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Abstract 

The ongoing COVID-19 pandemic is caused by an RNA virus, SARS-CoV-2. The genome of SARS-CoV-2 
lacks a nuclear phase in its life cycle and is replicated in the cytoplasm. However, interfering with nuclear 
trafficking using pharmacological inhibitors greatly reduces virus infection and virus replication of other 
coronaviruses is blocked in enucleated cells, suggesting a critical role of the nucleus in virus infection. 
Here, we summarize the alternations of nuclear pathways caused by SARS-CoV-2, including nuclear 
translocation pathways, innate immune responses, mRNA metabolism, epigenetic mechanisms, DNA 
damage response, cytoskeleton regulation, and nuclear rupture. We consider how these alternations 
contribute to virus replication and discuss therapeutic treatments that target these pathways, focusing on 
small molecule drugs that are being used in clinical studies. 
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Introduction 
The ongoing coronavirus disease 2019 

(COVID-19) is one of the deadliest infectious diseases 
in history. To date, it has caused more than 536 
million confirmed cases and over 6.31 million deaths 
(Weekly epidemiological update on COVID-19, retrieved 
from https://www.who.int on 24 June 2022). 
COVID-19 is caused by severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2), a member of 
the Coronaviridae family of enveloped RNA viruses 
(1). The Coronaviridae family includes the Letovirinae 
and Orthocoronavirinae subfamilies and members of 
the latter are commonly known as coronaviruses (2). 
The coronaviruses are categorized into four genera: 
Alphacoronavirus, Betacoronavirus, Gammacoronavirus, 
and Deltacoronavirus (2). SARS-CoV-2 belongs to the 
genus Betacoronavirus. Betacoronavirus can be further 
divided into four lineages, or subgroups (3,4). 
Common cold-causing HKU1 and OC43 belong to 
subgroup A, SARS-CoV and SARS-CoV-2 belong to 
subgroup B, and MERS-CoV is a member of subgroup 
C. All beta-coronaviruses are enveloped with a lipid 
bilayer that contains transmembrane proteins: 
membrane (M), envelope (E), and spike (S) structural 
proteins (5–7). The M and E proteins are essential for 

virion assembly and budding and determine the 
shape and size of the virus particles. The S protein 
forms surface projections and mediates viral entry 
into the host cells. It has been the center for anti-viral 
research and the major target for vaccine and 
therapeutic development. Inside of the envelope is the 
viral genome, a 26-32 kilobase (29.8-29.9 kilobase for 
SARS-CoV-2) positive-sense single-stranded RNA. 
The RNA genome is organized and protected by the 
nucleocapsid (N) structural protein. More than 
two-thirds of the SARS-CoV-2 genome encodes 16 
nonstructural proteins (Nsp1-Nsp16), while the rest 
encodes S, E, M, N, and other open reading frames 
(ORFs) (6,7). 

The binding of the S protein to its receptor, 
angiotensin-converting enzyme 2 (ACE2) for 
SARS-CoV-2, triggers membrane fusion and the viral 
genome is released into the cytosol. S protein contains 
an RGD tripeptide which can facilitate its binding to 
multiple integrins and viral entry into ACE2-negative 
cells (8–11). The virus can also enter monocytes using 
an antibody-Fcγ receptor-mediated mechanism (12). 
In the cytosol, the viral genome directs the expression 
of viral proteins to hijack cellular machinery (13,14). 
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These include the transcription and translation 
machinery that are necessary for viral production and 
the innate immune responses that fight against the 
virus. In addition, the viruses also hijack cellular 
pathways to reduce cellular metabolism or repurpose 
them to optimize viral production. The exact 
pathways that are taken over vary greatly among 
viruses, and heavily depend on their life cycle. One of 
the most important factors contributing to pathway 
alternation is the site of replication, especially if the 
virus genome is replicated in the cytoplasm or in the 
nucleus (15). For viruses that are replicated in the 
nucleus, they must hijack nuclear import machinery 
to allow the viral genome to enter the nucleus and 
nuclear export machinery to transport the viral 
ribonucleoproteins out of the nucleus. Viruses that are 
replicated in the cytoplasm, including all 
positive-sense RNA viruses of eukaryotes, encode 
their own DNA or RNA polymerase, allowing the 
synthesis of their genomes outside of the nucleus.  

Although coronavirus genome replication and 
transcription occur in the cytoplasm, the nucleus is 
important for their replication (16,17). A number of 
the viral proteins contain nuclear localization signals 
(NLSs) and/or display nuclear localization (18). Some 
also contain nuclear exporting signals (18). Several 
non-structural proteins were shown to alter the 
nuclear import and export functions to impair the 
translocation of transcription factors involved in 
immune responses (18). Here, we focus on 
SARS-CoV-2 and discuss the relationships between 
this coronavirus and the nucleus and their therapeutic 
implications. 

The nucleus and nuclear transportation 
The life cycle of coronavirus doesn’t show clear 

dependency on the nucleus, but virus clearance is 
accelerated by blocking nuclear entry and virus 
infection is reduced by inhibiting nuclear export 
(15,19,20), suggesting a role of the nucleus in virus 
replication. Virus replication was also shown to be 
greatly reduced in enucleated cells. The avian 
infectious bronchitis virus, a gamma-coronavirus, 
cannot replicate in enucleated cells (16). The murine 
hepatitis virus, a beta-coronavirus, can replicate in 
enucleated cells, but viral production is greatly 
decreased (down to 0.6 - 15% of control nucleated 
cells, dependent on the virus strains) (17). Replication 
of SARS-CoV-2 in enucleated cells has not been tested, 
but the above results suggest that the nucleus may 
similarly contribute to SARS-CoV-2 viral production. 

