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Abstract 

Hepatoid adenocarcinoma of the stomach (HAS) is a rare subtype of gastric cancer (GC) that 
histologically resembles hepatocellular carcinoma (HCC). Despite its low incidence, HAS had a poor 
5-year survival rate. Currently, the linkages between clinicopathological and genomic features of HAS and 
its therapeutic targets remain largely unknown. Herein, we enrolled 90 HAS patients and 270 
stage-matched non-HAS patients from our institution for comparing clinicopathological features. We 
found that HAS had worse overall survival and were more prone to develop liver metastasis than 
non-HAS in our cohort, which was validated via meta-analysis. By comparing whole-exome sequencing 
data of HAS (n=30), non-HAS (n=63), and HCC (n=355, The Cancer Genome Atlas), we identified a 
genomic landscape associated with unfavorable clinical features in HAS, which contained frequent 
somatic mutations and widespread copy number variations. Notably, signaling pathways regulating 
pluripotency of stem cells affected by frequent genomic alterations might contribute to liver metastasis 
and poor prognosis in HAS patients. Furthermore, HAS developed abundant multiclonal architecture 
associated with liver metastasis. Encouragingly, target analysis suggested that HAS patients might 
potentially benefit from anti-ERBB2 or anti-PD-1 therapy. Taken together, this study systematically 
demonstrated a high risk of liver metastasis and poor prognosis in HAS, provided a clinicogenomic 
landscape underlying these unfavorable clinical features, and identified potential therapeutic targets, laying 
the foundations for developing precise diagnosis and therapy in this rare but lethal disease. 

Key words: hepatoid adenocarcinoma of the stomach; liver metastasis; prognosis; whole-exome sequencing; clinicogenomic 
landscape 

1. Introduction 
Hepatoid adenocarcinoma of the stomach (HAS) 

is a rare subtype of gastric cancer (GC) that 
histologically resembles hepatocellular carcinoma 

(HCC), accounting for 0.38-1.6% of all GC [1]. HAS 
was recognized as a highly malignant carcinoma, 
featuring rapid progression, high liver metastasis 
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propensity, and poor prognosis [2, 3]. Limited by a 
scarcity of large-scale clinical research and a critical 
knowledge gap regarding genomic features in HAS, 
little consensus on its standardized diagnostic and 
therapeutic strategies has been achieved. Currently, 
under standard management for conventional gastric 
cancer (CGC), the 5-year survival rate of 
advanced-stage HAS patients was only 9% [2]. 

Since firstly reported in 1985 [4], several HAS 
cases have been reported worldwide, primarily in 
China [5] and Japan [6]. Due to extremely similar 
clinicopathological features between metastatic HAS 
and HCC, such as elevated serum alpha-fetoprotein 
(AFP) level and metastatic liver lesion mimicked 
HCC-like morphologically, metastatic HAS patients 
were easily misdiagnosed as HCC in clinical practice 
[7, 8]. Controversially, most case reports revealed that 
HAS patients had an inferior prognosis than non-HAS 
patients [5, 9, 10], whereas a few studies did not 
observe a significant difference of prognosis between 
HAS and non-HAS patients[11, 12]. So far, most 
clinical studies focusing on HAS were limited to case 
reports, case series, or small-sample studies. 
Therefore, a large-scale study with systematic analysis 
is urgently required to investigate and validate the 
clinicopathological characteristics and prognosis of 
HAS.  

Characterization of molecular landscape of HAS 
is a crucial step to deepen the understanding of its 
clinicopathological features and develop precise 
therapeutic strategies. Nevertheless, current evidence 
regarding the molecular characteristics of HAS was 
mainly established on a limited number of studies. A 
previous study identified a list of recurrently mutated 
genes and copy number gains in HAS using targeted 
sequencing on a panel of 483 cancer-related genes 
[13]. A recent multi-omics study demonstrated the 
molecular features associated with hepatoid 
differentiation in a non-metastatic HAS population 
[14]. Despite recent advances in molecular character-
ization, the molecular mechanism underlying tumor 
metastasis and unfavorable prognosis in HAS remains 
unclear.  

Herein, we constructed a large clinical HAS 
cohort and performed comparative analysis and 
meta-analysis to uncover the distinct 
clinicopathological characteristics and prognosis of 
HAS compared with non-HAS. Then, using 
whole-exome sequencing (WES) analysis, we 
compared multidimensional genomic features 
between HAS, non-HAS, and HCC. Importantly, we 
performed potential targets screening in HAS. These 
data provide a comprehensive clinicogenomic 
landscape of HAS, which deepen the understanding 
of how its unfavorable clinical features are linked to 

the genomic profiles. In addition, we also identified 
potential therapeutic targets in this rare but lethal 
disease. 

2. Methods 
2.1 Patient cohort and data collection  

This study was approved by the Institutional 
Review Board of the First Affiliated Hospital of 
Zhejiang University School of Medicine and 
conducted in compliance with the guidelines of the 
Declaration of Helsinki. A total of 12622 GC patients 
were screened from patients who received 
biopsies/surgery and underwent standardized 
pathological diagnoses in the First Affiliated Hospital, 
Zhejiang University School of Medicine from January 
2009 to June 2020. Based on WHO classification of 
tumors of the digestive system (2019)[15], HAS was 
morphologically defined as a tumor composed of 
large polygonal eosinophilic neoplastic cells (hepatoid 
differentiation), regardless of the percentage of 
hepatocyte-like regions or serum AFP level. Two 
certificated pathologists (M.K. and C.Z.L.) 
independently confirmed the pathological diagnoses. 
Any discrepancies were then resolved by consulting 
another experienced pathologist (X.D.T.). This study 
enrolled 90 HAS patients and 973 CGC patients with 
annotated clinicopathological and follow-up data. 
Subsequently, 270 non-HAS patients were screened 
from CGC via a manner of 3:1 stage-matched with 
HAS for comparative analysis. All patients provided 
written informed consent. 

We obtained clinicopathological information 
from patient medical records in our institutional 
database. The clinical information included gender, 
tumor size, tumor location, serum levels of AFP, 
carcinoembryonic antigen (CEA) and carbohydrate 
antigen 19-9 (CA199), first-metastasis site, computed 
tomography (CT) images, and therapy. Pathological 
features such as TNM stage (American Joint 
Committee on Cancer (AJCC), 8th edition), vascular 
invasion, hematoxylin & eosin (H&E)-stained 
micrographs, and ERBB2 immunohistochemistry 
(IHC) results were also collected. The baseline 
clinicopathological characteristics were displayed in 
Table 1 and Table S1. Patients were followed up via 
telephone, letters, and medical records. Overall 
survival (OS) time was defined as the interval from 
the date of diagnosis to the date of death or the last 
follow-up point. During follow-up, the site and time 
of the first metastasis were recorded. Synchronous 
metastasis was defined as distant metastasis at 
diagnosis or within six months during follow-up, 
whereas metachronous metastasis occurred after six 
months during follow-up [16]. We retrospectively 
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collected fresh-frozen tumor tissues with paired 
tumor adjacent normal tissues from 30 HAS cases and 
63 non-HAS cases for WES. In addition, WES data 
with annotated clinicopathological information of 355 
TCGA patients diagnosed as HCC (TCGA-LIHC) 
were downloaded from the cBioportal database 
(https://www.cbioportal.org/). 

