes involved in “Role of BRCAI in DNA damage”,
including BRCA1, were downregulated, whereas 3
genes were upregulated (Figure 2C). Consistently,
based on The Cancer Genome Atlas (TCGA) database,
Gene Ontology (GO) enrichment analysis indicated
that TRIM44 functions in “DNA repair” (Figure S2B).
TRIM44 mRNA expression was positively linked with
BRCA1 mRNA expression in LUAD samples from the
TCGA database (Figure 2D). In agreement with the
microarray results, when TRIM44 was knocked down,
the mRNA and protein levels of BRCA1l were
decreased (Figure 2E-F).

Considering the role of BRCA1 in HR repair, we
speculated that TRIM44 might lead to increased HR
repair and decreased DNA damage. IF staining was
applied to measure the formation of RAD51 and
y-H2AX foci in cisplatin-resistant cells after cisplatin
treatment for 24 h. As expected, TRIM44 knockdown
decreased the number of RADS51 foci (Figure 2G) but
increased the number of y-H2AX foci, which
indicated DNA damage (Figure 2H). In contrast,
overexpression of TRIM44 enhanced the expression of
BRCA1 (Figure S2C-D). IF assays showed that, in
response to cisplatin, TRIM44 overexpression induced
RAD51 foci formation but reduced y-H2AX foci
development in cisplatin-sensitive cells (Figure

S2E-F). These results demonstrate that TRIM44
critically regulates the role of BRCA1 in HR repair by
regulating BRCA1 expression.

BRCAI is required for TRIM44-induced
cisplatin resistance

In concordance with previous reports that
BRCA1 induced cisplatin resistance [40, 41], we also
found that BRCA1 knockdown  sensitizes
cisplatin-resistant LUAD cells to drug and attenuates
cisplatin-induced apoptosis (Figure S3).

Next, we further explored whether BRCA1 is
essential for TRIM44-mediated cisplatin resistance.
shBRCA1 was  transfected into  TRIMA44-
overexpressing A549 cells, and the knockdown
efficacy was confirmed by qRT-PCR and Western
blotting (Figure 3A-B). We found that silencing
BRCA1 dramatically reduced the promotional effects
of TRIM44 on A549 cell viability, colony forming
ability, and proliferation in response to cisplatin as
determined by the CCK-8 (Figure 3C), colony
formation (Figure 3D) and EdU (Figure 3E) assays.
Apoptosis analysis by flow cytometry and Western
blotting indicated that BRCA1 depletion almost
abolished TRIM44-modulated apoptosis in response
to cisplatin (Figure 3F-G). Consistent with our above
results, IF assays demonstrated that BRCA1
knockdown impaired the TRIM44-mediated increases
in HR repair marker foci (RAD51 foci per cell)
formation and decreases in DNA damage marker foci
(y-H2AX foci per cell, Figure 3H-I). These data
indicated  that = TRIM44  regulates @ LUAD
chemoresistance in a BRCA1-dependent manner.