The nucleus hosts almost all the cell's genomic 
material (except for mitochondrial DNAs) and 
contains nucleolus and a number of nuclear bodies 
involved in RNA synthesis, RNA processing, and 

ribosome assembly. It is the site of gene regulation, as 
transcription factors must enter the nucleus to activate 
or inhibit gene expression. The nucleus is bounded by 
the nuclear envelope consisting of the outer nuclear 
membrane (ONM), the inner nuclear membrane 
(INM), and the nuclear lamina. Between the ONM 
and the INM is the nuclear lumen, or the perinuclear 
space. Because the ONM is continuous with the 
endoplasmic reticulum (ER), the nuclear lumen is 
connected to the ER lumen. The INM and ONM are 
also continuous, but they contain different sets of 
proteins (21). Unanchored proteins diffuse freely on 
the planes of INM and ONM, but diffusion between 
these two layers is tightly regulated. The INM and 
ONM are connected by two types of protein 
complexes. First, they are connected by the linker of 
nucleoskeleton and cytoskeleton (LINC) complexes 
consisting of nesprins on the ONM and SUN proteins 
on the INM (22,23). The KASH motif of nesprins and 
the SUN domain of SUN proteins interact in the 
lumen and bridge the ONM and the INM. The LINC 
complexes couple the nucleoskeleton (the nuclear 
lamina) to the cytoskeleton and play important 
functions in mechanical signaling and force 
transduction. Second, they are connected by the 
nuclear pore complexes (NPC) (24). In fact, the ONM 
and the INM are continuous at the NPCs (21,24). The 
NPCs are large multi-protein pores on the nuclear 
envelope (24). The pores are open to both the 
cytoplasm and the nucleoplasm and are the sole 
gateway of transportation across the nuclear 
envelope. The nuclear lamina is composed of lamins 
(lamin A, B1, B2, and C) (25). These intermediate 
filament proteins form a meshwork underneath the 
INM and provide structural support to the nucleus. 
The lamina also provides attaching points for the 
LINC complexes, interacts with the NPCs, and 
through anchoring chromatids, regulates gene 
expression (25,26). 

Nuclear transportation relies on the NPC and the 
gradient of Ran (Ras-related nuclear protein) small 
GTPase. The NPCs are giant pore complexes with 
eightfold rotational symmetry (24,27). Mammalian 
NPCs are about 110 MDa and are composed of 
multiple copies of ~30 different nucleoporins (Nups) 
(24,27). The inner diameter of an NPC is about 50 nm. 
However, the nucleoporins within the central 
channels contain repeating sequences of 
phenylalanine and glycine (FG repeats) that form 
disordered projections into the lumen (24). These 
projections create a permeability barrier and exclude 
the passage of large proteins. In general, small 
proteins (<50 kDa) can pass the NPC by passive 
diffusion while larger proteins require the transport 
receptors (24). This size limitation is approximate 
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because the barrier is not stiff and surface residues of 
the cargo proteins can greatly alter the kinetics of their 
NPC passage (28,29). It can also be affected by 
post-translational modification. For example, 
glycosylation was shown to facilitate nuclear entry of 
BSA and neuroD1 (30,31). In addition, as shown for 
YAP, mechanical stress on the nuclear membrane can 
stretch the nuclear pore to increase nuclear import 
(32). 

Active nuclear transport requires the Ran 
system. Ran is a member of the Ras family of small 
GTPases (15,18). Ran exists in two, GTP-bound and 
GDP-bound, forms. Ran binding proteins and Ran 
GTPase activating protein (GAP) in the cytoplasm 
facilitate the conversion of Ran-GTP into Ran-GDP, 
whereas RCC1, the nucleotide exchange factor (GEF) 
for Ran, converts Ran-GDP into Ran-GTP in the 
nucleus. Together, a Ran-GTP/Ran-GDP gradient is 
formed across the nuclear envelope. Nuclear import 
(Fig. 1, left) starts with the binding of NLS-containing 
cargos to importins, which allows them to shuttle 
between the cytoplasm and the nucleoplasm. Inside 
the nucleus, Ran-GTP binds to importin and releases 
the cargo, resulting in its nuclear accumulation. 
Ran-GTP and importin move together to the 
cytoplasm, in which Ran-GTP is converted to 
Ran-GDP and importin dissociates. Ran-GDP enters 
the nucleus and is converted to Ran-GTP there. 
Released importin and Ran-GTP can then participate 

in another round of nuclear importation. Nuclear 
export (Fig. 1, right) starts with nuclear export signal 
(NES)-mediated cargo (protein, ribonucleoprotein 
complex, or RNA) binding to Ran-GTP and an 
exportin. After passing through the NPC, the complex 
dissociates when Ran-GTP is hydrolyzed to Ran-GDP. 
Ran-GDP and exportin then diffuse into the nucleus 
for reuse. 

