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Abstract 

Tumor heterogeneity is one of the hallmarks of cancer and a challenge in the field of oncology. Tumor 
heterogeneity is the main cause of drug resistance, leading to therapeutic failure. Mechanically, tumor 
heterogeneity either directly affects therapeutic targets or shapes the tumor microenvironment (TME) 
by defining transcriptomic and phenotypic profiles to influence drug resistance. Tumor heterogeneity 
evolves spatially and temporally during tumor development, leading to the constant reprogramming of 
the TME. Advances in molecular profiling technologies and precision oncology platforms have allowed us 
to uncover the impact of tumor heterogeneity on drug resistance in the context of the TME. In this 
review, we focus on the processes during which genomic mutations drive tumor heterogeneity and the 
mechanisms through which tumor heterogeneity reprograms the TME to affect drug resistance and 
patient prognosis. 

Key words: tumor heterogeneity; tumor microenvironment; drug resistance 

Introduction 
Drug resistance is the leading cause of 

therapeutic failure in cancer patients. The biological 
determinants of drug resistance include tumor 
growth kinetics, tumor burden, tumor heterogeneity, 
physical barriers, immune system, tumor 
microenvironment (TME), undruggable genome, and 
therapeutic pressures. Among these determinants, 
tumor heterogeneity is the main issue that causes 
drug resistance [1-4]. Drug resistance caused by 
tumor heterogeneity exists across all cancer types and 
all therapeutic modes, including chemotherapy, 
radiotherapy, targeted therapy, and immunotherapy. 
The therapeutic targets, cancer cells themselves, and 
TME are the three major components that determine 
how well a drug works. 

Tumor heterogeneity describes cellular popula-
tion diversity between tumors of the same type in 
different patients (intertumor heterogeneity) or even 
within a single tumor (intratumor heterogeneity) [5]. 
Generally, tumor genetic mutations, transcriptional 
alterations, protein level changes, and epigenetic 

modifications of these cellular characteristics all 
manifest tumor heterogeneity [5]. In addition to these 
intrinsic factors, some other extrinsic factors, such as 
pH, hypoxia, and crosstalk between tumor cells and 
other stromal cells within the TME also affect tumor 
genotypes and phenotypes, further leading to tumor 
heterogeneity [5]. Tumor heterogeneity exists 
ubiquitously across all cancers. Chromosome 
mutational evolution, together with ecosystem 
pressures, leads to temporal and spatial segregation of 
mutation clones and subclones. In a pan-cancer study 
involving 2658 human cancer genomes spanning 38 
cancer types, mutation patterns, such as single 
nucleotide variations (SNVs), indels, structural 
variations (SVs), copy number alterations (CNAs), 
subclonal drivers, subclonal selections, and mutation 
signatures, were extensively characterized [6]. The 
authors observed that subclonal expansion occurred 
in nearly 95.1% of samples, and different cancer types 
showed cancer-specific genetic tumor heterogeneity 
patterns [6]. At the single-cell level, tumor 
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heterogeneity is also characterized by the analysis of 
the single-cell copy number in neuroendocrine 
prostate cancer [7], the analysis of gene expression in 
non-small-cell lung cancer (NSCLC) [8], 
hepatocellular carcinoma [9-11], brain cancer [12], 
breast cancer [13], kidney cancer [14], head and neck 
cancer [15], and so on. 

As mentioned above, the therapeutic targets, 
cancer cells themselves, and the TME are a 
three-component system of tumor heterogeneity 
leading to drug resistance. The TME comprises not 
only cancer cells but also the complicated tumor 
stroma, which mainly includes structures such as the 
basement membrane, extracellular matrix, 
vasculature, and various other types of cells (immune 
cells, fibroblasts, endothelial cells, etc.) [16-18]. During 
tumor progression, tumor heterogeneity continuously 
reshapes the TME by changing the transcriptional 
levels of some genes to make a more complicated 
TME, which causes divergence of trajectory 
development, immune landscape, intercellular 
networks [8, 19] and so on. Under different 
circumstances, the interactions among cells present 
diversity in the TME. Wu et al. [8] observed divergent 
and complex intercellular networks, which revealed a 
comprehensive view of the TME cellular network, 
including the following aspects: angiogenesis, 
immune activation, and suppression, as well as 
cancer-associated fibroblasts (CAFs). These 
interactions often determine tumor development and 
drug treatment efficacy, which includes drug 
resistance and prognosis [20]. Here, we review the 
genomic changes that drive tumor heterogeneity 
formation, development, and drug resistance in the 
context of tumor heterogeneity-induced TME 
reprogramming. 

Genomic processes promote tumor 
evolution and tumoral heterogeneity 

Tumor evolution is defined as the biological 
progression of tumor cells, which usually begins from 
a particular cell(s) in normal tissue, gradually forming 
a tumor ecosystem after accumulating massive 
mutations, where some of these mutations serve as 
the fuels and drivers of their host cells to undergo 
clonal expansion. Genetic mutation, selection, and 
drift are the three components of tumor evolution, 
where genetic mutation generates new variation, 
selection and drift, leading to clonal expansion and 
contraction [21]. In principle, tumor evolution has 
four putative models: linear, branching, neutral, and 
punctuated. For each model, tumor evolution 
accompanies clone selection [22]. Clonal selection is 
the most important of these three components [21]. 
Basically, tumor-selective pressure comes from two 

sources. On one hand, the pressure is exerted by TME 
elements such as immune cell response, hypoxia, pH 
alteration, and limited nutrients. On the other hand, 
the pressure comes from external causes: tumor 
therapy activities, such as conventional chemo-
therapy, and immunotherapy leading the clone 
selection. Random genetic drift describes the 
frequency changes of a gene variant (allele) due to 
random death and birth in a population, which may 
cause alleles to increase, reduce and/or disappear 
[23]. It is known that during the tumor evolution 
process, directed by diverse selection pressure, one 
small tumor cell population may evolve into a 
dominant clone or trunk driver [24]. By analyzing 
2500 tumors of different types, it was found that 91% 
of these tumors had at least one driver mutation, and 
on average, there were 4.6 drivers in each individual 
tumor, which indicates pervasive variation diversity 
across cancers [25]. Additionally, the tumor evolution 
model could switch from one to another or even 
coexist multiple different models in a particular 
tumor. The relationships between two subclones can 
be sibling (branching) or parent–child subclones, and 
the percentages of sibling subclones are 
approximately 3 times greater than those of parent–
child subclones [6]. 