TRIM44 physically binds to FLNA and
regulates its stability

To elucidate the mechanism by which TRIM44
orchestrates BRCA1l-mediated HR repair and cisplatin
resistance, we reviewed all publications linked to
TRIM44 in cancer. Only one publication reported
proteomic analysis of TRIM44 or its partner. Wei et al.
[10] analyzed the binding partners of TRIM44 by
using a combination of Co-IP and mass spectrometry
in a study on melanoma progression, and seven
overlapping proteins (TLR4, ILF2, ENO1, CALMLS5,
PKM, HSPAS5, and FLNA) were identified in the two
cell lines. Next, STRING V 11.5. (https:/ / cn.string-db.
org/) was employed to estimate the relationship
between BRCAI and these 7 candidate proteins. Of
these seven proteins, only actin-binding protein
filamin A (FLNA) showed a potential association with
BRCA1 (Figure 4A). According to documented
reports, FLNA is able to interact with BRCA1 to
regulate its expression [42, 43].
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Figure 2. TRIM44 knockdown inhibits BRCAI expression and the effect of BRCAI on HR repair. (A) Heatmap of differentially expressed genes (DEGs) obtained
from global gene expression profiling of shNC (blue) or shTRIM44 (yellow) derived from A549/DDP cells using a microarray assay. The normalized expression of genes was
indicated by the Z score. (B) The “Canonical Pathway Analysis” in the IPA software was used to summarize the enrichment of DEGs in the classical signaling pathways, and all
signaling pathways were ranked using -Log(P value). (C) Heatmap showing DEGs of shNC (purple) or shTRIM44 (green) derived from A549/DDP cells involved in the “Role of
BRCAI in DNA damage”. 11 DEGs were down-regulated, including BRCA| (red), whereas 3 DEGs were up-regulated. (D) The correlation between the expression of TRIM44 and
BRCAI in LUAD samples in the TCGA database is shown. (E-F) The expression of BRCAI was reduced following TRIM44 knockdown, according to qRT-PCR (E) and Western
blotting (F) analysis. (G-H) shNC, shTRIM44-1 and shTRIM44-2 derived by A549/DDP cells were treated with 10 uM cisplatin for 24 h. (G) Representative immunofluorescence
images showing RADS1 foci (left panel) and bar graphs showing the statistical analysis (right panel). (H) Representative immunofluorescence images showing y-H2AX foci (left
panel) and bar graphs showing the statistical analysis (right panel). Data are shown as the mean  SD. P > 0.05 was considered not significant (N.S.), **P < 0.01, and ***P < 0.001.

Then, to further elucidate how TRIM44 interacts
with FLNA, we immunoprecipitated Flag-TRIM44,
and Western blotting against FLNA and TRIM44
confirmed that FLNA interacted with TRIM44, while
TRIM44 was discovered after the IP of FLNA,
suggesting that TRIM44 interacted with FLNA
(Figure 4B). Moreover, confocal laser scanning
microscopy showed colocalization of TRIM44 and

FLNA in cisplatin-resistant cells (Figure 4C). To study
the regulatory mechanism, we examined whether
TRIM44 silencing could affect FLNA expression. As
demonstrated in Figure 4D-E, the FLNA protein level
was reduced following TRIM44 knockdown, while
the mRNA level remained unchanged, demonstrating
that ~ TRIM44  regulates = FLNA  at  the
posttranscriptional level.
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TRIM44 was reported to act as a deubiquiti-
nating enzyme to regulate protein expression [9, 11].

Cycloheximide (CHX) assays revealed that
knockdown of TRIM44 decreased the stability of the
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FLNA protein (Figure 4F), whereas compared to Ctrl
cells, TRIM44 cells showed a longer FLNA half-life
(Figure 4G). As expected, we found that MG132, a
proteasome inhibitor, restored FLNA protein
expression, which was repressed by TRIM44
knockdown (Figure 4H). Furthermore, silencing
TRIM44 enhanced the total and K48-linked
ubiquitination of endogenous FLNA but had no
impact on K63-linked ubiquitination in A549/DDP
cells (Figure 41I). TRIM44 overexpression inhibited the
overall polyubiquitination and the K48-linked
polyubiquitin chain of FLNA but did not change the
K63-linked polyubiquitin chain of FLNA according to
ubiquitination-based IP assay results (Figure 4]J).
These findings suggest that TRIM44 physically
interacts with FLNA, preventing FLNA degradation
by regulating its deubiquitination.

FLNA knockdown sensitizes cisplatin-resistant
LUAD cells to cisplatin

The roles of FLNA in cisplatin remain largely
unclear [44, 45]. In the present study, we employed
two distinct shRNAs targeting FLNA and a nontarget
shRNA as a control to knock down FLNA in
A549/DDP cells to further determine the biological
function of FLNA in cisplatin chemoresistance. The
knockdown efficiency of FLNA was investigated
using qRT-PCR and Western blotting (Figure S4A-B).
With cisplatin treatment, FLNA depletion reduced the
viability, colony forming ability, and proliferation of
cisplatin-treated A549/DDP cells, as suggested by the
CCK-8, colony formation and EdU assays (Figure
S4C-E). The role of FLNA in cisplatin-induced
apoptosis was then investigated using flow cytometry
and Western blotting. Knockdown of FLNA increased
the cisplatin-induced apoptosis of A549/DDP cells
(Figure S4F-G). Our data indicated that FLNA is a
potential key driver of chemoresistance in LUAD.