Viral replication and the nucleus 
Upon membrane fusion, the coronavirus 

genomic RNA is uncoated and released into the 
cytosol. The released RNA first serves as an mRNA 
and is translated into polypeptides that are processed 
to form the replication and transcription complexes 
(RTC) (6,7). Some of the RTC subunits of SARS-CoV, 
namely Nsp3, Nsp4, and Nsp6, work together to 
remodel intracellular membranes, leading to the 
formation of convoluted membranes (CMs) and 
double-membrane vesicles (DMVs) (33). The 
SARS-CoV-2 Nsp3, 4, and 6 contain similar 
transmembrane domains as their SARS-CoV 
counterparts and are expected to function likewise in 
membrane rearrangement (34,35). Virus-induced 
membrane structures (CMs and DMVs) are 
collectively called the replication organelles, as they 
are believed to be the specialized sites of viral RNA 
synthesis and protect viral RNAs from being detected 
by the innate immunity (6). Cryotomographic studies 

 

 
Figure 1: Nuclear import and export. Left: Cargo to be imported binds to cytoplasmic importin and enters the nucleus, where it is released from importin by Ran-GTP. The 
Ran-GTP/importin complex moves to the cytoplasm and binds RanBP. Ran-GAP activates the GTPase activity of Ran to convert Ran-GTP to Ran-GDP and release importin. 
Ran-GDP enters the nucleus and is recharged by a Ran-GEF. Right: Cargo to be exported binds to exportin and Ran-GTP in the nucleus. The complex moves to the cytoplasm 
where Ran-GTP is converted to Ran-GDP, leading to the disassembly of the complex. Both Ran-GDP and exportin then enter the nucleus for another round of nuclear export. 
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revealed that the membrane of DMVs induced by the 
murine hepatitis coronavirus contains pore complexes 
that allow the export of synthesized RNAs to the 
cytosol (36). Viral infection also induces the formation 
of annulate lamellae, parallel stacks of ER-derived 
membranes. Annulate lamellae contain NPC proteins, 
suggesting a link to the nuclear envelope (37). The 
formation and functions of annulate lamellae are still 
poorly understood. 

The genomic RNA contains a nested set of 
subgenomic mRNAs, which encode the M, E, S, and N 
structural proteins and additional accessory proteins 
(5). The N protein is expressed by cytoplasmic 
ribosomes and binds to replicated RNAs after they 
exit the replication organelles. The M, E, and S 
proteins are transmembrane proteins and, expectedly, 
are synthesized by rough ER-associated ribosomes 
and co-translationally translocated into the ER. 
Vesicles containing these proteins are transported to 
the ER-to-Golgi intermediate compartment (ERGIC). 
The ERGIC clusters, concentrated with viral proteins, 
then assemble around the newly formed 
N-encapsulated genomic RNAs, resulting in 
assembled virus particles in the lumen of secretory 
vesicles (5). The virus particles then go through the 
secretory pathway before being released via a 
lysosomal-dependent pathway (38). 

The nucleus may contribute to virus production 
due to its connection to the replication organelles. 
Notably, the replication organelles are usually located 
in the perinuclear region of the cells. These organelles 
are interconnected and connect to the ER, so, in 
principle, material exchange can occur between the 
nuclear lumen and the intermembrane space of the 
DMVs. However, given that synthesized RNAs are 
protected by the inner membrane and enter the 
cytosol through the pore complex, it is unlikely that 
luminal factors can considerably affect virus 
replication. Similarly, transmembrane proteins 
synthesized in the ER can diffuse to the ONM. The E 
protein of SARS-CoV-2, when overexpressed alone, 
was indeed shown to localize to the nucleus (and the 
cytoplasm) (39). However, the functional significance 
of this localization is unknown. 

The nucleus is also in close proximity to the 
ERGIC and the Golgi complexes. Two proteins 
involved in nuclear transportation, RanBP1 and 
importin-α, regulate the dynamics of the Golgi 
complexes (40–42). A pool of RanBP1 localized to the 
trans-Golgi network in neurons and mediates the 
nuclear export of proteins that regulate Golgi 
condensation (40). Importin-α directly interacts with 
GM130 on Golgi and functions in Golgi disassembly 
and spindle assembly during mitosis (41,42). 
Interestingly, importin-α may promote Golgi 

disassembly independent of Ran (41,43). The Golgi 
complexes are highly fragmented in SARS-CoV-2 
infected cells (44). Whether this is due to altered 
nuclear transportation, however, has not been tested. 

Viral proteins in the nucleus 
Supporting a role of the nucleus in viral 

production, several viral proteins were shown to 
contain NLS and/or NES and localize to the nucleus. 
The SARS-CoV N protein, which is 90% identical to 
SARS-CoV-2 N protein, contains multiple NLSs and a 
signal for nucleolar localization (18). Nucleolar 
localization was indeed observed for N protein of 
SARS-CoV (45). N protein of SARS-CoV-2, however, 
is mostly cytoplasmic (39). The S protein of 
SARS-CoV-2 was also shown to be present in the 
nucleus (39,46). In addition to the N and S proteins, 
many other viral proteins, when overexpressed, are 
detectable in the nucleus. These include E, ORF9a, 
Nsp1, Nsp3N, Nsp5 to Nsp7, Nsp9, Nsp10, and 
Nsp12 to Nsp16 (39). Among them, only Nsp13 
exhibits foci localization and enriches in the splicing 
compartment (39). Many of these proteins are small 
and probably enter the nucleus by passive diffusion. 

Because viral assembly occurs in the cytoplasm, 
nuclear localization of some of the viral proteins may 
not be desirable and they need to be exported from 
the nucleus. Pharmacological inhibition of nuclear 
export leads to nuclear accumulation of viral proteins 
and significantly decreases viral infection (20). Several 
of the SARS-CoV-2 proteins, including N, S, M, E, 
Nsp9, Nsp12, and ORF3a, contain predicted NESs 
(18). These NESs may promote the nuclear export of 
these proteins or allow them to interact with exportins 
to hijack nuclear transportation (see below). The 
mechanism of nuclear export is best understood for 
SARS-CoV N protein. Phosphorylated N protein 
binds to adaptor protein 14-3-3 for nuclear export (47). 
SARS-CoV-2 N protein also binds to 14-3-3 in a 
phosphorylation-dependent manner (48). 