 

Table 1. Clinicopathological characteristics of HAS and 
stage-matched non-HAS patients 

Characteristic HAS (N = 
90) 

Stage-matched non-HAS 
(N = 270) 

P 

Age -years   0.420 
≤ 60 33(36.7) 112(41.5)  
> 60 57(63.3) 158(58.5)  
Gender   0.265 
Female 24(26.7) 89(33.0)  
Male 66(73.3) 181(67.0)  
T stage   0.114 
T1/2 22(24.4) 47(17.4)  
T3/4 48(53.3) 166(61.5)  
Unknown 20(22.2) 57(21.1)  
N stage   0.362 
N0 19(21.1) 40(14.8)  
N1 12(13.3) 42(15.6)  
N2 19(21.1) 52(19.3)  
N3 20(22.2) 79(29.3)  
Unknown 20(22.2) 57(21.1)  
M stage   > 0.999 
M0 59(65.6) 177(65.6)  
M1 31(34.4) 93(34.4)  
AJCC stage   > 0.999 
I 9(10.0) 27(10.0)  
II 16(17.8) 48(17.8)  
III 34(37.8) 102(37.8)  
IV 31(34.4) 93(34.4)  
Size -cm   0.251 
≤ 5.0 47(52.2) 161(59.6)  
> 5.0 23(25.6) 56(20.7)  
Unknown 20(22.2) 53(19.6)  
Location   0.088 
Antrum 43(47.8) 146(54.1)  
Body 22(24.4) 77(28.5)  
Cardia 25(27.8) 46(17.0)  
Unknown 0(0) 1(0.4)  
Vascular invasion   < 0.001 
Positive 44(48.9) 81(30.0)  
Negative 23(25.6) 124(45.9)  
Unknown 23(25.6) 65(24.1)  
Serum AFP level -ng/mL   < 0.001 
≤ 20.0 21(23.3) 255(94.4)  
> 20.0 69(76.7) 13(4.8)  
Unknown 0(0) 2(0.7)  
Serum CEA level -ng/mL   0.009 
≤ 5.0 47(52.2) 191(70.7)  
> 5.0 37(41.1) 77(28.5)  
Unknown 6(6.7) 2(0.7)  
Serum CA199 level -U/mL   0.341 
≤ 37.0 69(76.7) 207(76.7)  
> 37.0 15(16.7) 61(22.6)  
Unknown 6(6.7) 2(0.7)  
ERBB2 IHC status   0.003 
-/+ 44(48.9) 158(58.5)  
++/+++ 34(37.8) 54(20.0)  
Unknown 12(13.3) 58(21.5)  
Surgery type   0.062d 
Distal gastrectomy 35(38.9) 143(53.0)  
Proximal gastrectomy 2(2.2) 3(1.1)  
Total gastrectomy 34(37.8) 75(27.8)  
No surgery 19(21.1) 49(18.1)  

Characteristic HAS (N = 
90) 

Stage-matched non-HAS 
(N = 270) 

P 

Chemotherapya   0.256 
Received 67(74.4) 191(70.7)  
Not received 20(22.2) 79(29.3)  
Unknown 3(3.3) 0(0)  
Target therapyb   0.228d 
Received 3(3.3) 8(3.0)  
Not received 84(93.3) 262(97.0)  
Unknown 3(3.3) 0(0)  
Immunotherapyc   < 0.001d 
Received 6(6.7) 1(0.4)  
Not received 81(90.0) 269(99.6)  
Unknown 3(3.3) 0(0)  
a Chemotherapy regimen was mainly based on the 5-fluorouracil (5-FU) plus 
platinum combination, including fluorouracil, leucovorin plus oxaliplatin 
(FOLFOX), oxaliplatin plus S-1 (SOX), and capecitabine plus oxaliplatin (XELOX). 
Other regimens included S-1, docetaxel, and paclitaxel plus S-1 (SPA). 
b Target therapy regimen included trastuzumab, bevacizumab, and apatinib. 
c Immunotherapy regimen included sintilimab and nivolumab.  
d Statistical analysis was conducted using Fisher’s exact test, and other categorical 
data were using the chi-square test. The cases with unknown data were not 
included in the statistical analysis. 

 

2.2 Meta-analysis 
We conducted a systematic literature search in 

PubMed, Web of Science, Embase, Scopus, Cochrane 
Library, and CNKI database up to January 2021, 
following the Preferred Reporting Items for 
Systematic Reviews and Meta-Analyses (PRISMA) 
guidelines. The search terms were as follows: 
(“adenocarcinoma” OR “adenocarcinomas” OR 
(“malignant” AND “adenoma”) OR “malignant 
adenoma”) AND “hepatoid” AND (“Stomach” OR 
“Stomachs” OR “Gastric”). We also searched articles 
in the references if they were potentially relevant to 
this topic. Inclusion criteria were as follows: (1) 
pathologically confirmed HAS; (2) studies comparing 
the difference of survival outcomes between HAS and 
non-HAS patients; (3) the availability of reported 
survival data; and (4) full-text articles published in 
English or Chinese. Exclusion criteria included (1) 
cases reports, case series, reviews, meta-analyses, 
letters to the editor, conference abstracts, and 
comments, and (2) studies without non-HAS/CGC 
patients as control. Finally, five eligible studies were 
retrieved from online databases [2, 3, 11, 12, 17]. 
Additionally, the current study containing 90 HAS 
and 270 stage-matched non-HAS patients (named as 
ZJU cohort) was also included in the meta-analysis. 
The extracted information included the following 
items: (1) the first author's name; (2) publication year; 
(3) country; (4) number of patients; (5) diagnosis 
criteria for HAS; (6) clinicopathological features 
including age, gender, T stage, liver metastasis, 
vascular invasion, and lymph node metastasis; (7) 
data extraction; (8) information of stage-matched 
manner; and (9) survival outcomes. 

The meta-analysis was performed using R 
software (version 3.6.1, Missouri, USA). The outcomes 
included prognosis, liver metastasis, vascular 
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invasion, and lymph node metastasis. Sensitivity 
analysis was performed to explore the stability of 
meta-analysis. Statistical heterogeneity was quantified 
by I2, Tau2, and Q-statistic. The value of I2 represented 
the heterogeneity level as follows: low (I2 < 25%), 
moderate (I2 = 25-75%), or high (I2 > 75%). A 
random-effects model was adopted for meta-analysis. 
The publication bias was visualized by funnel plot 
and estimated using Begg’s and Egger’s tests. 

2.3 SEER database analysis 
Clinicopathological and follow-up data of 

patients from the Surveillance, Epidemiology, and 
End Results (SEER) database were obtained using 
SEER*Stat 8.3.9 software. By screening the SEER 
Research Data,18 Registries, Nov 2020 Sub [2000 - 
2018] dataset, GC patients were included according to 
the following criteria: (I) primary site-labeled: 
C16.0-Cardia, NOS; C16.1-Fundus of stomach; 
C16.2-Body of stomach; C16.3-Gastric antrum; 
C16.4-Pylorus; C16.5-Lesser curvature of stomach 
NOS; C16.6-Greater curvature of stomach NOS; 
C16.8-Overlapping lesion of stomach; C16.9-Stomach, 
NOS; (II) known distant metastasis status/site; and 
(III) available follow-up information. HAS patients 
were identified according to the item of ICD-O-3 
Hist/behav of 8576/3-hepatoid adenocarcinoma. For 
clinical comparative analysis, 31 HAS and 100208 
non-HAS patients were enrolled in the independent 
validation cohort (SEER cohort). 

2.4 Development and validation of a 
Nomogram for predicting liver metastasis in 
HAS patients 

Aiming to establish a Nomogram model for 
early predicting liver metastasis in HAS patients, we 
retrospectively collected and analyzed the clinicopa-
thological information of 90 HAS patients who were 
diagnosed in our hospital from January 2009 to June 
2020. The clinicopathological variables included age, 
gender, tumor size, tumor location, vascular invasion, 
lymph node metastasis, tumor differentiation, serum 
level of alpha-fetoprotein (AFP), carcinoembryonic 
antigen (CEA), carbohydrate antigen 19-9 (CA19-9), 
carbohydrate antigen 125 (CA125), serum ferritin (SF), 
white blood cell (WBC), neutrophil (NEUT), 
lymphocyte (LYM), neutrophil-lymphocyte ratio 
(NLR), monocyte (MO), albumin (ALB), globulin 
(GLB), albumin-globulin ratio (AGR), alanine 
aminotransferase (ALT), aspartate aminotransferase 
(AST), alkaline phosphatase (ALP), total bilirubin 
(TBil), and direct bilirubin (DBil). After removing 13 
cases with incomplete clinicopathological informa-
tion, a total of 77 HAS patients were enrolled in the 
training cohort. Furthermore, 25 patients diagnosed in 

our hospital from July 2020 to December 2021 were 
enrolled in the validation cohort. The chi-square test 
or Fisher’s exact test was performed to evaluate the 
differences in the baseline clinicopathological varia-
bles between the training cohort and the validation 
cohort. In the training cohort, patients were divided 
into two subgroups according to the status of liver 
metastasis. Thereafter, univariate analysis was 
performed to screen the risk factors associated with 
liver metastasis. A P < 0.10 was adopted as the 
threshold. Based on these candidates, multivariate 
logistic regression analysis was performed to 
construct a predictive model for liver metastasis. 
According to the regression coefficients, a nomogram 
was generated with the R package “rms”. The 
performance of the Nomogram was assessed using 
receiver operating characteristic (ROC) analysis and 
calibration curve analysis in both the training cohort 
and the validation cohort. The area under the ROC 
curve (AUC) was calculated to assess the predictive 
accuracy for liver metastasis in HAS patients. The 
calibration curve analysis was performed using the 
internal validation with 1000 bootstrap resamples. 