All these biological characteristics and processes 
accelerate tumor evolution and increase tumor 
heterogeneity, which may depend on increased 
genome instability. For example, in breast cancer, 
BRCA1/2 loss of function is a primary driver. BRCA1 
deficiency leads to genome instability, which results 
in tumor heterogeneity at the genetic level, such as 
DNA copy number alterations in many genes, such as 
Myc, Met, Pten, and Rb1 [26]. Not only distinct 
mutations are generated and accumulated in different 
tumor cells within a tumor (intratumor level), but the 
genetic alteration profiles are also very diverse among 
different tumors (intertumor level). With the help of 
single-cell RNA sequencing (scRNA-seq) technology, 
in one of our recent studies, we found that the 
heterogeneous subgroups within the BRCA1-deficient 
mammary tumors are classified mainly due to the 
different activities of cell proliferation, metabolism, 
DNA damage response (DDR) and 
epithelial-to-mesenchymal transition (EMT) (Figure 
1A) [24]. At the intertumor level, based on 
histopathological characteristics, basal and luminal 
lineage marker expression patterns and especially the 
whole transcriptome profiles, the BRCA1-deficient 
mammary tumors could be divided into four major 
subtypes: mesenchymal-like, luminal-like I and II, 
and basal/luminal mixed tumors (Figure 1B). Because 
a tumor is a mixture of heterogeneous tumor cells, we 
hypothesized that the constitution of different tumor 
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cells (intratumor heterogeneity) mainly determines 
the subtype of the tumor (intertumor heterogeneity), 
while the complex microenvironmental cells and 
factors also significantly affect both the intra- and 
intertumor heterogeneity. 

Tumor heterogeneity drives the dynamics 
and diversity of the tumor micro-
environment 

Tumor heterogeneity, as a consequence of tumor 
evolution, has been considered an essential basis for 
reconstructing tumor evolution and other aspects of 
tumor exploration. It has been detected with different 
genetic mutation patterns, such as single nucleotide 
variations (SNVs), indels, structural variations (SVs), 
and copy number alterations (CNAs) [6, 27]. Genetic 
and epigenetic changes cooperate to define tumor cell 
transcriptomic and phenotypic profiles, leading to the 
consistent reprogramming of the TME [28, 29]. Wu et 
al. applied scRNA-seq to profile tumor heterogeneity 
and the TME in advanced non-small-cell lung cancer 
(NSCLC) [8]. Lung adenocarcinoma (LUAD) and lung 
squamous carcinoma (LUSC) were well classified by 
the high expression of NAPSA and TTF-1 (NKX2-1) 
for LUAD and TP63 and CK5 (KRT5) for LUSC. Based 
on the differential expression of some canonical 
markers, lung epithelial cells comprise alveolar type 2 
(AT1) cells, alveolar type 2 (AT2) cells, basal cells, 
ciliated cells, and club cells. Analysis of their 
developmental trajectory showed that LUAD cells 
transitioned from AT2 cells and club cells, while 
LUSC cells transitioned from basal cells, which 
showed different cancer developmental trajectories. 

In LUAD patients, the group with known oncogenic 
driver mutations enriched a cluster of macrophages 
with high CCL13 expression, while the group without 
known oncogenic driver mutations did not show this 
phenomenon. Additionally, intratumor heterogeneity 
was positively correlated with neutrophils and two 
subsets of macrophages and negatively correlated 
with plasma cells. Similarly, another recent study also 
performed scRNA-seq on early-stage LUAD samples 
that manifest as subsolid nodules (SSNs), together 
with primary LUAD, lymph node metastasis 
(mLUAD) and normal lung tissues (nLung), to decode 
tumor heterogeneity and the TME dynamic ecosystem 
[30]. The multicellular ecosystem of SSN presents 
distinct features when compared to nLung and 
mLUAD. For example, NK cells, mast cells and T cells 
in the SSN are significantly enriched compared with 
those in the mLUAD, which indicates better 
immunosurveillance in the SSN. By analyzing stromal 
cell subtypes, the authors found that the fibroblast 
subcluster in the SSN was similar to that in the nLung, 
while the endothelial cells were more similar to those 
in the mLUAD. Therefore, they hypothesized that 
these two cell types were reprogrammed at different 
stages. Regarding cell–cell communications among 
TME cells, SSN showed more abundant interactions in 
lymphocyte recruitment and homing than mLUAD. 
Thus, the cellular components and crosstalk in the 
TME are dynamically changed as tumors progress, 
and consequently, at different tumor stages, the 
abundance and functional orientation of TME 
components are significantly varied. 

 

 
Figure 1. Intratumor and intertumor heterogeneity of BRCA1-deficient mammary tumors. A. Single-cell RNA sequencing revealed intratumor heterogeneity, and the main 
contributing factors (proliferation, EMT, metabolism and DDR) were identified by the expression patterns of feature genes in BRCA1-deficient mammary tumors. B. Based on 
histopathological characteristics and whole transcriptome profiles, the four subtypes mesenchymal-like, luminal-like I and II, and basal/luminal mixed tumors were classified in 
heterogeneous BRCA1-deficient mammary tumors. Further analysis found that the above contributing factors might be the main determinants that caused intertumor 
heterogeneity (T1, T2, T3, and T4 indicate different tumors). 
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Figure 2. Four TME subtypes were classified by 29 functional gene expression signatures. First, 29 functional gene expression signatures (Fges) that represent major functional 
components and immune, stromal, and other cellular populations of the tumor were selected. Based on biological functions, these 29 Fges contained four categories: antitumor 
microenvironment, protumor microenvironment, angiogenesis & fibrosis, and malignant cell properties. Then, 468 TCGA cutaneous melanomas (TCGA-SKCM) were classified 
into four distinct TME subtypes based on unsupervised dense clustering by using those 29 Fges (the upward arrow indicates the corresponding upregulated item). 

 
In addition to dynamic reprogramming, another 

property of the TME that is affected by tumor hetero-
geneity is TME complexity. To comprehensively 
characterize a tumor and its TME, researchers usually 
perform tumor subtype classification and try to dig 
out each classified subtype more deeply. A typical 
heterogeneous tumor type, triple-negative breast 
cancer (TNBC), has been well studied to dissect the 
complexity by classifying this tumor subtype based 
on different molecular levels, such as cell populations, 
gene expression and genetic alterations (Table 1). At 
the TME level, Bagaev et al. leveraged transcriptomic 
data from more than 10000 cancer patients to 
investigate the TME subtypes and the associations 
between subtypes and genomic alterations [31]. Here, 
29 functional gene expression signatures (Fges) 
defined by TME cell populations, biological processes, 
cancer cell properties and signaling signatures were 
established (Figure 2). By unsupervised analysis of 
these TME Fges, cancer patients were classified into 
four distinct TME subtypes conserved across 20 
different cancers: 1) immune-enriched, fibrotic (IE/F); 
2) immune-enriched, nonfibrotic (IE); 3) fibrotic (F); 
and 4) immune-depleted (D), which included 
significantly varied expression of 29 Fges and 
presented distinct features (Figure 2). Further analysis 
demonstrated that TME subtypes were associated 

with genomic alterations. For example, in the IE 
subtype, there were enriched amplifications of the 
immune checkpoint genes CD274 (PD-L1) and 
PDCD1LG2 (PD-L2); alterations in the histone 
modification genes CREBBP, KMT2A, and PBRM1 
and regulation of the DNA mismatch repair gene 
MSH2; and mutations in the antigen presentation or 
interferon-inducible gene CASP8. However, in 
subtype D, amplifications were shown in the cellular 
proliferation genes CDK6 (8p11) and BCL2L1 and the 
telomere elongation regulation gene RTEL1 (20q.13). 
Additionally, the IE subtype has the highest number 
of mutations in MHC class I-related genes, while the F 
subtype has the lowest percentage, which results in 
different responses to immunotherapy. 