Targeting nuclear translocation of 
immune regulators 

Pathogenic coronaviruses commonly interfere 
with the interferon (IFN) pathway but trigger an 
aberrant immune response by producing excessive 
cytokines and chemokines (cytokine storm) (14). IFNs 
are a family of antiviral cytokines produced and 
released by host cells upon detecting various 
pathogen-associated molecular patterns. There are 
three types of IFNs: Type I IFNs (including α and β) 
are anti-viral. The only type II IFN (γ) fights against 
both bacterial and virus infections. Whereas type III 
IFNs (λ) are produced after virus or fungal infections. 
All three types of IFNs are targets of coronaviruses. 
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The expression of type I and III IFNs induced by 
SARS-CoV-2 is affected by many factors, like the 
tissue location, severity, and age (49). Type II IFN is 
also downregulated by SARS-CoV-2 (50,51). 

The mechanisms of IFN antagonism have been 
extensively studied for type I IFNs (52,53). Type I IFN 
response begins with the recognition of virus RNA by 
host cell pattern recognition receptors (PPRs), like 
RIG-I and MDA5 (Figure 2). PPRs then bind to 
mitochondrial-associated adaptor MAVS and recruit 
and activate TRAF3. TRAF3 activates the interferon 
regulatory factors (IRF) kinases, TBK1 and IKKε, 
which phosphorylate IRF3 and IRF7. Phosphorylated 
IRF3/7 enter the nucleus to initiate the expression of 
the IFN genes. TBK1 and IKKε also phosphorylate IκB 
and facilitate the nuclear translocation of NF-κB, 
another important regulator of innate immune 
response. Expressed IFNs are released by the host 
cells and bind to the IFN receptors on the nearby cells 
to activate the Janus kinase (JAK)-STAT signaling 
cascade (Figure 2). Receptor-associated JAK 
phosphorylates and activates both STAT1 and STAT2, 
which, together with IRF9, form the IFN-stimulated 
gene factor 3 (ISGF3). The ISGF3 enters the nuclear 

with the help of importins α1/β1 and triggers the 
expression of antiviral genes (19). 

SARS-CoV-2 antagonizes IFN with many, likely 
redundant, mechanisms targeting both the pre-IFN 
IRF3 pathway and the downstream JAK-STAT 
pathway (Table 1). Regulations on the mRNA level 
also exist (see below). In three studies, many of the 
viral proteins, including Nsp1, Nsp3, Nsp6, Nsp7, 
Nsp12, Nsp13, Nsp14, Nsp15, ORF3a, ORF6, ORF7a, 
ORF7b, and M, were shown to suppress IFN-α/β 
signaling, mostly by preventing the phosphorylation 
and subsequent nuclear entry of IRF3 (54–56). In 
addition, Nsp5 was also reported to inhibit IFN 
response by targeting IRF3 (57,58). Two viral proteins, 
Nsp2 and S, however, enhance IFN signaling (54). 
Several of these proteins, including Nsp1, Nsp3, 
Nsp6, Nsp13, ORF3a, ORF6, ORF7, and M, also inhibit 
nuclear translocation of STAT1/STAT2 (54,55,59). 
Moreover, N protein was shown to inhibit the 
phosphorylation and nuclear translocation of 
STAT1/STAT2 (60). It should be noted that these 
studies mostly relied on the ectopic expression of 
individual protein, and have identified overlapped 
but not identical sets of viral proteins (54–56). 

 

 
Figure 2: SARS-Cov-2 induces the IFN-I response. Left: 1) The viral RNA is recognized by host cell PPRs and together they activate MAVS on mitochondria. MAVS 
recruits TRAF3 to activate TBK1/IKKε, which in turn phosphorylates IRF3. IRF3 Phosphorylation leads to its nuclear translocation and the expression of the IFN-I genes. 2) DNA 
released from damaged mitochondria or ruptured nucleus is recognized by cGAS, leading to the synthesis of 2’3’-cGAMP. cGAMP binds to ER-localized STING and promotes its 
dimerization and translocation to the Golgi complex. STING activates TBK1 to induce IFN response. Right: Expressed IFNs are released and bind to the IFN receptors on the 
nearby cells. Receptor-associated JAK phosphorylates both STAT1 and STAT2, allowing them to dimerize and interact with IRF9 to form the ISFG3. The ISGF3 enters the nucleus 
and induces the expression of the IFN response genes. 
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Table 1: Mechanisms of IFN down-regulation by SARS-CoV-2 proteins 

 TBK1 phosphorylation IRF3 phosphorylation IRF3 translocation STAT phosphorylation ISGF3 translocation 
Nsp1   Yes (55) Yes (55) Yes (55) 
Nsp3  Yes (59) Yes (59)   
Nsp5  No (57) Yes (57)   
Nsp6 No (55) Yes (55) Yes (55) Yes (55) Yes (55) 
Nsp7      
Nsp12  No (67) Yes (67)   
Nsp13 Yes (55) Yes (55) Yes (55,56) Yes (55) Yes (55) 
Nsp14   Yes (56)   
Nsp15   Yes (56)   
ORF3a    Yes (55) Yes (55) 
ORF6  No (54,55)  Yes (54–56)  Yes (55,63–65) 
ORF7a    Yes (55) Yes (55) 
ORF7b    Yes (55) Yes (55) 
M    Yes (55) Yes (55) 
N    Yes (60) Yes (60) 

* Yes/No: whether the process (indicated by the column heading) is inhibited by the protein (indicated by the row label). The numbers in parentheses refer to the references.  
 