FLNA is required for TRIM44-induced cisplatin
chemoresistance

Next, we further investigated if FLNA plays a
role in TRIM44-induced cisplatin resistance. We
knocked down FLNA in TRIM44-overexpressing
A549 cells (TRIM44), and the knockdown efficiency
was verified by qRT-PCR and Western blotting
(Figure 5A-B). The CCK-8 assay demonstrated that
the depletion of FLNA inhibited the effect of TRIM44
on cell viability under cisplatin stimulation (Figure
5C). The enhanced colony forming ability and cell
proliferation of A549 cells generated by TRIM44
overexpression were decreased by FLNA knockdown,
as demonstrated by colony formation and EdU assays
(Figure 5D-E). Apoptosis assays demonstrated that
FLNA  depletion reversed the effect of

TRIM44-attenuated cisplatin-induced cell apoptosis
(Figure 5F-G). Furthermore, suppression of FLNA
almost completely abolished the TRIM44-regulated
role of BRCA1 in DNA damage repair, which was
demonstrated by the examination of RAD51 and
y-H2AX foci (Figure 5H-1). These findings support the
hypothesis that the TRIM44-induced chemoresistance
of LUAD cells to cisplatin depends on FLNA. In
TRIM44-depleted LUAD cells, we found that FLNA
overexpression promoted BRCA1 expression (Figure
S5A-B).

TRIM44 knockdown enhances the sensitivity of
xenograft tumors to cisplatin treatment

To confirm the TRIM44 silencing-induced
sensitive phenotype in wvivo, we established
A549/DDP xenografts using nude athymic mice.
Nude mice were injected subcutaneously with
shTRIM44 and NC cells. After the tumors grew to 100
mmb3, the mice were treated with cisplatin at a dose of
5 mg/kg and injected intraperitoneally every 3 days.
At 21 days after the drug injection, luciferase-
expressing xenograft tumors generated from
shTRIM44 cells exhibited lower bioluminescence after
injection with D-luciferin than those from NC cells
(Figure 6A-B). The mice were then killed, and all
xenograft tumors were surgically removed,
measured, and weighed. Compared with the NC
group, mice injected with shTRIM44 cells had
substantially decreased tumor volumes and weights
(Figure 6C-E). In addition, the body weights of mice in
the NC and shTRIM44 groups were not changed
significantly (Figure S6A). Western blotting and IHC
analyses of xenograft tumor tissues showed that Bax,
a proapoptotic protein, was expressed at much higher
levels in the shTRIM44 group than in the NC group,
whereas the expression levels of the Bcl-2 were
decreased, suggesting that TRIM44 knockdown
promoted cisplatin-induced apoptosis and reversed
chemoresistance (Figure 6F-G). The spontaneous
xenograft tumors formed by shTRIM44 cells exhibited
significantly lower levels of BRCA1 and FLNA than
those formed by NC cells (Figure 6F-G). Our results
indicated that TRIM44 depletion might enhance the
sensitivity of xenograft tumors to cisplatin treatment
by regulating the FLNA /BRCA1 axis in vivo.

TRIM44 promotes cisplatin resistance via the
FLNA/BRCALI axis in vivo

To obtain direct evidence that TRIM44 induces
drug resistance to cisplatin by regulating BRCA1 and
FLNA in vivo, nude mice were randomly distributed
into 6 groups: (I) Ctrl, (II) TRIM44, (III)
TRIM44+Vector, (IV) TRIM44+shBRCA1, (V)
TRIM44+Vector, and (VI) TRIM44+shFLNA. Mice
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were treated with cisplatin and the other agents as
described above. Compared with nude mice injected
with Ctrl cells, nude mice injected with TRIM44 cells
had an increased tumor burden (Figure 7A-E),
suggesting that TRIM44 enhanced cisplatin resistance.
Intriguingly, when compared to group IlII, group IV
exhibited a significantly reduced tumor burden,
indicating  that BRCAl is  required for
TRIM44-induced cisplatin resistance in vivo (Figure
7A-E). Moreover, FLNA knockdown weakened
chemoresistance derived from TRIM44 cells, which
was determined by the result of comparisons of
experimental data from the (V) and (VI) groups
(Figure 7A-E). We also found no significant difference
in the weights of the mice in the different groups
(Figure S6B). Western blotting and IHC assays
showed that the expression levels of FLNA, BRCA1,
and Bcl-2 in tumors formed by TRIM44 cells were
much higher than those formed by Ctrl cells, but the
expression levels of Bax were significantly lower
(Figure 7F-G). Silencing either BRCA1 or FLNA
almost eliminated the effect of TRIM44 cells on
cisplatin, which was demonstrated by Bcl-2 and Bax
protein expression (Figure 7F-G). These findings
support the conjecture that TRIM44 causes cisplatin
chemoresistance by inhibiting apoptosis in a BRCA1-
and FLNA-dependent manner in vivo.