More specifically, tumor immunity and the 
tumor immune microenvironment can also be 
researched by classifying immune subtypes. Tumor 
immune properties mainly consist of the subsets of 
infiltrating immune cells and immune-related gene 
expression in tumors [32]. At different stages and 
conditions during tumor development, immune 
contexture significantly varies due to constant 
reprogramming. With over 10000 tumors comprising 
33 tumor types, Thorsson et al identified 6 immune 
subtypes based on immunogenomic analysis (Table 
2). Additionally, these 6 immune subtypes also 
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presented different somatic aberrations [33]. Another 
study leveraged The Cancer Genome Atlas (TCGA) 
dataset’s matched genomic and transcriptomic 
information to perform extensive analysis. The 
authors not only recapitulated the above classification 
but also added a complementary of those 6 subsets, 
which mostly includes leukocytes. Further variation 
analysis revealed that either common or rare germline 
variants are associated with differential immune cell 
infiltrations and immunomodulatory pathways [34]. 
For example, common single-nucleotide 
polymorphisms (SNPs) in both IFIH1 and TMEM173 
(STING) are strongly associated with IFN signaling. A 
rare germline mutation in COL7A1 corresponds to an 
increase in macrophage infiltration and a decrease in 
lymphocyte infiltration [34]. 

At a deeper level, tumor heterogeneity is one of 
the major causes of antigenic response, whereas 
protein coding gene mutations and indels are the 
main sources of tumor neoantigens [35]. Thus, as 
genomic tumor heterogeneity increases, so does the 
heterogeneity of neoantigens [36]. Tumor 
heterogeneity influences TME immunity through 
diverse neoantigens. Germline mutations in mismatch 
repair (MMR) genes affect the somatic mutation rate 
and neoantigen load [34]. Dying tumor cells release 
neoantigens, which recruit different kinds of immune 

cells. Subsequently, the patterns of immune cell 
infiltration are diverse, including immune cell 
composition, immune cell distribution (infiltrating in 
tumors or scattering surrounding the tumor), and 
immune cell function (effector T cells or dysfunctional 
T cells) [37]. In summary, tumor heterogeneity acts as 
the source of dynamic TME reprogramming and the 
cause of TME complexity during tumor progression. 
As a crucial mediator of tumor development and 
treatment, the TME deserves more attention and 
research. 

The role of tumor heterogeneity in drug 
resistance 

During tumor progression and development, 
clonal evolution and tumor heterogeneity lead to a 
series of biological and host environment changes, 
mainly through the alteration of transcriptome 
expression and crosstalk among cells. Tumor 
heterogeneity itself and these changes lead to drug 
resistance, which is evident in all cancer types and 
treatment modes. Here, we describe key mechanisms 
through which tumor heterogeneity causes drug 
resistance upon molecularly targeted therapy and 
immunotherapy in the TME reprogramming 
contexture. 

 

Table 1. TNBC subtypes were classified by different molecular levels 

Classification based Subtype name Signatures References 
Cell populations Neutrophil-enriched (NES) Chemo-attractants: TNFAIP6, CXCL1/2, CCR2 [100] 

Macrophage-enriched subtypes (MES) Epithelial–mesenchymal related genes: Zeb1, Cdh1 
Immunogenomic Immunity High CORO1A, STAT4, BCL11B, ZNF831, EOMES, CD247, CD8A, MAP4K1 [101] 

Immunity Medium IRF8 and SPI1 
Immunity Low  

Gene expression Basal-like1 (BL1) Heavily enriched in cell cycle and cell division components and pathways [102] 
Basal-like2 (BL2) Growth factor signaling, glycolysis and gluconeogenesis 
Immunomodulatory (IM) Immune cell processes 
Mesenchymal (M) Cell motility, ECM receptor interaction, and cell differentiation pathways 
Mesenchymal stem-like (MSL)  MSL subtype expresses low levels of proliferation genes 
Luminal androgen receptor (LAR) Hormonally regulated pathways including steroid synthesis, porphyrin metabolism, and 

androgen/estrogen metabolism; highest mutation burden in PIK3CA, KMT2C, CDH1 et al. 
Spatial patterns of CD8+ 
T cell localization and 
gene expression 
signatures 

Margin-restricted (MR) An accumulation of CD8+ T cells at the tumor margins [103] 
Immune desert (ID) A low abundance of CD8+ T cells at the margins 
Fully inflamed (FI) Significant CD8+ T cell infiltration into the tumor epithelial compartment 
Stroma-restricted (SR) CD8+ T cell accumulation in the stroma and exclusion from the tumor epithelial compartment 

Gene expression Luminal androgen receptor (LAR) Androgen receptor signaling; low chromosomal instability; CDKN2A/B loss (RB1 neutral) [104] 
Immunomodulatory (IM) 
 

High immune cell signaling and cytokine signaling gene expression; relatively high 
chromosomal instability 

Basal-like immune-suppressed (BLIS) 
 

Upregulation of cell cycle, activation of DNA repair, and downregulation of immune response 
genes; high chromosomal instability; frequent 9p23 and 12p13 amplification 

Mesenchymal-like (MES) Enriched in mammary stem cell pathways; copy-number profile between LAR and the other 
two groups 

Copy number alteration Chr9p23 amp Frequent 9p23 amplification [104] 
Chr12p13 amp Frequent 12p13 amplification 
Chr13q34 amp Frequent Chr13q34 amplifications 
Chr20q13 amp Frequent Chr20q13 amplification  
Chr8p21 del Frequent Chr8p21 loss 
Low CIN Low chromosomal instability 
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Table 2. The 6 immune subtypes and the correspond features 

Immune subtypes Immune expression signatures 
C1: wound healing Angiogenic genes upregulated 

Tumor cell with high proliferation rate 
A Th2 cell bias to the adaptive immune infiltration 

C2: IFN-γ dominant Highest M1/M2 macrophage polarization 
Strong CD8 signal 
High level of TCR diversity 
Tumor cell with high proliferation rate 

C3: inflammatory Elevated Th17 and Th1 genes 
Tumor cell proliferation rate at low to moderate levels 
Lower level of aneuploidy and CNAs 