2.5 DNA extraction and whole-exome 
sequencing 

Genomic DNA from GC tissues and matched 
normal gastric mucosa was isolated using QIAamp 
DNA Mini Kit (Qiagen) following the manufacturer’s 
protocol. DNA quality control included monitoring 
degraded/contaminated DNA on 1% agarose gels 
and quantifying DNA concentration using Qubit® 
DNA Assay Kit in Qubit® 2.0 Flurometer (Invitrogen, 
USA). WES library was prepared using Agilent 
SureSelect Human All Exon V6 Kit (Agilent 
Technologies, Santa Clara, CA, USA) following the 
manufacturer’s instructions. Libraries were 
sequenced on Illumina Hiseq platform (Illumina, San 
Diego, California, USA) and 150 bp paired-end reads 
were generated. High-quality clean data were 
obtained by removing low-quality reads, reads 
containing an adapter or poly-N. The clean reads 
were aligned to GRCh37 by BWA v.0.7.8 [18]. 

2.6 Somatic mutation and mutational 
signature analysis 

Somatic single-nucleotide variants (SNVs) was 
identified using muTect (v 1.1.4) [19], and the somatic 
InDels were detected using Strelka (v1.0.13) [20]. 
Following that, variant call format files were 
annotated by ANNOVAR [21]. Somatic mutation 
types included missense mutation, splice site, 
nonsense mutation, frameshift del, in frame del, in 
frame ins, frameshift ins, and multihit. Frequently 
mutated gene was identified according to gene 
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mutation frequency (> 10%). Significantly mutated 
genes were identified using MutSigCV (v1.4) 
algorithm with a q-value < 0.05 as the threshold. 
Oncoplot displaying mutational landscape was 
visualized using R package ComplexHeatmap [22]. 
The mutational signature was decomposed using the 
Bayesian nonnegative matrix fraction (NMF) 
algorithm [23]. Firstly, somatic mutation variants 
were divided into 96 trinucleotide mutation contexts 
according to the mutant base substitutions and the 
adjacent 3’ and 5’ flanking nucleotides. Then the 
Bayesian NMF algorithm was applied to deconstruct 
the mutational signatures. R package DeconstructSigs 
[24] was used for signature assignment in each sample 
of HAS, non-HAS and TCGA-LIHC. Cosine similarity 
was selected as a metric to compare the similarities of 
estimated mutational signatures to predefined 
signatures in Catalogue of Somatic Mutations in 
Cancer (COSMIC). COSMIC mutational signatures 
(version 2.0) were used as reference signatures. 
Cosine similarity > 0.80 was set as the threshold. 

2.7 Copy number analysis 
Based on paired tumor-normal WES data, we 

determined copy number variation (CNV) using 
CNVkit with default parameters [25]. After that, 
GISTIC2.0 algorithm was applied to identify genome 
regions with a significant frequency of CNV [26]. Both 
low-level (GISTIC score, +/−1) and high-level 
(GISTIC score, +/−2) were adopted as the thresholds 
to define gene-level CNV. High-level (+/−2) CNV 
was considered as amplification/deletion. Venn 
analysis was conducted to identify common and 
specific CNV between HAS, non-HAS, and 
TCGA-LIHC. 

2.8 Pathway enrichment analysis 
 By integrating somatic mutation and CNV data, 

we performed pathway enrichment analysis to 
identify frequently altered pathways of HAS 
compared with non-HAS using the DAVID tool 
(https://david.ncifcrf.gov/). Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway was adopted 
as the gene set for enrichment analysis. The 
significance of pathway enrichment analysis was 
determined using a hypergeometric test (FDR < 0.05). 

2.9 Clonal architecture analysis 
 Variant allele frequencies (VAFs) and CNV data 

were processed using multiple bioinformatic 
pipelines including SciClone [27], PyClone [28], and 
MOBSTER[29] to estimate the number of clones in 
HAS and non-HAS samples. Mutations with VAF 
greater than 0.8 were excluded to filter out germline 
mutations. To ensure statistical robustness, only those 
variants supported by ≥ 100 reads were considered for 

clonal analysis. Finally, the predicted number of 
clones detected in the given sample was determined. 
After repeating the above procedures for all samples, 
the predicted numbers of clones were compared 
between HAS and non-HAS. 

2.10 Evaluation of potential targets and 
therapeutic efficacy 

 The gene list of potential targets was 
downloaded from OncoKB database (https:// 
www.oncokb.org/). Frequently altered targets (≥ 
10%) in HAS were screened out and matched with 
non-HAS for further comparison, and then visualized 
using R package ComplexHeatmap [22]. In this study, 
three HAS patients received anti-ERBB2 therapy and 
five HAS patients received anti-PD-1 therapy. Serum 
AFP and CEA levels of each patient were recorded 
before and after treatment, and the change percent 
(CP) was determined as follow: CP (%) = (serum AFP 
or CEA levels before treatment - serum AFP or CEA 
levels after treatment) / serum AFP or CEA levels 
before treatment *100%. The values of 20 ng/mL and 
5 ng/mL are defined as the serum AFP and CEA 
levels threshold, respectively. For each patient with 
elevated AFP/CEA level before treatment, 65% was 
defined as the cutoff for response to 
anti-ERBB2/anti-PD-1 therapy, which is inapplicable 
for a patient with a normal AFP/CEA level before 
treatment in this study. 

2.11 H&E and IHC staining  
H&E and IHC staining were performed on 4 

μm-thick FFPE tumor tissue sections. For IHC 
staining, sections were deparaffinized, rehydrated, 
subjected to antigen retrieval, and blocked by 
endogenous peroxidase. Following that, the sections 
were incubated with anti-ERBB2 monoclonal primary 
antibody (Cell Signaling Technology, #2165), 
followed by a 30-min incubation with secondary 
antibody. Staining was visualized using streptavidin- 
biotin peroxidase complex method (Lab Vision, 
Fremont, CA, USA). ERBB2 expression in IHC was 
based on staining intensity in GC cells, and scored 
using Hofmann’s criteria as follows: - (negative), 
+ (negative), ++ (equivocal), or +++ (positive) [30]. 
IHC scoring process was independently performed by 
two certificated pathologists (M.K. and C.Z.L.). 
Another experienced pathologist (X.D.T.) was 
consulted to resolve discrepancies. 

2.12 Statistical analysis 
Statistical analyses were performed using SPSS 

software (version 21.0) and R software (version 3.6.1). 
The differences between two categorical variables 
were examined by chi-squared (χ2) test or Fisher’s 
exact test where appropriate. The Mann-Whitney test 
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was used to analyze ranked variables. Kaplan-Meier 
curves were examined using a log-rank test. The 
hazard ratio (HR) with corresponding 95% confidence 
interval (CI) was determined using Cox regression 
analysis. The odds ratio (OR) with corresponding 95% 
CI were determined using univariate logistic 
regression analysis. Two-sided P-values were used 
throughout the analyses. A P < 0.05 was considered 
statistically significant.  

3. Results 
3.1 HAS had highly malignant 
clinicopathological characteristics and a poor 
prognosis 

 As a unique subtype of GC, HAS exhibited 
typical pathological features distinct from those of 
CGC but similar to those of primary HCC. Tumor 
cells in hepatoid differentiation area harbored classic 
hepatocyte-like features, such as abundant 
eosinophilic cytoplasm, large and ovoid nucleus, 
prominent nucleoli, and sinusoidal vascular channels, 
all of which were absent in tubular adenocarcinoma 
component (Figure 1A).  

