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Abstract 

In recent years, with the standardization of radiomics methods; development of tools; and popularization 
of the concept, radiomics has been widely used in all aspects of tumor diagnosis; treatment; and 
prognosis. As the study of radiomics in cancer has become more advanced, the currently used methods 
have revealed their shortcomings. The performance of cancer radiomics based on single-modality medical 
images, which based on their imaging principles, only partially reflects tumor information, has been 
necessarily compromised. Using the whole tumor as a region of interest to extract radiomic features 
inevitably leads to the loss of intra-tumoral heterogeneity of, which also affects the performance of 
radiomics. Radiomics of multimodal images extracts various aspects of information from images of each 
modality and then integrates them together for model construction; thus, avoiding missing information. 
Subregional segmentation based on multimodal medical image combinations allows radiomics features 
acquired from subregions to retain tumor heterogeneity, further improving the performance of 
radiomics. In this review, we provide a detailed summary of the current research on the radiomics of 
multimodal images of cancer and tumor subregion-based radiomics, and then raised some of the research 
problems and also provide a thorough discussion on these issues. 
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Background 
Cancer is a leading public health concern 

globally. Genetic biomarkers are critical for the 
suitable treatments for cancer patients (1). For 
example, IDH mutation (2-4), BRCA mutations (5,6), 
and EGFR amplification (7,8) have been widely 
reported for accurate diagnosis and precise treatment 
of cancers. However, the identification of biomarkers 
is based on the pathological tissues of cancers. 
Limited by the unique anatomy of some cancers, the 
method of obtaining tumor tissue usually involves 
risky surgery or stereotactic biopsy. Therefore, not all 
patients with cancer undergo genomic analyses. Even 
when genomic analysis is performed, the sampling is 
usually a one-time and single-site process. In 
addition, most cancer types are highly heterogeneous 

(9). The results of genomic analysis are highly 
susceptible to sampling errors and observer 
variability (10).  

Radiomics is the process of converting medical 
images into mineable high-dimensional data (11,12). It 
has helped medical imaging expand from diagnostic 
aid to a clinical decision aid in the context of 
personalized medicine (13). Radiomics involves 
combining imaging data with patient characteristics, 
including clinical data (14), genomics (15,16), and 
drug response (17,18), to improve the functionality of 
decision models (19). Radiomics is generally 
considered a good solution to these issues: First, 
radiomics can help guide patients on the need for 
further genetic sequencing, as it can derive 
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information from all parts of the tumor images (19); 
Second, the correlation between radiomics and 
genomics can guide biopsy site selection to address 
the high error rate of histopathology due to sampling 
errors (20,21); Third, radiomics can accurately predict 
valuable biomarkers in cancers, such as IDH 
mutations in glioma (22-24), and EGFR amplification 
in lung cancer (25). 

With the increasing popularity of radiomics, its 
application in cancer research is not only for genetic 
markers but also for patient survival, drug treatment 
effects, and other similar classification. However, 
some problems were also encountered. Previously, 
single-modality or single-sequence image was usually 
used for radiomics studies. But one modality or 
sequence can only reflect certain characteristics of the 
tumor. Therefore, the radiomics features extracted 
from single-modality images inevitable miss some 
tumor information, which will affect subsequent 
analysis. In addition, almost all cancers highly display 
intratumoral heterogeneity (9), and their medical 
images contain such heterogeneous information. 
However, many current radiomics studies have 
extracted radiomics features from the entire tumor 
region, which inevitably loses heterogeneous 
information in tumor images. These issues have been 
gradually considered. Multi-modality/sequence 
images combination have been used for radiomics 
studies and have yielded better results than single 
modality or sequence (26). Benefiting from the 
combination of multi-modality/sequence images, 
tumors have been segmented into regions reflecting 

different biological properties, and radiomics studies 
based on these regions have further improved the 
capabilities of radiomics (27). To make radiomics an 
effective diagnostic, prognostic, and predictive tool 
for cancer, it is important to understand advances in 
radiomics. This review describes recent advances in 
multimodality/multisequence studies in radiomics, 
the challenges that may be involved, and an outlook 
on the future of radiomics (Fig. 1). 