The underlying mechanism of IFN downregu-

lation is best understood for ORF6. SARS-CoV-2 
ORF6 was shown to interact with importin α2 and 
inhibit importin-dependent nuclear translocation of 
both IRF3 and ISGF3 (55). Interestingly, ORF6 of 
SARS-CoV also interacts with importin α2 and β1 and 
sequesters them on the ER and Golgi membrane (61). 
ORF6 additionally interacts with Nup98, an NPC 
component, and Rae1, a nuclear mRNA export factor, 
and interferes with nuclear trafficking, including 
STATs translocation (62–65). Inhibitors of importins 
are effective drugs for COVID-19, but the mechanism 
of action is still unclear (15,19,66). 

The protease domain of Nsp3 (PLPro) can 
downregulate IFN signaling by cleaving a 
ubiquitin-like protein, ISG15 (59). Nsp3 prevents 
ISGylation of IRF3 by ISG15 and decreases both 
phosphorylation and nuclear translocation of IRF3 
(59). Directed cleavage of IRF3 by PLPro can also occur 
(58). Nsp5 also contains a protease domain and blocks 
nuclear translocation of phosphorylated IRF3, but this 
activity is independent of its protease domain (57). 
Nsp12 blocks the nuclear translocation of IRF3 
without affecting its phosphorylation (67). Therefore, 
Nsp5 and Nsp12 may interact with the nuclear 
transport machinery. Both Nsp6 and Nsp13 bind to 
TBK1 (55,68), but function differently to inhibit IRF3 
phosphorylation. Nsp13 inhibits the phosphorylation 
of TBK1, whereas Nsp6 binds to phosphorylated 
TBK1 and inhibits its kinase activity (55,68). 

In addition to the IFN responses, the virus also 
interferes with other anti-viral innate immune 
pathways. However, the inhibitions are not as tight as 
those of the IFN responses and whether nuclear entry 
of the transcription factors is altered by the virus is 
not well understood. Nevertheless, SARS-CoV-2 
ORF9c interacts with proteins involved in NF-kB 
signaling (62) and NF-κB nuclear translocation is 
affected by the loss of Nup62 induced by Nsp9 
expression (69), demonstrating that SARS-CoV-2 can 

alter NF-kB signaling through regulating its nuclear 
entry. The NF-κB pathways are critical for the 
cytokine storm (70). In the inactive state, the NF-κB 
heterodimer is sequestered in the cytoplasm by its 
inhibitor IκB. Inflammatory stimuli activate the IκB 
kinase, an enzyme complex consisting of IKKα kinase, 
IKKβ kinase, and a regulatory protein NEMO. Active 
IκB kinase phosphorylates IκB and causes its 
ubiquitinylation and proteasome degradation. Freed 
NF-κB then enters the nucleus to trigger the 
expression of inflammatory genes. The NF-κB 
pathways play dual roles in SARS-CoV-2 biology. On 
one hand, both Nsp5 and Nsp13 were shown to 
inhibit NF-κB (68,71). Nsp5 cleaves NEMO to reduce 
IFN signaling (71). On the other hand, Nsp5 was 
shown to activate NF-κB in another study (72). In 
addition, many viral proteins, including ORF3a, 
ORF7a, M, N, and S, activate NF-κB (11,73–76). 
Surprisingly, the NF-κB pathways may be essential 
for SARS-CoV-2, as its depletion results in a complete 
inhibition of virus replication (77). 

Upstream of IFN and NF-κB, the cyclic 
GMP-AMP synthase-stimulator of interferon genes 
(cGAS-STING) pathway has a direct connection to the 
nucleus. Damage to the nuclear envelope or 
mitochondria releases DNA to the cytoplasm (Fig 2). 
Cytoplasmic DNAs are sensed by cGAS and induce 
the production of cyclic GMP-AMP, which binds to 
STING to activate TBK1 (78). TBK1 then 
phosphorylates IRF3 to induce IFN production. 
Similar to the NF-κB pathways, cGAS-STING seems 
to play dual roles in COVID-19. ORF3a, ORF9b, N, 
and 3CLPro (protease domain of Nsp5) of SARS-CoV-2 
were shown to inhibit STING (79,80) and 
pharmacological activation of cGAS-STING reduces 
virus infection (81,82). However, elevated 
cGAS-STING also contributes to the cytokine storm 
and inflammation (83,84). 
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Targeting host mRNAs 
SARS-CoV-2 cuts down cellular protein 

synthesis to inhibit immune responses and optimize 
viral replication. This is in part achieved by targeting 
host mRNAs, including inhibiting mRNA release after 
transcription, blocking nuclear trafficking of mRNAs, 
and accelerating degradation of mRNAs (85). 
SARS-CoV-2 induces the transcription of IFN mRNAs 
but most of these mRNAs are retained at the sites of 
transcription and degraded eventually in the nucleus 
(85). Escaped mRNAs can be transported to the 
cytoplasm, but global mRNA export is also inhibited 
by viral proteins. ORF6 interacts with Nup98 and 
Rae1 and impairs bidirectional nuclear transport, 
including host mRNA export (64,65). Nsp1, which 
suppresses host gene expression, also blocks mRNA 
export (86,87). The N-terminus of Nsp1 binds to 
NXF1, a subunit of the mRNA export receptor 
NXF1-NXT1. Nsp1 binding does not interfere with 
NXF1 binding to RNAs but impairs its interaction 
with nuclear export factors and the NPC (87). In the 
cytoplasm, exported host mRNAs face increased 
degradation mediated by Nsp1 (85,86). Together, 
these studies demonstrated that SARS-CoV-2 targets 
multiple mRNA pathways to dampen the translation 
of host proteins.  