C4: lymphocyte 
depleted 

Significant macrophage signature 
Th1 suppressed 
A high M2 response 

C5: immunologically 
quiet 

Lowest lymphocyte 
Dominated by M2 macrophages 
Enriched IDH mutations (IDH mutations associate with 
TME composition [105]) 

C6: TGF-β dominant High level of TCR diversity 
Highest TGF-β signature 
A high lymphocytic infiltrate with an even distribution of 
type I and type II T cells 

 
 

Tumor heterogeneity impacts on therapeutic 
targets 

The expression of therapeutic targets is variable 
and subjected to continuous change during tumor 
development. Stewart et al. conducted a study that 
focused on determining the underlying mechanisms 
by which small-cell lung cancer (SCLC) evolves 
rapidly from chemosensitivity to chemoresistance 
[38]. An SCLC circulating tumor cell (CTC)-derived 
xenograft (CDX) model was generated to mimic 
patient tumor platinum-sensitive and platinum- 
resistant responses. scRNA-seq was applied to 
generate transcriptome data for chemosensitive and 
chemoresistant CDXs and CTCs, and a great increase 
in intratumor heterogeneity was identified in the 
resistance model. To determine the association 
between intratumor heterogeneity and drug 
resistance, the authors performed extended treatment 
for platinum-sensitive CDX models with cisplatin 
chemotherapy until relapse. Herein, they confirmed 
that relapse was related not only to increased 
intratumor heterogeneity but also to variations in the 
expression of therapeutic targets (DLL3, AURKA/ 
AURKB, PARP1, MYC, BCL2, KDM1A, TOP1, 
TOP2A, VEGFA) and EMT genes within the same 
patients [38]. The complexity of the transcriptome 
exerts a profound effect on drug responses. 
Mechanically, for example, DLL3 expression is 
variable and dynamic in SCLC, which means that 
DLL3-positive and DLL3-negative cells coexist in 
SCLC. The DLL3 expression heterogeneity contributes 
to resistance or low response rates even selecting for 
the high expression level of SCLC patients. 
Additionally, with treatment, the authors found that 
DLL3 expression may dynamically decrease and 

disappear. For other therapeutic targets, such as 
AURKA/AURKB and PARP1, this phenomenon also 
exists. In addition, another study performed whole 
genome sequencing (WGS) of non-small-cell lung 
cancer CTCs resistant to anaplastic lymphoma kinase 
(ALK)-tyrosine kinase inhibitors (TKIs) and found 
that the CTCs showed wide copy number alteration 
(CNA) heterogeneity and elevated chromosomal 
instability (CIN). A total of 121 CNA oncogenic 
drivers were classified across patients in different 
signaling pathways. Among them, the cell cycle and 
DNA repair pathways were dominantly activated, as 
were the RTK/RAS, PI3K, and MYC pathways. 
Regarding the mechanisms of ALK-TKI resistance, 
ALK-negative CTCs activate bypass signaling 
pathways to drive resistance, while ALK-rearranged 
CTCs might drive resistance through epithelial-to- 
mesenchymal transition [39]. In addition, Roper et al. 
described the resistance mechanisms of osimertinib- 
treated EGFR mutants in lung adenocarcinoma 
patients. They conducted multiregion/temporal 
exome and transcriptome data analysis, and their 
results indicated that the majority of patients had two 
or more osimertinib-resistance mechanisms, and 
amplification of mutant EGFR was found in 67% 
(n=8/12) of patients [40]. Thus, clonal heterogeneity 
and tumor evolution contribute to acquire target drug 
resistance by variable and changed therapeutic 
targets. 

Tumor heterogeneity impacts on 
immunotherapy 
Cytotoxicity and frequency of tumor 
infiltrating leukocytes (TILs) are shaped by 
tumor heterogeneity 

The cytotoxicity and frequency of TILs are 
shaped by tumor heterogeneity, which, in turn, affects 
immunotherapy. Ma and colleagues obtained the 
single-cell transcriptomic landscape of liver cancer 
biospecimens from 19 patients [41]. They found that 
hepatocellular carcinoma (HCC) and intrahepatic 
cholangiocarcinoma (iCCA) present different levels of 
transcriptomic heterogeneity. To better define the 
level of heterogeneity, the authors developed a 
method to compute a diversity score for each tumor 
and divided samples into diversity-high (Div-High) 
and diversity low (Div-low) groups. They also found 
that Div-High group patients tend to obtain 
aggressive tumor features and present a poor 
prognosis. Hereafter, the authors investigated 
whether Dive-High tumor cells produce cellular 
factors to induce TME reprogramming. They first 
performed Ingenuity Pathway Analysis (IPA) [42] to 
search for upstream regulators of each nonmalignant 
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cell type (CAFs, TAMs, TECs, T cells). Then, they 
selected the upstream cytokine/growth factor that 
was found in at least 3 of 4 cell types. Finally, they 
overlapped these selected genes with the 
differentially expressed genes between Div-High and 
Div-Low malignant cells as candidate genes. Here, 
vascular endothelial growth factor A (VEGFA) is one 
of the top candidate genes. In the literature, VEGFA is 
a direct target of hypoxia-inducible factor 1-alpha 
(HIF1A), which is the key factor in sensing hypoxia 
[43]. Furthermore, they found that hypoxia-related 
genes, as well as HIF1A, were expressed at higher 
levels in the Div-High group than in the Div-Low 
group. Thus, the results demonstrated that 
hypoxia-induced VEGF in the Div-High group 
triggers the polarization of TME stromal cells (CAFs, 
TAMs, TECs). On the other hand, the transcriptomic 
profiles of T cells from Div-Low and Div-High were 
completely different. Further analysis of gene set 
enrichment revealed that EMT and myogenesis 
pathways were upregulated in Div-High T cells. 
Additionally, in Div-Low tumors, T-cell 
cytotoxicity-related genes were upregulated, which 
means that in tumors with higher heterogeneity, T 
cells showed lower cytolytic activities. Conversely, 
the frequency of Treg cells is much higher in Div-High 
cells. Taken together, tumor heterogeneity drives 
TME reprogramming both through stromal cell 
polarization and changing T-cell cytolytic activities 
and ultimately influences the therapeutic outcome. In 
another study, Samstein et al. identified that 
mutations in two homologous recombination genes, 
BRCA1 and BRCA2, have a profound impact on the 
TME and then divergently affect immunotherapy, 
where BRCA1 deficiency results in ICB resistance, but 
BRCA2 deficiency is associated with an improved 
response [44]. To further explore the mechanism 
underlying this phenomenon, the authors found that 
mutations in these two genes modulate distinct 
genomic alteration patterns and gene expression, 
which lead to divergent immune microenvironments. 
More detailed analysis revealed that the infiltration 
proportion of Cd4+, Cd8a+ T cells, NK cells, myeloid 
cells, and dendritic cells and the expression of some 
cytotoxicity genes were different in Brca1null and 
Brca2null tumors. Overall, Brca2null tumors are more 
likely to present T-cell phenotypes, while Brca1null 