Progress of radiomics 
Radiomics is the process of extracting, analyzing, 

and building predictive models for radiomic features 
associated with predictive targets, and quantitative 
mapping between medical images and targets (28). It 
comprises a series of steps, including image 
acquisition, registration, segmentation, feature 
extraction, feature dimensionality reduction, and 
predictive modelling. 1) Image acquisition is the 
acquisition of clinical images from conventional 
imaging tools, such as computed tomography (CT), 
magnetic resonance imaging (MRI), and positron 
emission tomography (PET). 2) Registration involves 
establishing spatial correspondences between 
different image acquisitions (29). 3) Segmentation is 
the process of using clinical, imaging, and 
pathological knowledge to delineate the region of 
interest (ROI) in medical images. 4) Feature extraction 
is mining high-dimensional features from ROIs. 5) 
Feature dimensionality reduction involves cleaning 
redundant, irrelevant, or useless features. 6) Building 
robust predictive models is the ultimate purpose of 

 

 
Figure 1. Shortcomings of current radiomics research. (Blue arrow) Different medical images can each obtain partial information about the tumor, and a large number 
of current radiomics studies tend to use only single modality images, and for MRI even only a few of its sequences are used, resulting in only a small fraction of tumor information 
being used. (Red arrow) Tumors are heterogeneous, but current radiomics tends to extract radiomics features from the entire tumor region on the image, thus making the 
information of tumor heterogeneity lost. 
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radiomics research, which can help make clinical 
judgments and decisions (Fig. 2). 

Medical imaging commonly used in clinical 
includes X-ray, ultrasound, CT, MRI, and PET. Each 
type of imaging technique is suitable for various 
diseases. For example, for lung diseases, X-rays are 
usually selected first and CT is used to obtain more 
information; MRI are more common for brain and 
spinal cord diseases. Different MRI sequences can 
provide the most accurate data on different types of 
data for patients. Although there are radiomics 
studies of X-rays (30) and ultrasound (31), the main 
research of radiomics is focused on CT, MRI, and PET. 
Therefore, this study mainly focused on radiomics 
studies of these three imaging types (Table 1). 

 

Table 1. Information of radiomic studies in human cancer 

Years Cited 
reference 

Tumor Types Imaging 
combination 

2019-2020 26, 43-53 Glioma, Breast cancer, Prostate cancer  Multimodal 
MRI 
sequences 

2019-2021 58-62 Lung cancer, Nasopharyngeal carcinoma, 
Oropharyngeal squamous cell carcinoma 

PET and CT 

2018-2021 63-65 Brain metastasis, Rectal cancers, Breast cancer PET and MRI 
2020-2021 78-80 Rectal cancers MRI and CT 
2019-2021 74-77 Lung cancer, Pancreatic cancer, Colorectal liver 

metastases 
CT and 
CE-CT 

2015-2021 54-57, 
66-70 

Glioma, Colorectal cancer, Cervical cancer, 
Nasopharyngeal carcinoma, Lung cancer 

Subregion 

 

MRI 
MRI can be classified into structural MRI, 

functional MRI, diffusion-weighted imaging (DWI), 

susceptibility-weighted imaging (SWI), and other 
medical and physiological applications. Different 
types of MRIs have different pathological and 
physiological characteristics. Therefore, MRI has 
received considerable attention in radiomics research, 
especially for precise diagnosis (32-34), treatment 
response prediction (35-37), molecular typing (38-40), 
and prognostic analysis (41,42). 