Coronavirus, cilia, and ciliary trafficking 
Cilia are microtubule-dependent organelles 

projected from the cell body (88,89). Two types of cilia 
exist, the motile cilia that beat in coordinated waves to 
move extracellular material relative to the cell and the 
immotile primary cilia that act as cellular antennas 
and perform highly specialized sensory functions. 
Motile cilia play critical roles in the defense against 
airway infections (90). The respiratory tract is lined by 
epithelial cells that are mostly ciliated. Each ciliated 
epithelial cell has about two hundred cilia that beat in 
a coordinated fashion to propel the mucus layer and 
inhaled particles and pathogens out of the airways. 
SARS-CoV-2 preferentially targets ciliated cells and 
causes a rapid loss of the ciliated epithelium (90). 
Motile cilia in SARS-CoV-2 infected cells display 
structural abnormalities, both in shapes and sizes (90). 
The expression of Foxj1, a ciliogenesis regulator, is 
reduced by virus infection and may contribute to 
some of these cilia defects (90). Primary cilia are 
sensory organelles found in most non-blood cells in 
our bodies. With some exceptions, most cells possess 
one single primary cilium. The loss of smell and taste 
is a common symptom of SARS-CoV-2 infection and 
is related to cilia damage (91,92). ORF10 interacts with 
ZYG11B, an adapter protein of the CUL2 E3 ligase, 
and induces proteasomal degradation of proteins 

involved in ciliogenesis or cilium structure (93). 
Overexpression of ORF10 inhibits primary cilium 
assembly (93). 

The machinery of nuclear trafficking has a 
surprising role in ciliogenesis and translocation of 
cilia proteins (88,89). At least ten Nups as well as 
importin-β1 and β2 are found to be present in cilia 
(89,94). The Nups localize to the base of the cilia and 
form a diffusion barrier to regulate protein 
translocation between the cilia and the cytoplasm 
(88,89). The structural organization of these Nups is 
poorly understood but is expected to share some 
features of the NPC. Similar to nuclear trafficking, 
ciliary transport depends on the FG repeats of the 
Nups and a ciliary Ran-GTP, cytoplasmic Ran-GDP 
gradient (88,89). Importins are also involved in ciliary 
transport. Importin-β1 interacts with CRB3-CLPI at 
the cilia and overexpression of an importin β1 mutant 
leads to strong cilia abnormalities (94). Importin β2 
recognizes ciliary localization signals and mediates 
translocation of KIF17, an important component of the 
intraflagellar transport (95). Given that both 
SARS-CoV and SARS-CoV-2 ORF6s are reported to 
interact with and inhibit importins (α2 (55) and β1 
(61)), it is possible that ORF6 may affect ciliogenesis 
and cilia maintenance. 

In a SARS‐CoV‐2-human protein interactomic 
study, Nsp13 is found to interact with 12 centrosomal 
components (62). The centrosome and the basal body 
of cilia are closely related microtubule-organizing 
centers and both contain centriole (62,96). Nsp6 of 
SARS‐CoV, when overexpressed alone, induces 
vesicle formation at the centrosome. Vesicle 
formation, however, does not occur when Nsp4 is 
coexpressed (33). The functional importance of these 
interactions is unknown. 

Epigenetic alternations by coronavirus 
Epigenetic mechanisms, such as DNA/RNA 

methylation and histone modification, are important 
regulators of gene expression. Differences in 
epigenetic modifications contribute greatly to the 
susceptibility to SARS-CoV-2 and the prevalence of 
comorbidities (97,98). Epigenetic regulations of ACE2 
expression and their effects on COVID-19 outcomes 
have been extensively studied and have great 
therapeutic potential (97–99). 

Not surprisingly, SARS-CoV-2 also induces 
epigenetic changes to optimize viral infection and 
limit immunity. First, mRNA methylation is affected 
by virus infection. Epitranscriptomic studies using 
blood samples of COVID-19 patients and healthy 
controls have revealed significant differences in their 
N6-methylation of adenosine (m6A) modification 
profiles (100,101). METTL3, a subunit of the 
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N6-adenosine-methyltransferase, is essential for m6A 
modification of SARS-CoV-2 RNAs and helps them to 
evade the RIG-I immune response (102–104). 
Depletion of METTL3 reduces virus infection in 
human lung fibroblasts but, surprisingly, enhances 
infection in human hepatocarcinoma cells (104,105). In 
infected cells, the expression of METTL3 is increased 
while the expression of FTO, a demethylase, is 
decreased (103,106). An increase in METTL3 
expression relies on its interaction with the viral 
RNA-dependent RNA polymerase (106). 
Interestingly, while METTL3 and FTO are normally 
nuclear, cytoplasmic localization is observed in 
infected cells (106). 

Second, DNA methylation is altered by 
SARS-CoV-2 and shows significant differences 
between COVID-19 patients and healthy controls. 
Profiles of DNA methylation can be used to calculate 
epigenetic ages and aging in COVID-19 patients was 
shown to be accelerated (107–109). Differentially 
methylated regions have been identified using blood, 
kidney, and heart samples, and many of these regions 
are close to genes involved in viral defense and 
interferon signaling (110,111). 