TRIMA44 is correlated with BRCAI and FLNA
in clinical LUAD specimens

To understand whether there is a relationship
between TRIM44 expression and cisplatin resistance
in the clinic, LUAD tissues were collected from LUAD
patients who had been treated with cisplatin. IHC
arrays showed that the TRIM44 expression level in the
cisplatin-resistant group (PFS < 6 months) was higher
than that in the cisplatin-sensitive group (PFS = 6
months, Figure 8A-B), suggesting that high TRIM44
expression in clinical LUAD specimens is significantly
linked to chemoresistance. To explore the
mechanisms by which TRIM44 is associated with
cisplatin, IHC staining of TRIM44, BRCA1 and FLNA
was performed. The distribution and intensity of
TRIM44 were positively related to BRCA1 and FLNA
(Figure 8C). TRIM44 expression was also correlated
with the BRCA1 and FLNA expression in LUAD
tissue specimens (Figure 8D-E). These data confirmed
our findings in LUAD cell lines and xenograft models.

Discussion

Drug resistance is the major cause of
chemotherapy failure and disease relapse [46]. Thus,
the identification of determinants and understanding
of mechanisms linked to LUAD cisplatin resistance
are indispensable. It has been previously reported that

TRIM44 can enhance the chemoresistance of
hepatocellular carcinoma cells to doxorubicin by
accelerating the activation of NF-xB [27]. Here, we
propose a working model underlying the roles of
TRIM44 in modulating cisplatin resistance (Figure
8F). TRIM44 is significantly upregulated in
cisplatin-resistant LUAD. In response to cisplatin,
overexpressed TRIM44 interacts with FLNA and
decreases the K48-linked ubiquitination of FLNA,
leading to enhanced FLNA stability. FLNA
upregulation promotes the expression and function of
BRCA1. Then, BRCA1 recruits RAD51 and thus
increases HR repair activity, eventually inducing
cisplatin resistance in LUAD cells (Figure 8F).

In this study, we observed an interesting
phenomenon that in which the abundance of TRIM44
increased following treatment with different
concentrations of cisplatin. Cisplatin or other factors-
induced DSBs is considered the most cytotoxic type of
DNA damage [32, 33]. The changing patterns of
chromatin  remodeling and  posttranslational
modifications, including N6-methyladenosine (m6A)
modification, are pivotal for proficient DSB repair [47,
48]. In response to DSBs, ATM-mediated
phosphorylation at 543 activates methyltransferase 3
(METTL3), and METTL3 modulates the accumulation
of DNA-RNA hybrids at DSB sites, leading to the
recruitment of RAD51 and BRCA1 for HR repair [48].
Overexpression of YTHN6-methyladenosine RNA
binding protein 1 (YTHDF1), an N6-methyladenosine
modification (m6A) reader, rescues the DSB DNA
damage response [49]. A previous study
demonstrated that TRIM44 is transcriptionally
upregulated by YTHDF1 [50]. In the DDR, whether
the DSB-induced abundance of TRIM44 is dependent
on YTHFF or other m6A enzymes requires further
investigation.