tumors tend to be associated with an 
immunosuppressive TME, which suppresses the 
cytotoxic T-cell effect. Tumor-infiltrating myeloid 
cells (TIMs) play important roles in regulating tumor 
progression and therapy responses and consist of 
several distinct lineages, including dendritic cells, 
monocytes, macrophages, neutrophils, mast cells and 
myeloid-derived suppressor cells (MDSCs) [45]. To 

some extent, the TIM compositions are shaped by 
distinct somatic mutations and transcriptomic 
patterns [46]. Some of these TIMs can lead to drug 
resistance and poor survival rates. For example, the 
elevated MDSCs were related to reduced TILs and 
cytolytic function, which results in ICB resistance [47, 
48]. To uncover the mechanism, de Henau et al. 
compared multiple mouse models that were treated 
with ICB to determine the associations between ICB 
resistance and myeloid cell infiltration. Resistance to 
anti-PD-1 or anti-CTLA-4 therapy was found in the 
4T1 breast cancer mouse model accompanied by 
enriched myeloid cells (CD11b+) also known as 
MDSCs. However, in the B16-F10 melanoma model, 
the ICB response presented well and enriched more 
activated CD8+ T cells and fewer myeloid cells. When 
transduced with the MDSC recruitment factor 
granulocyte-macrophage colony-stimulating factor 
(GM-CSF) into a B16-F10 melanoma model, ICB 
sensitivity was lost, which indicates the pivotal role of 
MDSCs in ICB therapy resistance [48]. 

The heterogenous expression of cancer 
immunity genes impact immunotherapy 

Drug resistance in tumor immunotherapy could 
be induced by changes in the expression of cancer 
immunity genes triggered by intratumor 
heterogeneity. The genes involved in immunotherapy 
could participate directly or indirectly. For example, 
immune checkpoint inhibitor (ICI) therapy is the most 
representative form of immunotherapy. Currently, 
there are three groups of American Food and Drug 
Administration (FDA)-approved ICIs, including 
cytotoxic T lymphocyte-associated protein 4 
(CTLA-4), programmed cell death 1 (PD-1) on T cells, 
and PD-L1 on tumor cells [49]. However, only a small 
percentage (20-30%) of patients has positive responses 
to PD1 and/or PD-L1 therapy [50]. The intensity of 
immunity gene expression could directly impact 
resistance to immunotherapy [51]. PD-L1 expression 
presents a heterogeneous paradigm in tumor cells 
[52]. Thus, tumors without or with low expression of 
PD-L1 tend to generate anti-PD1 and anti-PD-L1 
resistance. This assertion is supported by the overall 
response rates (ORRs) of patients with high and low 
PD-L1 expression. The response rates were only 
approximately 10% in PD-L1 low expression 
melanoma patients, while the percentage increased to 
approximately 40-50% in their PD-L1 high expression 
counterparts. Similar responses also occurred in other 
tumor types, such as non-small-cell lung cancer [53] 
and SCLC [54]. In addition, the expression of PD-L1 in 
immune cells is associated with IFNγ-induced 
adaptive regulation and lymphocyte and effector 
T-cell infiltration [55]. However, as JAK/STAT signal 
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induction involves PD-L1 expression [56, 57], genetic 
alteration of genes related to this signaling pathway 
may impact PD-L1 expression. The loss of PTEN, the 
mutation of PI3K, AKT, EGFR, and the 
overexpression of MYC could also upregulate the 
PD-L1 expression level [58]. Other resistance 
mechanisms also emerge. For example, the loss of 
PTEN could promote the expression of 
immunosuppressive cytokines such as VEGF to lead 
to reduced T-cell infiltration and autophagy 
inhibition, which decreased T-cell-mediated tumor 
killing [59]. 

Tumor heterogeneity leads to activation or 
loss of key signaling pathways in tumor cells 

Interferon-γ (IFN-γ) is secreted mainly by CD8+ 

T cells, CD4+ T cells, and NK cells, which have been 
reported to mediate tumor resistance by regulating 
core immune checkpoint proteins and chemokines to 
exert anti-proliferative and pro-apoptotic effects on 
cancer cells [60, 61]. JAK1 and JAK2 signaling are 
essential factors that contribute to the success of 
immunotherapy. Loss-of-function mutations in these 
two genes result in immune checkpoint blockade 
resistance by downregulating PD-L1 expression and 
then responding to IFN-γ signaling [62]. Another 
study also reported that truncated mutation in these 
two genes led to a lack of response of IFN-γ, which 
results in insensitivity to its anti-proliferation of 
cancer cells [63]. 

Jason et al. used a CRISPR/Cas9 genome editing 
screen to identify PD-1-resistant mutants (Ifngr2 and 
Jak1) in B16.SIY melanoma cells, and they confirmed 
the importance of IFN-γR signaling in the resistance 
process in vitro, which plays a great role in the 
T-cell-mediated tumor cell killing process [64]. 
However, when IFN-γ signaling mutant tumor cells 
were implanted into mice, the antitumor response 
was improved, and CD8+ T cells were validated to be 
responsible for this improvement. More detailed 
analysis revealed that defective IFN-γ signaling in 
tumor cells leads to an increase in tumor antigen- 
specific CD8+ T cells in the TME. To investigate the 
discrepant phenomena that exist in vivo and vitro, the 
authors suggested the following two model systems. 
First, due to tumor heterogeneity, a minor subset of 
IFN-γ signaling-mutant tumor cell clones was 
selected. Second, the PD1 antibody might neutralize 
the negative effect of PD-L1 on WT tumor cell clones. 
To test this hypothesis, the authors inoculated the 
IFNγR2 mutant together with WT tumor cells into 
mice, which was used to mimic human patient 
heterogeneity. The results showed that tumors grow 
slowly but progressively, which suggests that the WT 
tumor cells provide missing negative regulatory 

signals. After being treated with PD-L1 antibody, the 
tumor escaped, and the IFNγR2-mutant tumor cells 
indeed proliferated. As in the context of PD-L1 
therapy, the antiproliferative effects might not occur, 
and the IFN-γ dominated antitumor effects may 
emerge. Therefore, the growth of IFN-γ-insensitive 
tumor cells depends on PD-L1 expression by WT 
tumor cells. For these phenomena, the authors 
suggested that heterogeneity in the expression of 
mutant antigens could drive dominant T cells to kill 
cancer cells under immunotherapy. Altogether, the 
results demonstrate that tumor heterogeneity and 
clonal cooperation can partially produce immuno-
therapy resistance [64]. 