Third, histone modification is altered by 
SARS-CoV-2. An interactomic study has identified 
direct interactions between viral proteins (E, Nsp5, 
Nsp8, and Nsp13) and epigenetic regulators (62). 
Inhibition of BRD2, a BET family reader of histone 
acetylation inhibition, reduces ACE2 expression and 
blocks SARS-CoV-2 (112). Genome-wide studies of 
H3K4me3 and H3K27me3 modifications in peripheral 
blood mononuclear cells have demonstrated that 
genes related to immune response are upregulated 
after infection (113). NETosis, the formation of 
neutrophil extracellular traps (NET), is an 
antimicrobial cell death pathway (114). NETs contain 
modified chromatin and are characterized by the 
presence of citrullinated histone H3. Cell-free DNA 
and citrullinated histone H3 are increased in sera from 
patients with COVID-19 and correlate with the 
severity of the syndromes (115). 

Lastly, chromatin organization contributes to 
viral susceptibility and is affected by the virus. 
Chromatin accessibility regulates the expression 
profiles of ACE2 and related genes and modulates 
differential virus entry across tissues (116). In a 
genome-wide CRISPR screen, the SWI/SNF chroma-
tin remodeling complex was found to promote 
SARS-CoV-2 infection, suggesting a role of chromatin 
remodeling in virus life cycle (117). Single-cell 
transposase-accessible chromatin with sequencing 
experiments with peripheral blood mononuclear cells 
showed that COVID-19 induces significant chromatin 
remodeling (118,119). Changes in chromatin organi-

zation are enriched on genes of the inflammatory 
pathways and facilitate long-term adaptive immune 
responses (118,119). Drastic chromatin remodeling 
also occurs in olfactory sensory neurons and leads to 
significant downregulation of the olfactory receptor 
genes and, potentially, anosmia (117). 

Genetic alternations by coronavirus 
One of the nuclear processes that is frequently 

triggered by virus infection is the DNA damage 
response, even for mRNA viruses (77,120,121). 
Proteins involved in DNA damage response are 
essential for virus infection as a small molecule 
inhibitor of the ATR kinase blocks SARS-CoV-2 
replication (121). DNA damage response is quickly 
induced after SARS-CoV-2 infection but is swiftly 
suppressed in less than a day (77). This can be due to 
increased DNA damage caused by virus-induced 
nuclear rupture (81,122). Increased DNA damage and 
changes in the DNA damage response may lead to 
genomic changes or even genomic instability. 

Besides DNA damage, SARS-CoV-2 was 
reported to affect two other aspects of the host 
genome. First, accelerated telomere shortening was 
found in infected Vero E6 cells and COVID-19 
survivors (120,107). A telomere is the end region of a 
chromosome containing repetitive DNA sequences. 
Shortening of telomeres occurs during aging and 
increases the severity of COVID-19 (123). Accelerated 
telomere shortening implies that aging is accelerated 
in COVID-19 patients. However, it should be noted 
that contradictory results, i.e. the lack of accelerated 
telomere shortening and accelerated aging, have also 
been reported (124). Second, virus genome and 
vaccine mRNA were reported to be reverse- 
transcribed and integrated into the host genome (125–
127). These findings are highly debated due to the 
artificial expression of long interspersed nuclear 
element-1, a reverse transcriptase, and the concern of 
artifacts during library preparation (128–131). 

Other nuclear pathways affected by 
coronavirus 

In addition to gating nuclear trafficking and 
altering epigenetic mechanisms, several nuclear 
pathways can also play roles in the virus life cycle or 
host cell anti-viral activities. 

The nucleus may contribute to the virus life cycle 
indirectly through the cytoskeleton. All three classes 
of cytoskeletal elements (actin, intermediate filament, 
and microtubule) have been reported to involve in 
virus entry (132). The actin cytoskeleton plays several 
essential roles in viral entry. A recent report showed 
that myosin IIA directly interacts with the S protein of 
SARS-CoV-2 and facilitates virus infection (43). 
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SARS-CoV-2 infection also stimulates casein kinase II 
and p38 MAP kinase pathways to induce actin 
polymerization (77). Nsp2 interacts with strumpellin, 
a component of the Wiskott-Aldrich syndrome 
protein and scar homology (WASH) complex, which 
regulates actin assembly and may contribute to virus 
egress (62). Intermediate filaments participate in virus 
replication and assembly (132). Vimentin intermediate 
filaments were shown to form a ‘‘cage-like’’ network 
around the DMVs and Withaferin A, a 
pharmacological inhibitor of vimentin, blocks viral 
replication (44). Lastly, the microtubule cytoskeleton 
is involved in ER-to-Golgi transportation of the virus 
particles (132). The nucleus senses mechanical forces 
and reorganizes the cytoskeleton through triggering 
mechanosignaling pathways, like the YAP/TAZ and 
serum response pathways (133). Lamin and INM 
protein emerin were shown to regulate actin 
dynamics (134). The LINC complexes couple the 
nucleus to the cytoskeleton and regulate Rho activity 
(135,136). The Rho family of small GTPases are master 
regulators of the cytoskeleton. SARS-CoV-2 may 
regulate Rho activity through Nsp7 binding to RhoA 
(62). S protein was also shown to activate RhoA (137). 
Alternatively, ORF3a interacts with SUN2 and may 
thus regulate the many functions of the LINC 
complexes, including Rho regulation (62). In addition, 
actin dynamics and the serum response can regulate 
NF-κB activity (138–140). MRTF, an activator of the 
serum response factor, binds to p65 in the nucleus and 
suppresses NF-κB activity (140). Similarly, lamin A/C 
deficiency reduces NF-κB-regulated transcription 
(138). 