Here, we revealed for the first time that TRIM44
induces cisplatin resistance in LUAD. The functional
mechanisms of cisplatin chemoresistance are mainly
classified into the following categories: reduced
intracellular accumulation of cisplatin, increased
DNA adduct tolerance, increased DNA damage
repair, inhibition of apoptotic pathways, production
of antioxidants and activation of autophagy [51-55].
Notably, a recent study revealed that TRIM44 induced
autophagy by promoting sequestosome 1/p62
oligomerization [13]. This is consistent with our
bioinformatic GO enrichment analysis results based
on the TCGA database (Figure S2B). It would be
interesting to further investigate whether TRIM44
regulates autophagy to induce cisplatin resistance in
LUAD.
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Figure 5. FLNA is essential for TRIM44-induced cisplatin resistance. A549 cells were transfected with lentivirus expressing either Ctrl, TRIM44, TRIM44+Vector, or
TRIM44+shFLNA constructs. (A-B) qRT-PCR (A) and Western blotting (B) analyses were performed to evaluate FLNA expression levels when shFLNA was transfected into
TRIM44-overexpressing A549 cells. (C) CCK-8 analysis showed the effect of FLNA knockdown on the viability of TRIM44-overexpressing A549 cells. (D-E) Colony formation
analysis (D) and EdU assay (E) were used to assess the colony formation and proliferation ability of the indicated A549-derived cells. (F-G) Flow cytometric analysis (F) and
Western blotting (G) were utilized to examine the apoptosis of the indicated A549-derived cells with cisplatin treatment. (H-I) The indicated A549-derived cells were treated
with cisplatin for 24 h. (H) Representative immunofluorescence images showing RADSI foci (left panel) and bar graphs showing the statistical analysis (right panel). (1)
Representative immunofluorescence images showing y-H2AX foci (left panel) and bar graphs showing the statistical analysis (right panel). Data are shown as the mean + SD. P >
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tumor tissues. Data are shown as the mean + SD. *P < 0.05, **P < 0.01.

Our lab also first discovered that TRIM44
promotes BRCA1 expression and functions in HR
repair. Accumulating evidence indicates that BRCA1
affects cellular responses to DNA damage not only by
directly affecting DNA repair but also by playing a
role in cell cycle checkpoint control [56]. To allow
DNA repair, G2/M arrest after DNA damage
prevents the cell cycle from progressing to mitosis

upon the induction of DNA damage [57, 58]. In line
with our microarray analysis (Figure 2C), BRCA1-
deficient cells exhibited defective arrest at the G2/M
checkpoint in response to ionizing radiation [57]. It
would be innovative and interesting to further
determine whether TRIM44 induces BRCA1-induced
G2/M phase arrest in the future.
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In a very recent report, Lin ef al. showed that
TRIM44 increased nuclear FLNA expression and
stability, likely through p62 [11], but whether TRIM44
directly mediated FLNA stability was not elucidated.
Herein, we discovered a previously unrecognized role
of TRIM44 in regulating K48-linked ubiquitination
targeting the FLNA protein. Ubiquitination is a
common posttranslational modification, and the most
well-known forms are K48-linked polyubiquitination
and K63-linked polyubiquitination. Functionally,
K48-linked polyubiquitination can label substrates for
proteasomal degradation, whereas K63-linked
polyubiquitination primarily activates signaling
proteins to promote signal transduction [59, 60]. A
previous study reported that TRIM44 stabilizes VISA
by preventing its ubiquitination and degradation,
thereby promoting antiviral responses [12]. In
quiescent multiple myeloma cells, TRIM44 stabilizes
HIF-1a, which stimulates cancer cell proliferation and
survival in a hypoxic niche [9]. TRIM44 can directly
bind to and stabilize TLR4 to activate the AKT/mTOR
pathway [10]. Lin et al. also showed that TRIM44 can
deubiquitinate p62 upon irradiation, leading to an
increase in DNA damage repair [11]. As a
deubiquitinase, whether TRIM44 can protect the
potential binding partners (i.e., ILF2, ENO1, CALMLS5,
PKM, and HSPAS5) and other proteins from ubiquitin
and the relative roles of TRIM44 are worth exploring.

In summary, our work uncovers a hitherto
unappreciated role of TRIM44 in LUAD cisplatin
chemoresistance by cell-based assays, mouse models
and clinical samples. Mechanistically, TRIM44
deubiquitinates FLNA and enhances its stability to
promote the expression of BRCA and its effect on HR
repair, eventually inducing chemoresistance to
cisplatin. Targeting the TRIM44/FLNA /BRCA1 axis
may be a possible therapeutic approach to improve
the outcomes of LUAD patients with resistance to
cytotoxic DNA-damaging agents.