From a clinical point of view, compared with 
CGC patients, HAS patients showed higher rate of 
distant metastasis (P < 0.001; Table S1), more 
advanced TNM stage at initial diagnosis (P < 0.001, 
Table S1), and significantly worse OS (HR = 3.13, 
95%CI = [2.00, 4.89, P < 0.001; Figure S1). To reduce 
bias from TNM stage for further comparison between 
HAS and non-HAS, 270 cases of non-HAS were 
screened from CGC via a manner of 3:1 stage-matched 
with HAS for comparative analysis. Compared with 
non-HAS, HAS revealed a higher rate of vascular 
invasion, higher serum AFP and CEA levels, and 
more abundant ERBB2 expression in IHC (Table 1). 
Notably, survival analysis revealed that HAS patients 
had more unfavorable OS than stage-matched 
non-HAS patients (HR = 1.72, 95%CI = [1.14, 2.59], P = 
0.010; Figure 1B). Multivariate Cox analysis further 
identified hepatoid differentiation as an independent 
risk factor (HR = 1.54, 95%CI = [1.06, 2.24], P = 0.023; 
Figure S2) when adjusted for age, gender, and TNM 
stage in ZJU cohort. Remarkably, liver metastasis 
occurred more frequently in HAS than non-HAS 
patients (41.1% vs 17.8%, P < 0.001; Figure 1C). More 
importantly, comparative analysis for the 
first-metastasis site demonstrated a dominantly 
different metastasis pattern between metastatic HAS 
and non-HAS (Figure 1D). To be specific, most 
metastatic HAS only developed liver metastasis 
(97.3%), whereas metastatic non-HAS developed 
multi-organ metastases, including peritoneum 
(35.3%), liver (34.3%), ovary (3.9%), bone (3.9%), 

gallbladder (1.0%), brain (1.0%), bladder (1.0%), 
adrenal (1.0%), pancreas (1.0%), and multiple sites 
(17.6%). In addition, given the information of 
American population from SEER database, it was 
validated that HAS patients had worse OS and 
developed a higher tendency of liver metastasis 
(Figure S3), consistent with those findings in ZJU 
cohort (Figure 1B-D). 

 Meta-analysis was conducted to validate the 
distinctive clinical characteristics of HAS compared 
with non-HAS patients. A systematic search in online 
databases was conducted to identify eligible studies 
(Figure S4). Finally, the meta-analysis included five 
published studies [2, 3, 11, 12, 17] and our cohort with 
1812 patients, including 278 HAS and 1534 non-HAS 
patients (Table S2-3). Meta-analysis revealed that 
HAS patients harbored significantly worse OS 
(pooled HR = 3.02, 95%CI = [1.85, 4.93], P < 0.001; I2 = 
75%, random effect; Figure 1E) and developed more 
recurrent liver metastasis (pooled OR = 6.66, 95%CI = 
[2.33, 19.08], P < 0.001; I2 = 84%, random effect; Figure 
1F) comparing to non-HAS, consistent with those 
findings in ZJU cohort (Figure 1B-C) and SEER cohort 
(Figure S3). Sensitivity analyses and publication bias 
tests indicated that pooled results were robust 
without significant publication bias (Figure S5). The 
heterogeneity might be partially explained by 
different diagnosis criteria between studies. In detail, 
in the subgroup using morphology with or without 
AFP production as diagnosis criteria for HAS, HAS 
patients both harbored worse OS than non-HAS 
patients, where the heterogeneity in the subgroups 
was not significant (morphology: HR =1.89, 95%CI = 
[1.34, 2.67], P < 0.001; I2 = 0%, P = 0.38; morphology 
and AFP production: HR = 4.46, 95%CI = [2.91, 6.83], 
P < 0.001; I2 = 45%, P = 0.16; Table S4). 

3.2 Identification of a Nomogram model for 
predicting liver metastasis in HAS patients 

HAS harbored a high tendency of liver 
metastasis, leading to a poor prognosis of patients in 
clinical practice. Aiming to early predict liver 
metastasis in HAS patients, we further establish a 
Nomogram model based on clinically actionable 
indexes. The training cohort and validation cohort 
contained 77 and 25 HAS patients with annotated 
clinicopathological information, respectively. The 
difference in the baseline characteristics of HAS 
patients was not significant between the training 
cohort and validation cohort (Table S5). Then we 
compared the clinicopathological characteristics 
between patients with or without liver metastasis in 
the training cohort.  
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Figure 1. Distinctive clinicopathological characteristics of HAS in comparison with non-HAS. (A) Representative H&E-stained micrographs of HAS. The left panel 
presents the overall histologic features (100X, scale bar 200 μm). The zone “1” and “2” represent the area of hepatoid differentiation (400X, scale bar 50 μm) and tubular 
adenocarcinoma differentiation (400X, scale bar 50 μm), respectively. (B) Comparison of overall survival between HAS and stage-matched non-HAS patients in ZJU cohort. (C) 
Comparison of liver metastasis rate between HAS and non-HAS patients in ZJU cohort. (D) Distribution of first-metastasis site in metastatic HAS and metastatic non-HAS 
patients. (E) Forest plot showing the meta-analysis of the hazard ratio for overall survival in HAS versus non-HAS patients. The hazard ratios in each study are presented and the 
horizontal lines indicate the 95% confidence intervals. (F) Forest plot showing the meta-analysis of the odds ratio for liver metastasis in HAS versus non-HAS patients. The odds 
ratios in each study are presented and the horizontal lines indicate the 95% confidence intervals. HAS, hepatoid adenocarcinoma of the stomach; non-HAS, non-hepatoid 
adenocarcinoma of the stomach (conventional gastric adenocarcinoma without hepatoid differentiation); OS, overall survival; HR, hazard ratio; OR, odds ratio; CI, confidence 
interval. 
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As a result, six variables were identified as the 
risk factors associated with liver metastasis in HAS 
patients (Table S6) when a P < 0.10 was adopted as the 
threshold, including age (P = 0.056), serum level of 
AFP (P = 0.075), CA19-9 (P = 0.007), CA125 (P = 0.025), 
GLB (P = 0.025), and ALP (P = 0.001). A Nomogram 
model based on these variables was established using 
multivariate Logistic regression analysis (Table S7, 
Figure S6A). ROC analysis showed that the predictive 
efficacy of the Nomogram model was powerful and 
robust in the training cohort (AUC = 0.821, Figure 
S6B) and validation cohort (AUC = 0.728, Figure S6C). 
Calibration analysis showed a good coincidence 
between the predicted value and the actual value of 
liver metastasis rate for the Nomogram model (Figure 
S6D-E). Taken together, this study provided an 
effective tool for clinicians to stratify the risk of liver 
metastasis in HAS patients, laying a theoretical 
foundation for early clinical intervention and 
prognosis guidance. 

3.3 HAS presented a genomic landscape 
featured by frequent somatic mutations 

Somatic mutations called from HAS and 
non-HAS were identified based on the raw WES data. 
WES data of TCGA-LIHC were available from the 
cBioportal database. The average sequencing depth 
on target for tumors and normal samples are listed in 
Table S8 (HAS: 172X and 120X, respectively; 
non-HAS: 321X and 175X, respectively). All HAS 
samples contained 38146 somatic mutations with a 
median of 629 nonsynonymous mutations per tumor, 
whereas non-HAS contained 49564 somatic mutations 
with a median of 417 nonsynonymous mutations per 
tumor. Subsequently, frequently mutated genes (> 
10%) identified in HAS, non-HAS, and TCGA-LIHC 
were depicted in the oncoplot as presented in Figure 
2A. A number of frequently mutated genes was 
screened in HAS comparing to non-HAS and 
TCGA-LIHC, such as mutation in PCLO (30% vs 9.5%, 
P = 0.017, Figure 2B and Table S9; 30% vs 9.6%, P = 
0.003, Figure 2C and Table S10), MUC6 (20% vs 4.8%, 
P = 0.029, Figure 2B and Table S9; 30% vs 3.4%, P = 
0.001, Figure 2C and Table S10), and BRCA2 (16.7% vs 
3.2%, P = 0.034, Figure 2B and Table S9; 16.7% vs 3.1%, 
P = 0.005, Figure 2C and Table S10). Besides, although 
TP53 mutations were common, the highest frequency 
was observed in HAS comparing to non-HAS and 
TCGA-LIHC (66.7% vs 50.8% vs 31.5%; Figure 2B-C 
and Table S9-10). Furthermore, survival analysis 