Compared with models built by radiomics 
features only from structural MRI, it has been found 
that combining structural MRI with other MRI 
sequences can build better models. For example, in 
gliomas, radiomic features can be extracted from T1 
contrast enhancement (T1CE), T2-weighting (T2WI), 
and apparent diffusion coefficient (ADC). The 
nomogram established by integrating the radiomics 
features extracted from these three MRIs had the best 
predictive value, which was higher than that 
established by any single sequence (26). Combining 
six types of MRI sequences (T2WI, DWI, ADC, 
fractional anisotropy, and mean kurtosis) for 
radiomics can accurately distinguish glioblastoma 
and low-grade glioma with an accuracy rate as high as 
91% (43). A model for determining glioma grade was 
constructed with radiomics features from seven 
different sequences (T1-weighted (T1WI), T1CE, 
T2WI, FLAIR, diffusion tensor imaging (DTI), 
diffusion perfusion imaging, and 1H-MR spectra) 
achieving 95.5% accuracy, 95% sensitivity, 96% 
specificity, and 95.5% AUC (44). Pseudo-progression 
is a diagnostic challenge for glioblastoma after early 
treatment, and AUC of predictive model built by 12 

 

 
Figure 2. Diagram of radiomics process. 1) Radiomics first requires obtaining medical images of the patient and segmenting the target area. 2) Next step, various types of 
radiomics features were extracted from the images using a radiomics approach. 3) Using radiomics features, the models are constructed by machine learning or deep learning 
methods. 
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radiomics features from T1CE, FLAIR, ADC, and 
cerebral blood volume (CBV) mapping is 0.90, which 
is much higher than those built using only features 
from conventional sequences (AUC=0.76), ADC 
(AUC=0.78), and CBV (AUC=0.8) (45). It is widely 
known that IDH mutations play a pivotal role in 
gliomas. The AUC of the model for predicting IDH 
mutation status using conventional MRI radiomics 
features was 0.835, which increased to 0.9 after 
combining the radiomics features of DTI (46). In 
another radiomics study to predict IDH mutations, 
the model achieved an accuracy of 0.823 by using 
radiomics features from T1CE, T2WI, and ASL images 
(47). The AUC of the nomogram to predict IDH 
mutations using T1CE, FLAIR, and ADC radiomics 
features combined with age was 0.913 (48). In 
addition, other key signaling pathways can also be 
assessed using MRI radiomics. Using radiomics 
features of conventional MRI and DWI, the AUC of 
the model predicting RTK in glioma was 0.88, TP53 
was 0.76, and RB1 was 0.81, which was greater than 
that of the model using only conventional MRI (49).  

In addition to gliomas, the combination 
approach has been widely used for other tumors. The 
radiomics features from T2WI, T1WI, diffusion 
kurtosis imaging (DKI), ADC, and dynamic 
contrast-enhanced (DCE) pharmacokinetic parameter 
maps were used to build breast cancer diagnosis 
models, and the best model (combination of T2WI, 
DKI, and DCE) AUC was 0.921, accuracy was 0.833, 
and the AUCs of the model based on single T1WI, 
T2WI, ADC, DKI, and DCE pharmacokinetic 
parameter maps were 0.730, 0.791, 0.770, 0.788, and 
0.836, respectively (50). To predict whether breast 
cancer will produce a pathologic complete response to 
neoadjuvant chemotherapy, a prediction model 
jointly built using the radiomics features of T2WI, 
DWI, and T1CE had an AUC of 0.79 in the training set 
and reached 0.86 in the validation set (51). In prostate 
cancer, the need for biopsy at PSA levels of 4-10 
ng/mL is a clinical question, and a prediction model 
built using radiomic features extracted from T2WI, 
DWI, and T1CE achieved an AUC of 0.956 in the 
training set and 0.933 in the validation set (52). Good 
performance was obtained for models predicting 
prostate cancer with a Gleason score of 8 or higher 
(AUC = 0.72), built from radiomics features extracted 
from T2WI, ADC, and DKI; better performance was 
also obtained for models predicting prostate cancer 
with a Decipher score of 0.6 or higher (AUC 0.84) (53). 

Because of the unique biophysical principles that 
control signal generation, MRI sequences provide a 
non-invasive way of physiologically reflecting 
different local microenvironments. Solid tumors are 
genetically and physiologically heterogeneous. 