Materials and methods

Cell culture

A LUAD cell line resistant to cis-diammine-
dichloroplatinum (II) (A549/DDP) was established
and applied in our previous studies [61-63]. Treated
with RPMI 1640 media containing 10% FBS, the
human LUAD cell line A549 and A549/DDP were
cultivated. In DMEM with 10% FBS, human
embryonic kidney cell line (HEK-293T) was cultured.
All cultures were placed in an atmosphere at 37 °C
with 5% CO..

Cell transfection and stable cell lines

LUAD cells were transfected with lentiviruses
expressing TRIM44 knockdown or overexpression

sequences synthesized by Gene Chemistry (Shanghai,
China) and Hanbio (Shanghai, China), respectively,
and puromycin was used to screen them. The shRNAs
of BRCA1 and FLNA were also purchased from Gene
Chemistry. The detailed sequences are shown in Table
S1.

Stable TRIM44 shRNA-expressing [shTRIM44-1
(shTRIM44) and shTRIM44-2] clones and a control
shRNA-negative control-expressing clone (shNC)
were established according to the manufacturer’s
protocol. A recombinant lentiviral vector expressing
HBLV-h-TRIM44-3xflag-Zs-PURO was used to
establish TRIM44-overexpressing clones (TRIM44).
The negative control lentiviral vector HBLV-Zs-PURO
was used to establish a control-expressing clone (Ctrl).
shBRCA1 was stably transfected into TRIM44-
overexpressing Ab49 cells to establish clones
(TRIM44+shBRCA1). shFLNA was stably transfected
into TRIM44-overexpressing A549 cells to generate
clones (TRIM44+shFLNA). These two clones had the
same corresponding controls (TRIM44+Vector).
Puromycin was used to screen all stable cell lines.

Quantitative real-time PCR (qRT-PCR)

Briefly, total RNA was extracted from the cells
using a Total RNA Kit I (R6834-01, Omega Bio-Tek,
USA). Complementary DNA was synthesized using a
Transcriptor cDNA Synthesis kit (04379012001, Roche,
Germany). qRT-PCR was conducted with the 7500HT
Fast Real-Time PCR System (Applied Biosystems). All
primer sequences are presented in Table S2.

Western blotting

By RIPA lysis buffer (SW104-02, Sevenbio,
Beijing, China) containing a proteinase inhibitor
cocktail, total protein was extracted from LUAD cells
and xenograft tumor tissues and measured with the
BCA Protein Assay Kit (23227, Thermo Fisher
Scientific, USA). Using sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE), the
protein samples were separated. Protein on the gels
was electrophoretically transferred to a PVDF
membrane, which was subsequently treated with the
indicated antibodies overnight at 4 °C. The next day,
membranes were incubated with secondary antibody
for 1 h. Finally, an enhanced chemiluminescence
(ECL) detection kit (M2301, HaiGene, China) was
applied to detect proteins. In Table S3, the antibodies
applied in our study are presented.

Resistance assays

To assess the viability of LUAD cells treated with
cisplatin, a Cell Counting Kit-8 (CCK-8) assay was
performed using a kit (CK04, Dojindo, Japan). The
absorbance was detected at a wavelength of 450 nm.
In addition, LUAD cells were grown at a density of
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1000 cells per well in six-well plates and incubated for
14 days for the plate colony formation assay. After
being fixed with formaldehyde, the colonies were
stained by applying crystal violet. The count of
colonies was got following washing with PBS. EdU
assay was employed using the EdU Assay Kit
(C10310-1, RiboBio, China) to assess DNA synthesis,
indicating the proliferative capacity of the cells.
Fluorescence microscopy was used to image stained
LUAD cells. Resistance assays were performed with
the indicated dose cisplatin treatment.

Apoptosis analysis

To quantify apoptotic cells, LUAD cells were
stained by an Annexin V-APC/7-AAD Apoptosis
Detection Kit (A6030, US Everbright, China) after
being treated with cisplatin for 48 h. The stained cells
were quantified according to the manufacturer’s
instructions using flow cytometry. Anti-Bax and anti-
Bcl-2 antibodies were applied to perform Western
blotting for apoptosis analysis.