This IFN-γ signaling cascade-related genetic 
evolution resistance can also evolve into 
T-cell-resistant HLA class I-negative lesions with 
antigen presentation genes silenced and insensitive to 
IFN-γ signaling [65]. In addition, Yu et al identified 
another mechanism by which IFN-γ signaling induces 
tumor resistance. IFN-γ facilitates nuclear 
translocation and YAP phase separation, and tumor 
cell YAP condensation is promoted, which forms a 
transcription hub to maximize target gene 
transcription to modulate anti-PD-1 immunotherapy 
resistance [66]. 

Tumor heterogeneity determines the 
abundance of neoantigens to affect 
immunotherapy 

Neoantigens are those antigens produced by 
tumor cells that are induced by genetic mutations, 
aberrant alternative splicing, and other reasons. 
Genetic mutation is the main source of neoantigen. 
Mutations that occur in coding and noncoding regions 
lead to aberrant amino acid sequences to synthesize 
abnormal peptides or proteins in tumor cells. These 
aberrant peptides or proteins can be recognized by the 
immune system and trigger immune responses, 
which is another target of immunotherapy [67, 68]. 
Tumor heterogeneity leads to variable expression of 
neoantigens [69], which directly affect the abundance 
and types. Wolf et al. focused on the effect of tumor 
mutation burden (TMB) and intratumoral hetero-
geneity on tumor aggressiveness and their impact on 
antitumor immune responses in melanoma [70]. To 
uncouple TMB and intratumor heterogeneity, the 
authors established an in vivo mouse system with 
ultraviolet radiation b(UVB) irradiation exposed to 
the B2905 melanoma cell line. First, they irradiated the 
cells with UVB (generated increased heterogeneity 
and mutation load tumor cells), and then 
single-cell-derived clones (generated decreased 
heterogeneity and random mutation load tumor cells) 
were extracted from UVB-treated cells. When 
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wild-type (WT) C57B/6 mice were inoculated with 
parental B2950 cells, UVB-irradiated cells, and 
single-cell-derived cells, the tumor growth rate and 
aggressiveness displayed significant differences. 
While inoculated in Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) 
immunocompromised mice (T, B, and NK cells 
defective), there was no difference in tumor growth, 
which indicated that the immune system should be 
responsible for this phenomenon. Further 
experiments and analysis showed that the decreased 
growth rate of single-cell-derived cells (low 
intratumor heterogeneity) is due to elevated T-cell 
reactivity and tumor infiltration. Two tumor 
heterogeneity fundamental components, the number 
of clones and the diversity of mutations, have been 
validated and confirmed to be determinants of tumor 
growth. Moreover, they found that tumors with high 
levels of these two components showed poorer 
survival in cohorts who had undergone checkpoint 
inhibitor therapy. Based on the above results, the 
authors suggested that mechanically, low 
heterogeneity tends to reduce the landscape of 
neoantigens and expose reactive neoantigens to 
immune detection. Then, the increased immune cells 
infiltrate to tumor core, and more antigens are 
presented in the TME, which enhances the immune 
response to reject tumor growth. In contrast, a high 
level of heterogeneity would “dilute” the reactive 
neoantigens, which leads to a strong immuno-
suppressive tumor microenvironment, manifested by 
reduced tumor immune cell infiltration, cytotoxicity, 
and effector cytokine secretion [70]. Furthermore, 
Lorenzo et al. [71] illustrated that immune infiltrated 
cell type, density, location, and functional orientation 
in the tumor microenvironment elicit prominent 
impacts on anticancer efficacy. Hence, according to 
research and theory, tumor heterogeneity greatly 
affects the therapy response and outcome. For 
precision medicine in this area, assessing tumor 

heterogeneity and its microenvironment condition 
might be necessary. 

Technologies to explore tumor 
heterogeneity 

To date, several technologies, such as liquid 
biopsy [72-74], single-cell sequencing, spatial 
transcriptomics sequencing, and spatial genomics 
sequencing, have been successfully applied to 
evaluate and explore tumor heterogeneity. 

Liquid biopsy 
Liquid biopsy is a method to noninvasively 

collect cancer samples in various body fluids instead 
of a fragment of cancer tissue. It allows people 
sampling at different time points to monitor and 
analyzing tumor heterogeneity, and track tumor 
evolution dynamics with various analysts, such as 
circulating tumor cells, cell-free DNA, cell-free RNA, 
exosomes, and tumor-educated platelets [75]. 

Single-cell sequencing 
Single-cell sequencing can be used for 

transcriptomic characterization [76], cell type 
identification [76], clonal decomposition and DNA 
replication state definition [77], characterization of 
cancer ecosystem features and their associations with 
clinical data [78] and the identification of novel or 
potential cancer therapeutic targets and strategies 
(Table 3). 

Spatial transcriptomics sequencing 
Spatial transcriptomics is an overarching term 

for a range of methods that could anchor the gene 
expression to their locations, with a single cell level or 
multicellular area, in the histological sections (Figure 
3). It is essential to decipher the intratumor spatial 
heterogeneity. 

 

 
Figure 3. Overview of the spatial transcriptome sequencing capture slides. Each slide contains millions of spatially indexed hybridization-oligo clusters, which allow the capture 
of released tissue mRNA in situ, enabling the dissection of gene expression information. Specifically, the tissue section was fixed and permeabilized to release mRNA. Then, mRNA 
binds to indexed hybridization oligo clusters. After that, the captured mRNA is synthesized into cDNA and liberated from the slide for further sequence library preparation. 
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Table 3. Summary of studies investigating novel or potential cancer therapy by single- cell RNA sequencing 

Cancer type/model Identified cell subsets Potential target for therapy Findings/Mechanisms References 
Colon cancer C1QC+ TAM subset 

SPP1+ TAM subset 
Anti-CSF1R blockade 
(tumor associated 
macrophages (TAMs)) 

Distinct sensitivity of two macrophage populations to anti-CSF1R 
(sensitive to C1QC+ TAM subset, sparing SPP1+ TAMs) 

[106] 

Conventional DC1 
(XCR1/BATF3 positive 
DCs) 

Anti-CD40 agonist 
(Dendritic cells) 

Increases Effector Memory CD8+ T Cells & induces Bhlhe40+ 
Th1-like Cells activation and proliferation 

Breast cancer FAP+/CAF-S1’s ecm- 
myCAF subset (one of the 
eight FAP+/CAF-S1 cluster) 

Combining PD-1 and 
or/CTLA4 blockade with 
targeting ecm-myCAF 

Increase the PD-1 and CTLA4 protein levels of FOXP3+ T cells 
(Treg) 

[107] 

Cholangiocarcinoma Granulocytic 
myeloid-derived 
suppressor cells 
(G-MDSCs) 

Dual inhibition of TAMs 
and granulocytic 
myeloid-derived suppressor 
cells (G-MDSCs) potentiated 
anti-PD-1 therapy 