Different physiological regions exert different 
selective pressures, resulting in the growth of tumor 
cell clones with an adapted genome/proteome. These 
regions are also called "Habitats" (27), and research on 
radiomics has gradually shifted from the entire tumor 
area to the habitats (Fig. 3). T1WI, FLAIR, and ADC 
can divide the ROI into two habitats, the tumor and 
the edema around the tumor, and then extract 
radiomics features from the two habitats. The AUC of 
the glioma MGMT methylation prediction model 
constructed using the combination of radiomics 
features from the two habitats reached 0.925 in the 
training set and 0.902 in the validation set (54). To 
predict the main pathological growth pattern of liver 
metastases from colorectal cancer, radiomics features 
were extracted from multiple MRI sequences (T1WI, 
T2WI, DWI, ADC, and T1CE) from the tumor-liver 
interface region, i.e., the region between the tumor 
margin expanding outward by 2 mm and shrinking 
inward by 2 mm, and the prediction model 
incorporating these radiomics features had an AUC of 
0.912. superior to the model constructed from 
radiomics features extracted from tumor regions 
(AUC=0.879) (55). A total of nine MRI sequences of 
sagittal T2WI, axial T1WI, axial T2-FS, DWI (b=0 and 
b=800), ADC, and T1CE (sagittal, axial, and coronal) 
in advanced cervical cancer were manually outlined 
by the radiologists, the radiomics features were 
extracted, and the AUC of the model constructed by 
combining the radiomics features of multiple 
sequences reached 0.82 (56). To assess the survival 
risk of glioblastoma and predict its progression-free 
survival, T1CE, T1WI, and FLAIR sequences were 
used to delineate and annotate the necrotic core, 
enhancement part, and surrounding edema of 
glioblastoma. Radiomics features were extracted from 
these features, which can be used to accurately stratify 
the survival risk of patients with glioblastoma (57). 

PET 
Cancer cells usually receive more imaging 

agents, resulting in malignant tumors appearing as 
bright spots on PET. The amount of imaging agent 
taken by a malignant tumor depends on the metabolic 
level of the malignant tumor; therefore, PET 
radiomics is also called metabolic radiomics.  

PET is usually combined with CT, the most 
common clinical practice is PET-CT. Using the 
radiomics features from PET and CT in patients with 
suspected lung cancer, the AUC of the established 
predictive nomogram was 0.96, which is far higher 
than the 0.79 of only CT radiomics features, and 0.93 
of only PET radiomics features (58). For accurate 
differentiation between active pulmonary tuber-
culosis and lung cancer, three radiomics signatures 
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were constructed. The PET radiomics signature 
yielded AUC of 0.79 (95 % CI: 0.67–0.86]; the CT 
radiomics signature displayed higher discrimination 
performance relative to the PET radiomics signature 
(AUC, 0.86; 95 % CI, 0.79–0.91); the PET/CT radiomics 
signature incorporating both PET and CT radiomics 
features further improved the discriminatory ability 
with the highest AUC (0.91, 95 % CI, 0.84–0.95) (59). 
To distinguish squamous cell carcinoma from 
adenocarcinoma of lung, the combined model, 
comprising 7 PET radiomics and 3 CT radiomic 
parameters, had the highest predictive efficiency and 
clinical utility in predicting the non-small cell lung 
cancer subtypes compared to the use of these 
parameters alone in both the training and validation 
sets (AUCs (95% CIs) = 0.932 (0.900-0.964), 0.901 
(0.840-0.957), respectively) (p < 0.05) (60). For 
prediction of the prognosis of patients with NPC, 
combining PET and CT features with clinical 