A recent study links the nucleus and the nuclear 
lamina to DNA-induced IFN response during 
SARS-CoV-2 infection (81). The nuclear lamina 
provides structural support to the nuclear envelope 
and protects it against mechanical stress. Defects in 
the nuclear lamina increase the frequency of nuclear 
envelope rupture, which exposes genomic DNA to 
cytoplasmic nucleases, damages DNA, and leads to 
genome instability (141). SARS-CoV-2 was shown to 
induce the cGAS-STING pathways because of the 
presence of cytoplasmic genomic DNAs, which are 
greatly increased by cell fusion (81,122). Interaction 
between the S protein and ACE2 can not only mediate 
virus entry, but also induce cell-cell fusion, resulting 
in the formation of syncytia - cells with multiple 
nuclei (142). Nuclei in the fused cells have lower 
levels of lamin A/C, the major contributor of the 
mechanical property of the nucleus, and have evident 
nuclear membrane blebs containing DNA (81). These 
blebs protrude from the nuclear lamina and rupture, 
leading to the release of DNA to the cytoplasm. 
Consistently, DNA damage foci, stained by γH2AX, 

are found to accumulate in infected cells with lower 
lamin A/C (81). diABZI, a potent STING activator, 
greatly reduces SARS-CoV-2 infection (81). These 
results suggest that nuclear integrity modulates host 
cell immune response during virus infection. 

Therapeutic implications 
Small molecule drugs targeting the above 

pathways have therapeutic potential and some are 
being used in clinical studies. Epigenetic drugs have 
been reviewed and are not discussed here (143,144). 

Because the IFN-I response is down-regulated by 
coronaviruses, many studies have been conducted to 
evaluate the effects of interferon treatments (145). In a 
study involving 11,330 subjects, the World Health 
Organization has found no benefit of IFN-β1 and 
recommends against using IFN-I for the treatment of 
COVID-19 (146). The virus not only reduces IFN 
expression by blocking upstream signaling like the 
nuclear entry of IRF3, but also blocks the downstream 
JAK-STAT signaling by preventing nuclear transloca-
tion of ISGF3. Therefore, targeting nuclear trafficking 
may be more effective in fighting the virus and is a 
tempting alternative to IFN administration. The uses 
of inhibitors of nuclear transport in clinical studies 
have been previously summarized (15,18,19). 
Notably, Ivermectin, an FDA-approved importin α 
inhibitor, is included in almost 80 ongoing clinical 
trials for SARS-CoV-2 and has been shown to 
significantly improve viral clearance in several studies 
(15,19). Drugs against the nuclear export machinery 
are also shown to be beneficial for treating 
SARS-CoV-2. Selinexor and Verdinexor, drugs of the 
selective inhibitors of nuclear export (SINE) family, 
are FDA-approved and have been in clinical trials for 
treating COVID-19 (18). Selinexor and Verdinexor 
target exportin-1 (also known as XPO1 and CRM1) 
and treatment of Selinexor inhibits the nuclear export 
of ORF3b, ORF9b, and N protein and induces 
anti-viral response (20). Selinexor treatment also leads 
to ACE2 accumulation in the nucleus (20). 

Cytoplasmic DNAs can activate the cGAS- 
STING pathway and induce antiviral responses (81). 
Activators of the cGAS-STING pathway have been 
clinically tested for cancer therapy. One of which, 
diABZI, is an activator of STING and was shown to 
effectively block SARS-CoV-2 replication (81,82). 
However, STING activation is associated with SARS- 
CoV-2-induced inflammation and inhibition of cGAS- 
STING also exhibits beneficial effects (83,84,147). 
Compared to manipulating cGAS-STING, pharmaco-
logical inhibition of NF-κB may be more promising, as 
it can inhibit virus replication and dampen cytokine 
storm (70,148). Several NF-κB inhibitors have been 
used in clinical/preclinical trials (149). 
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DNA damage repair pathways play poorly 
understood roles in SARS-CoV-2 replication (121). In 
an antiviral drug screen, berzosertib, an inhibitor of 
the ATR kinase, exhibited potent anti-SARS-CoV-2 
activity (121). Many pharmacological inhibitors of 
DNA damage repair have been identified and are 
used in clinical studies for cancer therapy (150). It is 
worth testing the effects of these drugs on 
SARS-CoV-2. 

Conclusion 
We have summarized the evidence demons-

trating the importance of the nucleus in SARS-CoV-2 
infection. The nucleus plays multiple roles in the virus 
life cycle, but these roles are complicated and 
sometimes counteract each other. Some of the 
apparent incompatibilities are due to the differences 
between the in vivo and in vitro settings used in the 
studies. Or, it can be due to the differential effects of 
the virus on different cell types or different stages of 
infection. A better understanding of these roles of the 
nucleus requires more mechanistic studies. 

Nuclear biology is understudied in COVID-19 
research. The importance of the nucleus and its many 
interactions with the virus merit more studies in this 
area and promise fruitful results. Further works are 
expected to uncover new roles of the nucleus in 
SARS-CoV-2 infection and COVID-19 pathogenesis. 
They will also provide mechanical details of the 
SARs-CoV-2-nucleus interactions and fuel the 
discovery of new treatments. 
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