TAM blockade failed to decrease tumor progression due to a subset 
G-MDSCs compensation. However, when inhibit this G-MDSCs, 
the ICB therapy efficacy improved 

[108] 

Intrahepatic 
cholangiocarcinoma 
(ICC) 

Vascular cancer-associated 
fibroblasts (vCAFs) 

Interleukin (IL)-6/IL-6 
receptor (IL-6R) 

IL-6 that secreted by vascular cancer-associated fibroblasts (vCAFs) 
upregulated enhancer of zeste homolog 2 (EZH2) to promote tumor 
progression 

[109] 

Osteosarcoma (OS) 
 

CD8+ T, CD4+ T, and NKT 
cells 

CD8+ T, CD4+ T, and NKT 
cells widely expressed 
TIGIT 

Blocking TIGIT substantially enhanced the death of OS cells that 
triggered by CD3+ T cells derived from relatively high 
TIGIT+CD3+ T cells infiltration in OS tissues 

[110]  

 Melanoma cytotoxic CD8+ T cell 
subpopulation 

PMEL, TYRP1, and EDNRB These three genes were upregulated in exhausted cytotoxic CD8+ T 
cell subpopulation. 

[111] 

Ovarian cancer 
(organoid culture) 

NK cells and a subset of 
CD8 T cells 

bromodomain-containing 
protein BRD1 

BRD1 inhibition could enhance PD1 and PD-L1 immune 
checkpoint blockade by decreasing NK cell and a subset of T cell 
exhaustion 

[112] 

Ovarian cancer  T cell and tumor cell  CXCL16-CXCR6 CXCL16 is responsible for T cell recruitment and was highly 
expressed by tumor cells. Its receptor CXCR6, was highly expressed 
by dysfunctional CD8+ GZMB T cells and CD4+ FOXP3 regulatory 
T cells (Tregs) 

[113] 

Bladder cancer LAMP3+ DC subgroup  
 

CCL17, CCL19, and CCL22 
were expressed by LAMP3+ 
DCs  

LAMP3+ DCs was responsible for Tregs and CCR4+ cells 
recruitment 

[114] 

Inflammatory 
cancer-associated 
fibroblasts (iCAFs) 

CXCL12, VEGFA, VEGFB, 
FGFR1 were expressed by 
iCAFs 

iCAFs expressed CXCL12, VEGFA, VEGFB, FGFR1 and interacted 
with endothelial cells and immune cells to facilitate angiogenesis 
and immune suppressiveness to promote tumor proliferation 

Clear-cell renal cell 
carcinoma (ccRCC) 

exhausted CD8+ T cells LAG3 and HAVCR2  LAG3 and HAVCR2 (TIM3) were higher expressed in exhausted 
CD8+ cells than that PD-1 expressed 

[115] 

Small cell lung 
cancer (SCLC) 

PLCG2-high tumor cell PLCG2 PLCG2-high tumor cells are correlated with tumor metastasis, 
CD8+ T cell exhaustion, pro-fibrotic and immunosuppressive TME 

[116] 

Gallbladder cancer 
(GBC) 

Epithelial cell subtype 1 
and 2 

ErbB pathway mutations Epithelial cell subtype 1 and 2 with high level of ErbB pathway 
mutation, which secreted high level of midkine (MDK). Then MDK 
interacted with tumor-infiltrating macrophages’s MDK receptor 
LPP1 to form immunosuppressive TME  

[117] 

 
 
Although the development of scRNA-seq 

technology has led to new insights into tumor 
heterogeneity, how tumor tissues functional 
organization and cell-cell crosstalk in situ still 
untouched. Therefore, there is a desperate need to 
understand the spatial distribution and the intrinsic 
biological meaning. To this end, researchers have 
developed microdissection-based small bulk samples 
or single-cell capture at a particular location to check 
their gene expression or fluorescent in situ 
hybridization (FISH)-based technologies to illustrate 
diverse gene features in situ. However, both 
approaches are restricted by limited throughput, 
which only involves a small number of cells or a few 
expressed genes at a time. In 2016, with the help of 
Stahl et al., spatial transcriptomics technology was 
established. This method used individual cells on the 
array of spatially barcoded reverse transcription 

primers that are able to capture mRNA with oligo 
(dT) tails [79]. In silico reconstruction of spatial gene 
expression patterns allows visualization and 
quantitative analysis of the transcriptome with spatial 
resolution in individual tissue sections. 

With the help of spatial transcriptomics 
sequencing, Emelie et al. plotted the spatial maps of 
prostate cancer and identified gene expression 
gradients in stroma adjacent to tumor regions that 
allow for re-stratification of the tumor 
microenvironment [80]. This indicates that this newly 
developed technology could help people successfully 
reveal the unexplored landscape of heterogeneity. 
Then, it was widely used in other types of tumors, 
including melanoma [81], neuroblastoma [82], gastric 
cancer [83], and breast cancer [83]. In the effort of 
invasive micropapillary carcinoma (IMPC) studies, 
spatial transcriptomics analysis provides a valuable 
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resource for exploring the inter- and intratumoral 
heterogeneity of IMPC and identifies a new marker, 
SREBF1, which facilitates accurate diagnosis and 
treatment of the disease [83]. The spatial 
heterogeneity analysis-guided treatment decision 
approach has also been further validated in other 
types of tumors [84, 85]. Recently, a group from the 
Kinghorn cancer center established a single-cell and 
spatially resolved atlas for human breast cancers, 
which includes both scRNA-seq and spatial 
transcriptomics of more than 20 patients. This work 
demonstrated high-resolution neoplastic cell 
heterogeneity and immune profiles and further 
deconvoluted large breast cancer cohorts to stratify 
them into nine clusters, termed ecotypes. This study 
provides a comprehensive transcriptional atlas of the 
cellular architecture of breast cancer. 

Spatial genomics sequencing 
Compared to spatial transcriptomics sequencing, 

spatial genomics sequencing supplies more direct 
information to delineate intratumor genetic 
heterogeneity, which could not only reveal how 
tumor clones are organized but also uncover to what 
extent that tumor progression is driven by genetic 
alterations and the TME. Recently, Zhao and 
colleagues developed a method called slide-DNA-seq, 
which could capture spatially resolved DNA 
sequences from intact tissue [86]. The core of this 
method is that they can fragment and barcode DNA in 
situ to preserve accurate local tumor architecture 
information, which enables the discovery of clonal 
populations and their spatial regions. In their study, 
the spatial distribution of copy number alterations 
and distinct tumor clones were characterized. In 
addition, when integrated with transcriptomics 
sequencing, the authors dissected how genetics and 
TME control the transcriptional program. Thus, by 
adding spatial information, spatial genomics 
sequencing is a promising method in cancer clonal 
heterogeneity research. 