identified several mutated genes associated with poor 
prognosis in HAS (Figure 2D), including MYCBP2 
(HR = 7.26, 95%CI = [1.26, 39.71], P = 0.027), ABCB4 
(HR = 6.09, 95%CI = [1.12, 33.18], P = 0.037), and 
PCLO (HR = 4.11, 95%CI = [1.19, 14.16], P = 0.025). 
Patients with HUWE1 mutation also tended to show 
worse OS than those with wild type (HR = 5.39, 
95%CI = [0.81, 35.98], P = 0.081). Interestingly, four 
HAS patients with MYCBP2 or HUWE1 mutation all 
developed liver metastasis (Figure S7). In addition, we 
applied Bayesian NMF algorithm to identify the 
mutational signatures in HAS, non-HAS and 
TCGA-LIHC and compared the similarity between 
these signatures and predefined COSMIC signatures. 
Using a cosine similarity > 0.80 as the threshold, we 
identified three principal mutational signatures 
(Signature A-C) in HAS, four (Signature D-G) in 
non-HAS and one (Signature H) in TCGA-LIHC 
(Figure 2E). Signature A and D were both highly 
similar to COSMIC mutational signature 1 (cosine 
similarity: 0.911 and 0.929, respectively), which was 
initiated by spontaneous deamination of 
5-methylcytosine and correlated with age [31]. It was 
well-known that aging contributed to tumorigenesis 
and development of gastric cancer [32]. Signature B 
identified in HAS was similar to Signature 2 (cosine 
similarity = 0.800), which was attributed to activity of 
the AID/APOBEC family of cytidine deaminases. 
DNA mutation of AID/APOBEC cytidine deaminases 
could lead to genomic instability in cancers [33]. 
Signature C was similar to Signature 19 (cosine 
similarity = 0.801), but the aetiology of Signature 19 
remains unknown. Apart from Signature D, Signature 
E, F and G were also identified in non-HAS but absent 
in HAS, which were similar to Signature 6, 17, and 29, 
respectively. Signature 6 was associated with 
defective DNA mismatch repair. As expected, two 
MSI cases was identified in non-HAS, whereas none 
was found in HAS (Table S11). Besides, previous 
studies have reported that Signature 17 is commonly 
observed in gastrointestinal cancers [34, 35]; however, 
the aetiology is still unclear. In addition, Signature 29 
was linked with tobacco chewing habit, a risk factor 
for gastric cancer [31]. As for TCGA-LIHC, Signature 
H was the predominant mutational signature, which 
was highly similar to Signature 22 (cosine similarity = 
0.929). Signature 22 was recognized as the hallmark of 
exposure to aristolochic acid and often identified in 
urothelial carcinoma [36] and liver cancer [37]. 
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Figure 2. The landscape of somatic mutations and mutational signatures in HAS, non-HAS, and TCGA-LIHC. (A) Mutational spectrum of frequently mutated 
genes identified in HAS, non-HAS, and TCGA-LIHC. Significant mutated genes were identified using MutSigCV and labeled with red star. ***P < 0.001. (B-C) Gene mutation rates 
of HAS in comparison with non-HAS (B) or TCGA-LIHC (C). Orange dots, genes with significantly higher mutation rate in HAS. (D) Association of frequently mutated genes 
with overall survival in HAS. The hazard ratios of genes are presented and the horizontal lines indicate the 95% confidence intervals. (E) Mutational signatures in HAS, non-HAS, 
and TCGA-LIHC were identified using the Bayesian NMF algorithm. The vertical axis represents the estimated mutation contribution to a specific mutation type based on 
COSMIC signatures. The horizontal axis represents mutation patterns of 96 substitutions plotted in different colors with denoted order. TCGA-LIHC, hepatocellular carcinoma 
from TCGA database; wt, wild type; mut, mutation; COSMIC, Catalogue of Somatic Mutations in Cancer database; sig, mutational signature. 
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3.4 Identification of key CNV regions in HAS 
compared with non-HAS and TCGA-LIHC 

 The somatic CNV landscapes in HAS, non-HAS, 
and TCGA-LIHC were identified using GISTIC2.0 
(Figure 3A). For HAS, most significant regions 
included amplification in17q12 (30.0%), 19q12 
(26.7%), 8q24.21 (23.3%), and 3q29 (23.3%), and 
deletion in 16p13.3 (13.3%) and 4q35.2 (16.7%). For 
non-HAS, the most recurrent alterations were 
amplification in 8q21.2 (36.5%) and 1q21.3 (23.8%) and 
deletion in 12q24.33 (19.0%). For TCGA-LIHC, 
amplification in 11q13.3 and deletion in 13q14.2 
occurred most frequently. Venn analyses revealed 
common and specific alterations between HAS, 
non-HAS, and TCGA-LIHC (Figure 3B). A total of 7 
amplifications and 20 deletions were only found in 
HAS. Besides, amplification in 8q24.21 and 13q34, and 
deletion in 14q32.33, 2q37.3, and 17p13.1 were 
detected both in HAS and TCGA-LIHC but were not 
detected in non-HAS. Given the frequent CNVs 
(>10%) in HAS, we further compared these events 
between HAS, non-HAS, and TCGA-LIHC, including 
amplification in 17q12, 19q12, 20q13.12, 3q29, 6p21.33, 
8q21.2, and 8q24.21, and deletion in 4q35.2 and 
16p13.3 (Figure 3C and Table S12). Interestingly, 
17q12 amplification was detected in HAS (30.0%) and 
non-HAS (12.7%) but was nearly absent in 
TCGA-LIHC (2.0%). 17q12 amplification occurred 
more frequently in HAS than non-HAS (P = 0.044). 
Remarkably, 8q24.21 amplification was common in 
HAS (23.3%) and TCGA-LIHC (17.7%) but rare in 
non-HAS (4.8%). Furthermore, Kaplan-Meier analysis 
identified poor prognosis of patients with 17q12 (HR 
= 4.00, 95%CI = [1.06, 15.13], P = 0.041; Figure 3D) and 
8q24.21 amplification (HR = 7.51, 95%CI = [1.76, 
32.08], P = 0.007; Figure 3E) rather than other regions 
(Figure S8). Numerous genes located in 17q12 region 
have been implicated in diverse cancers (Figure 3F), 
such as ERBB2 for gastric cancer [38] and breast 
cancer [39], CDK12 for prostate cancer [40], and 
STARD3 for breast cancer [41]. MYC, a well-known 
oncogene located in 8q24.21, was also frequently 
amplified in HAS (Figure 3G). Besides, 8q24.21 
contained a cluster of genes for miRNA and lncRNA 
which were identified as key regulators in 
tumorigenesis and progression (Figure 3G), such as 
PVT1 [42] and PCAT1 [43].  

3.5 Recurrent somatic genetic alterations of 
HAS were enriched in RTK/RAS/PI(3)K 
pathway, cell cycle, and signaling pathways 
regulating pluripotency of stem cells 