parameters showed equal or higher prognostic 
performance than models with PET, CT, or clinical 
parameters alone (C-index 0.71-0.76 vs. 0.67-0.73 and 
0.62-0.75 vs. 0.54-0.75 for training and validation 
cohorts, respectively), while the prognostic 
performance was significantly improved in the locally 
advanced regional cohort (C-index 0.67-0.84 vs. 
0.64-0.77, p value 0.001-0.059) (61). To predict HPV 
status in oropharyngeal squamous cell carcinoma, 
radiomic features were extracted from primary tumor 
lesions and metastatic cervical lymph nodes on PET 
and non-contrast CT scans. Single PET or CT models 
yielded similar classification performance without 
significant difference in independent validation; 
however, models combining PET and CT features 
outperformed single-modality PET- or CT-based 
models, with AUC of 0.78, and 0.77, respectively, in 
cross-validation and independent validation, 
respectively (62). 

 

 
Figure 3. Radiomics research based on subregion of tumor generated by multimodal medical image. (A) is FLAIR, from which the edematous part (yellow), (B) is 
T2, from which the overall tumor core can be seen, and (C) is T1CE, from which the enhancing part (blue) and necrotic part (green) of the tumor core can be obtained. (D) After 
superimposing the labels together, the final habitat segmentation results can be obtained, where the non-enhanced part of the tumor core (red) is the overall tumor core minus 
the enhanced and necrotic parts. (E) After segmenting the tumor area into different subregions, radiomic studies were performed from each subregion. 
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Compared to PET/CT combinations, PET/MRI 
combinations emerged much later and are currently 
less used; however, some progress has been made in 
dual-modality radiomics studies of PET and MRI. To 
investigate the potential of combined textural feature 
of contrast-enhanced MRI (CE-MRI) and static 
O-(2-[18F]fluoroethyl)-L-tyrosine (FET) PET for 
differentiating between local recurrent brain 
metastasis and radiation injury, radiomic features 
were extracted from above two imagines individually. 
CE-MRI texture features had a diagnostic accuracy of 
81% (sensitivity, 67%; specificity, 90%). FET PET 
textural features revealed a slightly higher diagnostic 
accuracy of 83% (sensitivity, 88%; specificity, 75%). 
However, the highest diagnostic accuracy was 
obtained CE-MRI and FET PET features were 
combined (accuracy, 89%; sensitivity, 85%; specificity, 
96%) (63). Approximately 15-30% of locally advanced 
rectal cancers (LARC) will produce a pathologic 
complete response (pR) to neoadjuvant therapy. To 
predict whether LARC responds to neoadjuvant 
therapy, radiomic features were extracted from PET 
and MRI. A model containing 6 radiomics features (5 
from PET and 1 from MRI) yielded the highest 
predictability in distinguishing between pR+ and pR- 
patients (AUC = 0.86; sensitivity = 0.86; sensitivity = 
86%, and specificity = 83%) (64). For prediction of 
hormone receptor status and proliferation rate in 
breast cancer, a model constructed by combining 
radiomics features of PET and MRI achieved the best 
results for AUC (estrogen receptor, 0.87; progesterone 
receptor, 0.88; Ki-67, 0.997) (65).  

As mentioned above, tumors are highly 
heterogeneous, and this heterogeneity can be reflected 
in PET images. Their general assessments are made 
using the intratumoral heterogeneity index 
(SUVmax/SUVmean) which can help predict more 
accurately the prognosis of patients with tumors (66, 
67). In addition, similar to MRI, PET can be used to 
segment tumors into subregions (“Habitats”) with 
different physiological characteristics based on 
imaging principles. The radiomics features from the 
subregions retained the heterogeneous information of 
the region and avoided the loss of this heterogeneous 
information. To predict PFS in patients with NPC, 
each tumor in the PET/CT imaging was partitioned 
into several phenotypically consistent subregions. For 
each subregion, 202 radiomic features were extracted 
to construct the models. Three subregions (denoted as 
S1, S2, and S3) with distinct PET/CT imaging 
characteristics were identified. The prognostic 
performance of the model from S3 outperformed the 
model from the whole tumor (C-index, 0.69 vs. 0.58; 
log-rank test, p < 0.001 vs. p = 0.552) (68). To 
preoperatively discriminate between non-small cell 