Strategies to overcome tumor 
heterogeneity-induced drug resistance 
Combination therapy 

Targeting tumor heterogeneity is one of the 
potential approaches to combat tumors. Combination 
therapies with more than one therapeutic mechanism 
can directly target the pre-existing and post-emerging 
subpopulations or prevent resistant subclone 
selection. For example, in HER2+ breast cancer 
patients, both the expression and copy number 
alteration of HER2 vary, and the high level of tumor 
heterogeneity for HER2 responds poorly to 

monotherapy [87, 88]. However, by using combined 
chemotherapy and phosphatidylinositol 3-kinase/ 
AKT inhibitor treatment in the high level of HER2 
heterogeneity, the efficacy was markedly improved. 
Additionally, in a meta-analysis study, combined 
chemotherapy and immunotherapy samples 
presented improved clinical results in NSCLC [89]. 
For some acquired drug resistance, such combination 
therapy was also researched and applied. In 
EGFR-mutant lung adenocarcinoma, after treatment 
with tyrosine kinase inhibitors (TKIs), the majority of 
patients acquired subclonal drug-resistant mutations, 
such as MET, PD-L1, KRAS amplification, ESR1- 
AKAP12, and MKRN1-BRAF fusions. Thus, based on 
the results, combination therapies were suggested to 
overcome this acquired resistance to block clonal 
outgrowth [40]. 

The application of combination therapy in the 
immunotherapy area has also been effective. For 
example, MDSCs have been found to correlate with 
decreased CD8+ T-cell infiltration and cytolytic 
function [48]. To avoid and overcome the effect of 
MDSCs on ICB treatment, people have tried to 
combine ICB with targeting MDSCs to suppress or 
eliminate the activity of MDSCs and enhance ICB 
therapy efficacy. Because phosphoinositide 3-kinase 
(PI3K-γ) is upregulated in myeloid cells, PI3K-γ was 
selected and inhibited by a PI3K-γ inhibitor to 
neutralize MDSC-associated ICB resistance [48]. 
Similar therapy was performed on metastatic 
castration-resistant prostate cancer patients, and the 
efficacy was significantly improved [47]. In this 
design, the authors used the multikinase inhibitors 
cabozantinib (tyrosine kinase inhibitors) and BEZ235 
(PI3K/mTOR dual inhibitor) to selectively deplete 
MDSCs. Mechanically, the combination of ICB and 
MDSC-targeted therapy can facilitate prostate cancer 
cells to upregulate IL-1ra to inhibit IL-1-induced 
MDSC chemoattraction and suppress MDSC- 
promoting cytokines. 

Another specific combination therapy is called 
antibody–drug conjugates (ADCs), which have been 
proven to be an effective strategy for combating 
cancer cells across several tumor types [90-93]. By 
September 2021, 11 ADCs acquired approval from the 
FDA [94]. Most ADCs contain a cytotoxic agent and a 
monoclonal antibody that recognizes the 
tumor-associated antigen [95]. Thus, the antibody, the 
cytotoxic drug (called payloads), and the linker 
connecting the payloads to the antibody are the three 
key elements of an ADC [96]. Although people have 
achieved striking clinical success in ADC treatment, 
tumor heterogeneity frequently contributes to drug 
resistance through alterations in the targets and 
heterogeneous expression of targets [97, 98]. Recently, 
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Yamazaki et al. used a novel ADC, which contains 
two distinct payloads for combating HER2 
heterogeneity and drug resistance [98]. In the HER2+ 
heterogeneous breast xenograft model, this ADC 
presented great therapeutic potential, with enhanced 
efficacy and minimal inflammation. 

Three-dimensional tumor slice culture 
(3D-TSC) platform 

Some novel and effective preclinical models 
could be implemented to assess drug responses and 
efficacy. For example, a three-dimensional tumor slice 
cultures (3D-TSC) platform (Figure 4) was reported 
recently, which combines histochemical staining, 
transgenic fluorescent reporter, and label-free 
metabolic imaging approaches in a time course to 
evaluate drug efficacy to accelerate precision drug 
screening for cancer therapy [99]. As 3D-TSC not only 
maintains important original tumor features, such as 
tumor heterogeneity, gene expression, and cell 
architecture but also maintain all immune 
components, it should be a powerful model for testing 
the drug sensitivity. 

Conclusion and future perspective 
In summary, tumor heterogeneity and tumor 

clonal evolution undergo dynamic changes and 
accompany the whole tumor development process. 
Tumor heterogeneity impacts the tumor ecosystem by 
modulating the gene expression of all components 

and interactions with components that exist in the 
TME to constantly reshape it, which plays significant 
roles in drug responses. As tumor heterogeneity 
influences drug responses in nearly all therapeutic 
modes and all types of cancer patients through 
different mechanisms, more efforts should be made to 
rethink therapeutic strategies. On the one hand, 
personalized medicine should be applied here to 
continually evaluate the dynamic changes in tumor 
heterogeneity levels and TME complexity levels to 
better choose more appropriate drugs for patients. On 
the other hand, some novel and effective preclinical 
models, such as the 3D-TSC platform, could be 
implemented to assess drug responses and efficacy 
[99]. 3D-TSC is a good model for observing dynamic 
changes in the cell population during drug treatment. 
If gene expression profiling by scRNA-seq and spatial 
transcriptomics sequencing can be conducted, the 
model should facilitate the understanding of the 
spatial and temporal evolution of the TME during 
treatment and provide useful information for 
enhancing the efficacy of anticancer drugs. Since 
tumor heterogeneity has been a major trigger of drug 
resistance, future work should also aim to uncover the 
influence of genetic evolutionary processes on tumor 
heterogeneity, how tumor heterogeneity affects TME 
remodeling, and how it affects drug responses under 
the contexture of TME. 

 

 
Figure 4. Schematic diagram of the three-dimensional tumor slice culture (3D-TSC) platform and workflow for precise anticancer drug discovery. Tumors were biopsied, and 
thick tissue slices (300 µm) were prepared by using a Leica VT1200 S vibratome (Leica Biosystems Nussloch GmbH, Germany) within 2-6 h after surgery. The thick slices were 
then cultured on a 3D-TSC platform. To screen sensitive and efficient anticancer drugs, the cultured tissue slices were treated with different drugs. Then, two evaluation systems, 
a dye labeling assay and label-free fluorescence imaging, were performed to monitor and evaluate tumor cell apoptosis and viability. In the dye labeling assay, 
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) or propidium iodide (PI) staining was used. After drug treatment, we evaluated tumor cell apoptosis based 
on the staining and fluorescence intensity. Compared to the dye labeling assay, label-free imaging could be performed at different time points by a Leica M165FC fluorescent 
stereomicroscope. The tumor cell apoptosis and viability results could be used to predict the drug efficacy and provide guidelines for the treatment of the corresponding patients. 
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