Given the repertoire of somatic genetic 

alterations detected in HAS and non-HAS, we sought 
to identify signaling pathways targeted by differential 
somatic genomic alterations (SNVs and CNVs). KEGG 
pathway analysis revealed that different genomic 
alterations were enriched in RTK/RAS/PI(3)K 
pathway (Padj = 0.002, Figure S9), cell cycle (Padj = 
0.047, Figure S9), and signaling pathways regulating 
pluripotency of stem cells (Padj = 0.013, Figure S9). As 
displayed in Figure 4A-B, the most frequently altered 
gene in RTK/RAS/PI(3)K pathway was ERBB2 
alteration (33% vs 17%, P = 0.087), followed by MYC 
amplification (23% vs 5%, P = 0.012). In cell cycle 
pathway, several well-known cancer related genes 
were more frequently altered in HAS comparing to 
non-HAS, including TP53 (73% vs 51%, P = 0.040), 
CDK12 (33% vs 6%, P = 0.001), CCNE1 (27% vs 8%, P = 
0.024), and BRCA2 (17% vs 3%, P = 0.034). 
Interestingly, in addition to CDK12 and MYC, other 
genes involved in the signaling pathways regulating 
pluripotency of stem cells were also recurrently 
affected in HAS, including OCT4-pg1 (23% vs 5%, P = 
0.012), HUWE1 (13% vs 2%, P = 0.036), and MYCBP2 
(13% vs 0%, P = 0.009). Collectively, given the somatic 
genetic alterations affecting at least one gene in the 
pathway, HAS showed more genetic instability than 
non-HAS in RTK/RAS/PI(3)K pathway (73.3% vs 
44.1%, P < 0.01; Figure 4B), cell cycle (86.7% vs 63.5%, 
P < 0.05; Figure 4B), and signaling pathways 
regulating pluripotency of stem cells (53.3% vs 14.3%, 
P < 0.001; Figure 4B). Furthermore, Kaplan-Meier 
analysis revealed that HAS patients with the altered 
gene in signaling pathways regulating pluripotency of 
stem cells harbored worse OS than those without 
alterations (HR = 2.89, 95%CI = [1.06, 7.93], P = 0.038; 
Figure 4C). Besides, for RTK/RAS/PI(3)K and cell 
cycle pathways, altered groups in HAS both tended to 
show more unfavorable OS than unaltered groups, 
although it was not significant (RTK/RAS/PI(3)K: HR 
= 2.32, 95%CI = [0.81, 6.62], P = 0.117; cell cycle: HR = 
2.38, 95%CI = [0.65, 8.68], P = 0.188; Figure 4C). In 
contrast, in non-HAS patients, little OS difference was 
observed between the groups with and without 
alteration in these three pathways (Figure 4D). 
Furthermore, liver metastasis tended to occur more 
frequently in HAS patients with the altered gene of 
cell cycle pathway (46% vs 0%, P = 0.130; Figure 4E) 
and signaling pathways regulating pluripotency of 
stem cells (63% vs 14%, P = 0.011; Figure 4E) than 
those without alteration. However, the associations of 
these pathway alterations with liver metastasis were 
all not significant in non-HAS patients (all P > 0.05, 
Figure 4E). 
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Figure 3. Copy number variations in HAS, non-HAS, and TCGA-LIHC. (A) Copy number profiles identified using GISTIC2.0 in HAS, non-HAS, and TCGA-LIHC, with 
amplification in red and deletion in blue. (B) Overlap of amplification (left panel) and deletion (right panel) between HAS, non-HAS, and TCGA-LIHC, respectively. (C) 
Comparison of significantly frequent CNVs in HAS, non-HAS, and TCGA-LIHC. (D-E) Association of 17q12 amplification (D) and 8q24.21 amplification (E) with OS in HAS, 
respectively. (F-G) Zooms in the significant amplification region in chromosome 17q12 (F) and 8q24.21 (G). CNV, copy number variation. 
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Figure 4. Pathway enrichment analysis. (A) Schematics of frequently altered pathways in HAS compared with non-HAS. Three key pathways including RTK/RAS/PI(3)K 
pathway, cell cycle pathway, and signaling pathways regulating pluripotency of stem cells were identified. Upper and lower row represents HAS and non-HAS in a square grid, 
respectively. The percentage represents the alteration frequency. (B) Comparison of genomic alterations involved in the enriched pathways between HAS and non-HAS. (C-D) 
Association of RTK/RAS/PI(3)K pathway, cell cycle pathway, and signaling pathways regulating pluripotency of stem cells with overall survival in HAS (C) and non-HAS (D), 
respectively. (E) Association of RTK/RAS/PI(3)K pathway, cell cycle pathway, and signaling pathways regulating pluripotency of stem cells with liver metastasis in HAS and 
non-HAS. 
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3.6 HAS developed abundant multiclonal 
architecture associated with liver metastasis 

 We previously observed that, most metastatic 
HAS patients only developed liver metastasis, 
whereas metastatic non-HAS patients developed 
multi-organ metastases. This dominantly different 
metastasis pattern might be explained using tumor 
clonality model. Therefore, SciClone analysis [27] was 
performed to reconstruct the clonal architecture in 
HAS and non-HAS samples. As depicted in Figure 
5A, the raw clonality pattern was defined according to 
the clonal and subclonal architecture, including a 
single dominant clone (monoclonal), a dominant 
clone plus a minor subclone (minor subclone), two 
clones (biclonal), and finally, more than two clones 
(complex) [44]. Monoclonal and minor subclones were 
defined as the oligoclonal type, whereas biclonal and 
complex were defined as the multiclonal type (Figure 
5A). The clonality of each sample in HAS and 
non-HAS is listed in Table S13. Comparative analysis 
revealed that HAS harbored more abundant 
multiclonal type than non-HAS (69.0% vs 45.2%, P = 
0.035; Figure 5B). In addition, HAS patients with 
multiclonal type developed higher rate of liver 
metastasis than those with oligoclonal type (55.0% vs 
11.1%, P = 0.043; Figure 5C), whereas the association 
of clonal architecture with liver metastasis was not 
significant in non-HAS patients (21.4% vs 8.8%, P = 
0.277; Figure 5C). Furthermore, we investigated the 
association of metastasis patterns with clonal 
architecture in HAS and non-HAS patients. As 
displayed in Figure 5D, 12 HAS and 24 non-HAS 
patients developed synchronous or metachronous 
metastasis. Interestingly, all HAS patients only 
developed liver metastasis (100%), whereas non-HAS 
patients developed multi-organ metastasis, mainly 
peritoneal (54%). Notably, most metastatic HAS were 
classified into multiclonal type (92%), whereas there 
was no dominant bias of the distribution of 
oligoclonal (54%) and multiclonal type (46%) in 
metastatic non-HAS (Figure 5D). Furthermore, these 
findings were validated by using other bioinformatic 
pipelines including PyClone and MOBSTER 
algorithms (Figure S10, Table S14). 

3.7 Potential therapeutic targets for HAS 
 Under the first-line systemic chemotherapy for 

CGC, the prognosis of HAS patients remains 
unfavorable [45]. In this study, aiming to identify 
potential therapeutic targets for HAS, we matched the 
SNV and CNV profiles to the gene list of actionable 
genomic alterations obtained from OncoKB database. 
A total of 11 potential targets (≥ 10%) were identified 
in HAS and matched in non-HAS. Encouragingly, 
patients with ERBB2 amplification, who might benefit 

from well-known anti-ERBB2 therapy, were enriched 
in HAS (Figure 6A). Besides, ERBB2 and CDK12 were 
frequently co-amplified in HAS, which was not 
observed in non-HAS (Figure 6A). MYC amplification 
(23% vs 5%, P = 0.012) and BRCA2 alteration (20% vs 
3%, P = 0.013) also occurred more frequently in HAS 
than non-HAS. The drugs targeting these gene 
alterations are listed in Table S15. As expected, IHC 
testing validated that HAS harbored more abundant 
ERBB2 expression than non-HAS (P < 0.001, Figure 
6B). In addition, HAS harbored more tumor mutation 
burden (a genomic biomarker for immunotherapy) 
than non-HAS (mean TMB: 18.5/Mb vs 12.6/Mb, P = 
0.021; Figure 6C). Given the spectrum of potential 
targets and/or biomarkers for target therapy and 
immunotherapy, we evaluated the treatment 
efficiency for HAS patients receiving anti-ERBB2 (3 
cases) or anti-PD-1 therapy (5 cases) by monitoring 
the change percent (CP) of serum AFP and CEA levels 
in HAS patients before and after treatment. 
Inspiringly, we observed that 100% (3/3) of patients 
showed dramatically decreased AFP and/or CEA 
levels (CP > 65%) after receiving anti-ERBB2 therapy 
(Figure 6D). In addition, serum AFP and/or CEA 
levels were markedly down-regulated (CP > 65%) in 
80% (4/5) of patients treated with anti-PD-1 therapy 
(Figure 6D). Given the available CT images of two 
HAS patients during treatment period, we observed 
that the number of metastatic liver lesions decreased 
dominantly in a HAS patient after anti-ERBB2 therapy 
(Figure 6E). Besides, a representative CT image 
revealed a dramatic regression of the primary gastric 
lesion in another HAS patient after anti-PD-1 therapy 
(Figure 6E).  