lung cancer and benign inflammatory diseases, 
PET/CT was separated into variant subregions based 
on the adapted clustering method. The AUC of the 
subregion-based PET/CT radiomics models was 
0.7270 ± 0.0147, which showed a significantly 
improved discrimination performance compared to 
conventional methods (p <.001) (69). Radiomic 
features were extracted from whole PET, CT, and 
subregions to estimate the prognosis of patients with 
locally advanced cervical cancer treated with 
chemoradiotherapy. The radiomics signatures that 
included habitat features achieved significantly 
higher C-indexes of 0.78 and 0.76 for PFS estimation, 
and 0.83 and 0.78 for OS estimation in the training and 
test cohorts, respectively, compared with radiomics 
signatures without habitat features with C-indexes of 
0.72 and 0.68 for PFS estimation (P = .004, z test). and 
0.79 and 0.72 for OS estimation (P = .048, z test) (70). 

CT 
CT reflects the spatial distribution of tissue 

strength in the detected area. It is the most commonly 
used medical radiological examination in clinical 
practice. Radiomics of CT in cancer has been 
extensively researched (71-73).  

Recently, radiomics studies combining plain CT 
with contrast-enhanced CT (CE-CT) have achieved 
better results than plain CT alone. When using CE-CT 
and CT plain scans to predict EGFR mutation status in 
patients with non-small cell lung cancer, the general 
radiomics signature (CT+CE-CT) yielded the highest 
AUC of 0.756 and 0.739 in the two test sets, and the 
performance of the general radiomics signature was 
always similar to or higher than that of models built 
using only CT or CE-CT features (74). CE-CT can be 
divided into different phases, which contain different 
tumor information. To develop and validate a 
radiomics-based nomogram for preoperatively 
predicting grade 1 and grade 2/3 tumors in patients 
with pancreatic NETs, radiomic features were 
extracted from arterial phase (AP) and portal venous 
phase (PVP) CT images. The fusion radiomic 
signature (CT+CE-CT) achieved optimal performance 
in both the training (AUC 0.970; 95% CI 0.943–0.997) 
and validation (AUC 0.881; 95% CI 0.760–1) cohorts 
(75). To predict histopathologic growth patterns 
(HGPs) in colorectal liver metastases (CRLMs) using a 
radiomics model, radiomic features were extracted 
from the AP and PVP CT images. The phase-fused 
radiomics signature demonstrated the best predictive 
performance for distinguishing between replacement 
and desmoplastic HGPs (AUCs of 0.926 and 0.939 in 
the training and external validation cohorts, 
respectively) (76). A total of 384 radiomics features 
were extracted from AP or PVP images to 
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preoperatively discriminate pancreatic ductal 
adenocarcinoma (PDAC) in stages I-II and III-IV, and 
predict overall survival. The AP+PVP radiomics 
signature showed the best performance among the 
three radiomics signatures (training cohort: AUC = 
0.919; validation cohort: AUC = 0.831) (77).  

In clinical practice, CT and MRI are the most 
commonly used imaging modalities. The performance 
of combined CT and MRI radiomics is usually better 
than that of either alone. To predict the treatment 
response to neoadjuvant chemotherapy for LARC, 
radiomics features were extracted from CT, ADC, 
T1CE, and high-resolution T2-weighted imaging 
(HR-T2WI). For an individual sequence, the HR-T2WI 
model performed better (AUC = 0.859, ACC = 0.896) 
than CT (AUC = 0.766, ACC = 0.792), T1CE (AUC = 
0.812, ACC = 0.854), and ADC (AUC = 0.828, ACC = 
0.833) models in the validation set; the combined 
radiomics model (AUC = 0.908, ACC = 0.812) had a 
better performance than the individual T1CE, 
HR-T2WI, and ADC models (78). To build a 
predictive model of lymphatic vascular infiltration 
(LVI) in rectal cancer, radiomic features were 
extracted from T2WI, DWI, and CE-CT. The combined 
model achieved the highest AUC of all single-modal 
models (AUC = 0.884 and 0.876, respectively), with 
high sensitivity and specificity in the training and 
validation cohorts (sensitivity = 0.938 and 0.929, 
specificity = 0.727 and 0.800, respectively) (79). To 
predict pCR in patients with rectal cancer after 
neoadjuvant treatment, a radiomics model based on 
pretreatment CT was built first. Even the CT 
radiomics model yielded the highest AUCs of 0.997 
[95% CI 0.990–1.000] in the primary cohort and 0.822 
[95% CI, 0.649–0.995] in the validation cohort. When 
the MRI-based radiomics signature was added to the 
previous CT radiomics model, the performance of the 
integrated model (CT-MRI) was significantly better 
than that of CT (P = 0.005) or MRI (P = 0.003) alone 
(AIC: 75.49 vs. 81.34 vs. 82.39%) (80).  