Microarray analysis

Total RNA was extracted from shNC and
shTRIM44 cells as described above. An Affymetrix
GeneChip Human Transcriptome Array was
performed as described previously [64]. “Disease or
Functions Annotation” and “Canonical Pathway
analysis” in Ingenuity Pathway Analysis (IPA)
software (version 2018; Ingenuity Systems; QIAGEN)
were employed to determine the enrichment of
differentially expressed genes (DEGs).

Immunofluorescence (IF) and foci formation
assays

The IF assay was conducted as previously
described [65]. For the RAD51 and y-H2AX foci
formation assay, the indicated cells were treated with
10 pM cisplatin to induce cellular DNA damage for 24
h, and the following steps were performed as IF assay.
Anti-RAD51 and anti-y-H2AX were applied as
primary antibodies. RAD51 and y-H2AX foci were
observed using an inverted fluorescence microscope.
All the antibodies used are presented in Table S3.

Immunoprecipitation (IP) and ubiquitination
assays

IP analysis was carried out as previously
reported [62]. The cells overexpressing flag-tagged
TRIM44 were fully lysed with IP lysis buffer, and the
protein was then immunoprecipitated with Flag
antibody or FLNA antibody. Rabbit IgG was applied
as a negative control. Western blotting was employed
to examine the bound proteins.

For the ubiquitination assay, the indicated
plasmids were transfected into 293T cells to directly

detect the enriched total ubiquitinated, Lys48 (K48)-
linked, or Lys63 (K63)-linked ubiquitinated FLNA.
The following plasmids were used: HA Ub, HA-K48
Ub and HA-K63 Ub plasmids; a His-FLNA plasmid;
and Flag-TRIM44 and Flag-vector plasmids. The cell
extracts were immunoprecipitated by a His antibody.
K48- and K63-polyubiquitinated FLNA were detected
by Western blotting with the HA antibody. In Table
53, the antibodies applied in IP assay are presented.

Animal experiments

The BALB/c nude mouse experiments were
stringently approved by the Committee on the Ethics
of Animal Experiments of Harbin Medical University.
The operations were performed in accordance with
the Guide for the Care Use of Laboratory Animals of
the Harbin Medical University Institutional Animal
Care and Use Committee.

In brief, a total of 5 x 106 A549/DDP cells stably
transfected with shTRIM44 and shNC were
subcutaneously injected into each armpit of nude
female mice. The mice were administered cisplatin at
a dosage of 5 mg/kg intraperitoneally every 3 days
after tumors were visible (100 mm?3). Twenty-one days
after the drug injection, the mice were sacrificed, and
all tumors were excised, measured and weighed.

For further mechanistic studies in vivo, 30 mice
were randomly divided into 6 groups and given
different cell injections derived from A549 cells. The
mice were grouped as follows: (I) Ctrl, (II) TRIM44,
(Il) TRIM44+Vector, (IV) TRIM44+shBRCA1, (V)
TRIM44+Vector, and (VI) TRIM44+shFLNA. The
subsequent operations were carried out in accordance
with the above protocols.

Immunohistochemistry (IHC)

IHC assays were carried out as reported
previously [62]. The antibodies used are presented in
Table S3.

Tissue specimens

All LUAD tissues (n=100) from 50 cisplatin-
sensitive and 50 cisplatin-resistant patients in this
study were collected at Harbin Medical University
Cancer Hospital. The study was conducted after
approval by the Ethical Review Committee of Harbin
Medical University Cancer Hospital.

Statistical analysis

Briefly, Student's t test was applied to assess the
statistical significance of differences between two
groups for normally distributed continuous data, and
P < 0.05 indicated significance. All statistical analyses
were conducted using GraphPad Prism 8.0.2 software.
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double-strand breaks; TCGA: The Cancer Genome

Atlas; GO: gene ontology; DEGs: differentially
expressed genes; IF: Immunofluorescence; IP:
immunoprecipitation; CHX: cycloheximide;

qRT-PCR: quantitative real-time PCR; CCK-8: Cell
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