3.8 Comparison of the clinicogenomic features 
of HAS between this study and previous study 

Recently, Liu et al. have reported the 
clinicogenomic features of HAS patients [14]. 
Therefore, we conducted comparative analysis for our 
study and Liu et al.’s study. Firstly, we observed 
significant differences in clinicopathological 
characteristics of HAS patients between our study and 
Liu et al.’s study. As shown in Table S16, HAS 
patients were at a more advanced TNM stage in 
ZJU-WES cohort (n = 30) than those in Liu et al. cohort 
(P = 0.001). The proportion of metastatic patients was 
significantly higher in ZJU-WES cohort than Liu et al. 
cohort (M stage: 30.0% vs 1.8%, P < 0.001). 
Furthermore, the serum AFP level of HAS patients 
was significantly higher in the ZJU-WES cohort than 
Liu et al. cohort (median: 195.9 ng/mL vs 20.9 ng/mL, 
P = 0.005). Similar findings were also validated in the 
comparison between the ZJU-overall cohort (n = 90) 
and Liu et al. cohort (Table S17).  
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Figure 5. The clonal architecture inferred in HAS and non-HAS. (A) Patterns of inferred clonal architecture based on Kernel density plots of VAF and VAF plotted 
versus read depth. Monoclonal and minor subclonal are defined as the oligoclonal type, whereas biclonal and complex clonal are defined as the multiclonal type. (B) Comparison 
of clonal architecture between HAS and non-HAS. (C) Association of clonality with liver metastasis in HAS and non-HAS patients. (D) Association of clonality with metastatic 
pattern in HAS and non-HAS patients. The pie diagrams display the distribution of first-metastasis site in metastatic HAS and metastatic non-HAS patients. The circular diagrams 
display the distribution of clonal architecture in HAS and non-HAS patients with the most frequent metastasis site. VAF, variant allele frequency. 
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Figure 6. Potential targets and therapy for HAS. (A) Frequently altered genomic targets in HAS compared with non-HAS. (B) Comparison of ERBB2 expression between 
HAS and non-HAS. (C) Comparison of TMB between HAS and non-HAS. (D) Assessment of serum AFP and CEA levels in HAS patients before and after treatment. Three HAS 
patients received anti-ERBB2 therapy and five HAS patients received anti-PD-1 therapy. The line charts represent serum AFP/CEA level and histograms represent the CP of 
serum AFP/CEA level; details are shown as follows: CP (%) = (serum AFP or CEA levels before treatment - serum AFP or CEA levels after treatment) / serum AFP or CEA levels 
before treatment *100%. The values of 20 ng/mL and 5 ng/mL are defined as the serum AFP and CEA levels threshold, respectively. For each patient with elevated AFP/CEA level 
before treatment, 65% was defined as the cutoff for response to anti-ERBB2/anti-PD-1 therapy. Blue and red represent response and no response at the serum tumor biomarker 
levels, respectively. Grey means that this evaluation criterion is inapplicable for a patient with a normal AFP/CEA level before treatment. (E) Representative CT images of 
abdomen showing tumor lesions of two patients before and after treatment; one received anti-ERBB2 therapy and the other received anti-PD-1 therapy. The dotted line 
represents the metastatic liver lesion, and the arrow represents the primary gastric lesion. IHC, immunohistochemistry; AFP, alpha-fetoprotein; CEA, carcinoembryonic antigen; 
CP, change percent; Pt, patient. 
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Therefore, it was nonnegligible that HAS 
patients were mainly at the advanced stage in our 
study, whereas those were mainly at the early stage in 
Liu et al.’s study. Currently, liver metastasis has been 
recognized as a hallmark event in advanced-stage 
HAS patients; however, the clinical risk factors and 
molecular basis associated with liver metastasis 
remain largely unknown at present. Limited by the 
non-metastatic cohort, Liu et al.’s study has not 
responded to this tricky question. On the contrary, 
our study provided a relatively ideal platform to 
explore the clinicogenomic landscape underlying liver 
metastasis and the poor prognosis of HAS patients. 
From the genomic perspective, TP53 was identified as 
the only SMG for HAS in our study as well as in Liu et 
al.’s study [14]. Although TP53 mutation occurred in 
multiple cancer types, recent studies have recognized 
the genetic background of frequent TP53 mutations as 
one of the genomic hallmarks in HAS[13, 46]. This 
genetic event might contribute to the production of 
AFP [47]. Subsequently, we compared the frequently 
mutated genes (>10%) of HAS between our study and 
Liu et al.’s study. As shown in Figure S11, nearly 70% 
of genes from Liu et al.’s study was also observed in 
our study, such as TP53, MUC16, ABCA13, FLG, 
ZFHX4, etc. More importantly, our study 
demonstrated a more frequent mutation spectrum, 
such as PCLO, MYCBP2, HUWE1, etc. Mutations in 
these genes correlated with liver metastasis or poor 
prognosis in HAS. At the level of copy number 
alterations, several factors regulating stem cell 
differentiation were covered, such as MYC in 8q24.21 
and FAT1 in 4q35.2, consistent with Liu et al.’s 
findings. However, 17q12 amplification, the most 
frequent CNV in our cohort, was absent in Liu et al.’s 
study. This region contained a series of well-known 
genes involved in cancer development, such as 
ERBB2, CDK12, and STARD3. From the signaling 
pathway perspective, our study and Liu et al.’s study 
both uncovered the vital role of stem cell property in 
HAS. Liu et al. highlighted that high stemness activity 
play a key promotor for tumorigenesis in HAS using 
transcriptome sequencing analysis. Interestingly, our 
study demonstrated that HAS harbored frequent 
alterations in signaling pathways regulating stem cell 
pluripotency from the genomic level. At the level of 
clonal architecture, multiple bioinformatic pipelines 
including SciClone, PyClone and MOBSTER 
demonstrated that HAS developed abundant 
multiclonal architecture, which was correlated with 
liver metastasis. On the contrary, Liu et al. found that 
all HAS cases harbored a group of monoclonal 
mutations. Currently, it is believed that multiclonal 
seeding serves as one of the key biological 
mechanisms underlying cancer metastasis [48, 49]. We 

considered that the baseline bias of metastasis stage 
between two studies was one of the leading causes for 
these different findings; Liu et al.’s study enrolled a 
non-metastatic HAS population (98.2%), whereas our 
study contained a relatively higher proportion of 
metastatic HAS patients (34.4%).  

4. Discussion 
 This study depicted a clinicogenomic landscape 

of HAS based on large-scale clinical cohorts and 
multidimensional genomic data, providing valuable 
insights for a better understanding of molecular 
mechanisms underlying liver metastasis and 
unfavorable prognosis in HAS. By comparing clinical 
and genomic features between HAS, non-HAS, and 
TCGA-LIHC, this study highlights the following 
findings: (1) HAS harbored worse overall survival 
and developed a higher propensity of liver metastasis 
than non-HAS; (2) HAS presented a genomic 
landscape associated with the unfavorable clinical 
features, containing more frequent somatic mutations 
and widespread copy number variations than 
non-HAS and TCGA-LIHC, such as frequent PCLO 
mutation, and recurrent amplification in 17q12 and 
8q24.21; (3) key signaling pathways affected by 
frequent genomic alterations might contribute to poor 
prognosis and liver metastasis in HAS, capital among 
these being the signaling pathways regulating 
pluripotency of stem cells; (4) HAS developed 
abundant multiclonal architecture associated with 
liver metastasis; and (5) a considerable proportion of 
HAS patients might benefit from anti-ERBB2 or 
anti-PD-1 therapy.  

 Due to the extremely low incidence, lack of 
uniform diagnostic criteria for HAS, and small sample 
size, little evidence for systematically summarizing 
the clinical features of HAS have been established to 
date. Most studies reported many HAS cases with 
liver metastasis and poor prognosis, and most of them 
were case reports or case series [5, 50, 51]. 
Interestingly, Zhou et al. found that the prognosis of 
HAS patients might not be as unsatisfactory as 
previously believed [12]. Similar findings were also 
observed by Osada et al. [11]. In this study, we 
constructed the largest clinical cohort from our 
institution and performed integrative analysis to 
elucidate the key clinical features of HAS. Our study 
demonstrated that HAS patients harbored 
significantly worse OS and developed a higher rate of 
liver metastasis than non-HAS patients. Additionally, 
these findings were confirmed in SEER cohort and 
subsequent meta-analysis. Nevertheless, the 
meta-analysis revealed undeniable heterogeneity 
between studies, which might be partly explained by 
different diagnostic criteria for HAS. Three studies 
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identified HAS based on histological hepatoid 
differentiation and AFP production [2, 3, 12], whereas 
the others, including our study, only used the 
morphology as the diagnostic criteria according to 
WHO classification [11, 15, 17]. The subgroup analysis 
suggested that the difference in OS was 
non-negligible between AFP-producing HAS and 
common HAS (Table S4). In addition, despite several 
HAS cases with a metastatic lesion in brain [52], lung 
[10], or peritoneum [53], as previously reported, liver 
metastasis was considered the most frequent event in 
HAS patients. Liu et al. [2] and Dai et al. [17] reported 
liver metastasis in 75.6% (34/45) and 53.3% (8/15) of 
HAS patients, respectively. In this study, 41.1% 
(37/90) of HAS patients developed synchronous or 
metachronous liver metastasis. Remarkably, we 
observed that most metastatic HAS only developed 
liver metastasis (97.3%), whereas metastatic non-HAS 
developed multi-organ metastases, including perito-
neum (35.3%), liver (34.3%), and ovary (3.9%). 
Overall, we speculated that the frequent occurrence of 
liver metastasis, as a hallmark event in advanced- 
stage HAS patients, eventually contributed to 
unfavorable prognosis. To this extent, it is crucial to 
illustrate the mechanism underlying liver metastasis 
and poor prognosis of HAS. 