CT is often combined with PET for radiomic 
studies of tumor subregions, as summarized in the 
PET section above. Theoretically, CT and CE-CT, or 
CT and MRI could also be combined with each other 
for tumor subregion studies, but to the best of our 
knowledge, we have not found any literature on this 
yet. 

Discussion 
By combining multimodal images, radiomics can 

obtain more comprehensive image information and 
better radiomic models, and even segment 
"subregions" with different biological characteristics 

and perform more refined radiomic analysis based on 
these subregions. However, it must be noted that the 
current tumor genomics data, both in public 
databases and clinical practice, are derived from 
single-site sampling of tumors (Fig. 4). The genomic 
data obtained inherently ignore the heterogeneity of 
tumors and have the potential for substantial bias (81). 
The true efficacy of radiomics models trained using 
biased data is questionable. For example, in a 
radiomics study to predict the presence of IDH 
mutations in gliomas, if the labels in a supervised 
learning model are incorrect because of the genetic 
heterogeneity of the gliomas, then the model is bound 
to be unreliable. Tumor heterogeneity will also 
indirectly affect the study of a range of factors, such as 
treatment response, prognosis, and tumor recurrence. 
An ideal way to solve this problem is to obtain 
heterogeneous genomic data of the tumor. However, 
it is unrealistic based on technology and costs. 
Therefore, a method to obtain the genomic 
heterogeneity of tumors as realistically as possible is 
an unavoidable challenge in the continued develop-
ment of future radiomics. Medical images can analyze 
different subregions to inform tissue biopsy sites (82). 
The more accurate conclusions can be drawn by 
analyzing genomic information sampled from 
different tumor subregions. The reliability of different 
subregions in radiomics can be further verified using 
genomic data obtained from different subregions. 
However, to date, there is no public database with 
both genomic and imaging data of tumor subregions. 

Although the combination of multimodal images 
has certainly helped the advancement of radiomics, 
the implementation process still has many problems. 
For example, for studies that require the combination 
of CT and MRI, it is likely that medical images of 
different modalities will have different spatial 
structure because they usually come from different 
points in time, and the patient's position, field of view 
of the device, and number of slices scanned may 
differ, even if the patient is the same. In this case, it is 
necessary to align medical images of different 
modalities (Fig 5). However, although many image 
alignment tools have been developed, they do not 
always yield ideal alignment results (83,84), especially 
for diseases such as tumors, which can cause 
significant changes in normal anatomy. Cancer- 
specific tumor alignment tools have been used to 
address this problem (85), but there are so many 
different cancer types that the cost of this approach 
remains exorbitant. Development of a universal and 
reliable registration tool is a possible solution to this 
problem. 
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Figure 4. Tumor heterogeneity can lead to bias in genomics data. Tumors are highly heterogeneous, with cells of different genotypes in different subregions. “Biopsy”: 
one site can only obtain the genotypes of cells in a localized region of the tumor. “Missed”: The genotypes of other parts of the tumor are lost. However, most of the current 
studies have used this biased data as a "true" label. 

 
Figure 5. Factors leading to differences in the spatial structure of medical images of different modalities. (A) Field of view may be different for different modality 
images at the time of examination. (B) Images of different modalities are often not completed simultaneously, and the patient's position cannot be guaranteed to be identical during 
multiple imaging examination. (C) Images of different modalities usually have different slice thicknesses. (D) The same patient may be imaged at different times, which may result 
in structural changes for some rapidly progressing tumors. 

 
In addition, multimodal images also indicate 

that the researcher must outline the ROIs for multiple 
images. For researchers who manually outline ROIs, 
this workload has undoubtedly increased by several 
times. Even for researchers who use or develop their 
own semi-automatic or fully automatic segmentation 
tools, more effort is needed to develop different 
segmentation tools, as a single segmentation tool is 
unlikely to cope with images of different modalities. 
Radiomics studies of multimodal images require 
more reliable segmentation. The current segmentation 
for multimodal images involves multiple iterations of 
the segmentation of a single-modal image (86). 
Therefore, each error in multimodal image 

segmentation magnifies the error in the final 
segmentation result (87). Such errors have a greater 
impact on “subregion” based imaging studies, where 
even small segmentation errors may determine the 
presence or absence of certain “subregions.” 
Addressing this issue should be a future focus in 
radiomics. 

To verify the capabilities of radiomics and 
expand its application range, “big” data with a large 
number of various data types are required (88). 
Powerful public databases such as TCIA (89) and 
TCGA (90) are effective solutions for this. However, 
the implementation of big data is difficult. The data in 
public databases come from different institutions, 
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such as TCIA, resulting in variable quality of their 
data information. While big data can draw reliable 
conclusions from relatively "dirty" data, in the case of 
radiomics, the different parameters of the image 
acquisition or the noise in the image can cause serious 
interference with the radiomics features (91,92), which 
will inevitably affect the model's ability for 
generalization of other databases (93). To solve this 
problem, it is necessary to develop worldwide 
database access standards. In addition, it is necessary 
to utilize this standard to clean the data in existing 
public databases. However, despite the existence of 
public databases, the amount of data in these 
databases is extremely limited. Although many 
institutions have a large amount of image data, they 
are still independent of each other. Making use of all 
data from all sources can greatly expand the number 
of samples and produce more reliable results. This can 
be accomplished by facilitating the federation of 
medical centers, allowing them to request access to 
each other's data, or by commissioning a trusted 
third-party organization that can manage the data of 
all participating institutions. Although it is costly and 
difficult to unite institutions or find a third party to 
build a high-quality public database, the benefits are 
enormous. 

The relationship between radiomics and clinical 
symptoms has been widely documented, and 
correlations between radiomics and other data types, 
such as genomics, transcriptomics, proteomics, and 
metabolomics, are major directions for future 
development. The correlation between radiomics and 
genomics has been extensively studied in cancers. 
Radiomics features can also be used to represent 
transcriptomics. Research on the combination of 
radiomics with proteomics and metabolomics is just 
beginning, and more effort is required. The combined 
research of radiomics and another kind of omics, the 
combined research of multiple omics, is an area 
worthy of future research. However, omics data are 
independent of each other, that is, samples with 
genomic data may not have radiomics data, or 
samples may have radiomics data but lack 
transcriptomic data. A high-quality multi-omics 
database is a good way to break this isolation, but the 
cost is huge. 

Conclusions 
In this review, we summarized the current 

advances and hotspots in radiomics research. 
Multimodality/multisequence medical image fusion 
radiomics and habitat-based radiomics research fully 
consider the uniqueness of each medical imaging 
modality, compensate for the shortcomings of omitted 
information in previous radiomics studies, and 

greatly improve the prediction accuracy of radiomics, 
which is a future development trend. With the 
improvement in radiomics technology, expansion of 
public databases, and advancement of deep learning 
algorithms, radiomics will definitely play an 
important role in future clinical diagnosis, treatment, 
and prognosis. 
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