 From a clinicopathological perspective, most 
HAS patients exhibited a dramatic elevation in serum 
AFP level [54, 55], which was considered a remarkable 
feature contributing to aggressive behavior and poor 
prognosis [53]. Ye et al. reported a marked elevation 
in serum AFP level in two HAS cases with lymph 
nodes and/or liver metastases (5845 ng/mL and > 
50000 ng/mL, respectively) [56]. Wang et al. observed 
that serum AFP level of ≥ 500 ng/mL was 
significantly associated with worse OS in HAS 
patients [13]. In this study, serum AFP level was 
higher in HAS than non-HAS patients (76.7% vs 4.8%, 
Table 1). Notably, serum AFP level was identified as 
an independent risk factor for OS and liver metastasis 
of HAS patients (Figure S12). Furthermore, in patients 
undergoing radical surgery, postoperative serum AFP 
level was significantly lower than the preoperative 
level (P < 0.001, Figure S13). A previous study 
reported a HAS case that developed distant 
metastasis following surgery, along with a dramatic 
elevation in serum AFP level [56]. Therefore, we 
considered that AFP was a key promoter associated 
with liver metastasis and poor prognosis in HAS 
patients. In addition, a previous report identified 
CEA, another tumor marker, as an independent risk 
factor for OS [57]. Similar findings were also observed 
in this study (Figure S12). Overall, monitoring serum 
AFP and CEA levels of HAS patients is recommended 
in clinical practice for treatment evaluation and 

prognosis prediction. Besides, vascular invasion 
occurred more frequently in HAS than non-HAS 
patients in ZJU cohort (Figure S14A), as well as 
validated in the meta-analysis (Figure S14B). 
However, the difference in lymph node metastasis 
was not significant between HAS and non-HAS 
patients (Figure S14C-D). Zeng et al. also observed 
that 69.6% (199/286) of HAS tumors developed 
vascular invasion [5]. Lin et al. reported that the 
presence of isolated portal vein tumor thrombosis was 
considered a risk factor for liver metastasis in HAS 
patients [7]. Therefore, we considered that vascular 
invasion might be a crucial mechanism of liver 
metastasis in HAS. 

This study characterized the genomic landscape 
and clinical correlations in HAS and conducted a 
comparative analysis between HAS, non-HAS, and 
TCGA-LIHC. Mutational analysis revealed that HAS 
displayed a frequent mutational spectrum containing 
a list of cancer-related genes compared with non-HAS 
and TCGA-LIHC, such as TP53, PCLO, and BRCA2. 
The enrichment of TP53 mutation was considered as a 
key genomic feature in previous studies. Wang et al. 
[13] and Akiyama et al. [58] independently identified 
TP53 as a frequently mutated gene in HAS. Further-
more, Liu et al. found that TP53 mutations were 
shared between hepatoid adenocarcinoma and 
tubular adenocarcinoma components, implying a 
pivotal role in the phenotypic transition of HAS [14]. 
PCLO mutation commonly occurred in diverse 
cancers, such as esophageal cancer [59], liver cancer 
[60], and colon cancer [61]. Zhang et al. demonstrated 
that deregulation of the presynaptic cytomatrix 
protein Piccolo, encoded by PCLO, contributed to 
tumor aggressiveness and poor prognosis in esopha-
geal cancer [59]. In this study, we observed that PCLO 
mutation was also significantly associated with poor 
prognosis in HAS patients (Figure 2D). BRCA2 
mutation occurred frequently in breast cancer [62], 
ovarian cancer [63], and prostate cancer [64]. Func-
tionally, BRCA2 mutation affected the homologous 
recombination repair mechanism, ultimately resulting 
in genomic instability in tumor cells [65]. Notably, 
BRCA2 mutation has been validated as a genetic 
target for PARP inhibitors in breast cancer [62], 
providing treatment hopes for HAS patients with a 
BRCA2 mutation. At the CNV level, we identified 
amplification in 17q12 and 8q24.21 as the key genomic 
events associated with OS in HAS. On chromosome 
17q12, a well-known oncogene ERBB2 (HER2) 
coexisted with other cancer-related genes, such as 
CDK12 [40], STARD3 [66], and GRB7 [67]. We 
considered that a high level of amplification in these 
genes might contribute to aggressive behavior and 
poor prognosis of HAS. In addition, amplification in 
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8q24.21 frequently occurred in HAS and TCGA-LIHC 
but rarely in non-HAS (Figure 3C). As a famous 
oncogene at 8q24.21 region, MYC was identified as 
one of the core genes regulating stem cell-like 
properties of cancer cells [68]. A recent study 
illustrated that high-efficiency c-Myc enhanced the 
conversion from mesenchymal stem cells to 
hepatoblast-like cells [69]. In this study, we found that 
MYC and its regulators (HUWE1 and MYCBP2) were 
enriched in the signaling pathways regulating 
pluripotency of stem cells (Figure 4A-B). Furthermore, 
frequent alterations in the signaling pathways 
regulating pluripotency of stem cells were 
significantly associated with poor prognosis (Figure 
4C) and liver metastasis (Figure 4E) in HAS. 
Therefore, we suppose that overactivation of MYC 
function axis might initiate hepatoid differentiation in 
HAS by affecting the pluripotency of stem cells, and 
potentially contributed to miserable prognosis of 
HAS. Interestingly, Liu et al. [14] found that HAS had 
high stemness using bulk RNA-seq and scRNA-seq 
analyses, consistent with our findings based on the 
genomic analysis. Overall, the pluripotency of stem 
cells played a crucial role in hepatoid differentiation, 
liver metastasis and unfavorable prognosis in HAS, 
deserving further validation in vitro/in vivo 
experiments. 

The clonal origin of HAS remains a debatable 
topic at present. Akiyama et al. found a same pattern 
of chromosome X inactivation, TP53 mutation, and 
loss of heterozygosity in hepatoid and tubular 
adenocarcinomatous components and inferred that 
hepatoid differentiation was of identical origin to 
coexisting tubular differentiation in HAS [58]. Liu et 
al. supported that hepatoid and tubular 
differentiation originated monoclonal by clonal 
analysis [14]. However, Tsuruta et al demonstrated 
that HAS was a genetically heterogeneous group 
containing different genomic subtypes [70]. In this 
study, SciClone analysis revealed that HAS harbored 
more abundant multiclonal architectures than 
non-HAS, representing a high level of intratumor 
heterogeneity in HAS. Furthermore, HAS with a 
multiclonal architecture developed a high rate of liver 
metastasis. From a mechanism perspective, we boldly 
speculated that genetically heterogeneous HAS cells 
in the primary site are selected for cluster formation, 
disseminated into vascular channels, and developed 
liver metastasis. Overall, the clonal origin of HAS 
remains controversial due to the complexity and 
heterogeneity of differentiation patterns, necessitating 
additional investigation and validation in large-scale 
cohorts. 

Under platin-based chemotherapy, the first-line 
systemic regimen for metastatic GC, the prognosis of 

HAS patients remains unfavorable [45]. A recent 
study revealed that platinum drug resistance-related 
genes were upregulated in HAS, implying that 
traditional chemotherapy was an unsatisfactory 
treatment option for HAS [14]. Alternative strategies 
such as target therapy and immunotherapy are 
potentially efficient; however, limited molecular 
evidence supports their clinical application in HAS. 
Encouragingly, we discovered that HAS tumors 
harbored abundant ERBB2 expression and high TMB, 
which are biomarkers for anti-ERBB2 and anti-PD-1 
therapies, respectively. Furthermore, we observed 
that 100% (3/3) and 80% (4/5) of patients showed 
dramatically decreased AFP and/or CEA levels after 
receiving anti-ERBB2 therapy and anti-PD-1 therapy, 
respectively. Interestingly, Fakhruddin et al. also 
reported that a HAS case with ERBB2 amplification 
achieved a partial response after anti-ERBB2 therapy 
[71]. Li et al. observed that 85.7% (6/7) of 
AFP-producing GC/HAS patients had an evident 
clinical response to immunotherapy and 
recommended this optional treatment for the lethal 
disease [45]. Mechanically, Liu et al. used scRNA-seq 
for a HAS case and revealed that high expression of 
activation markers GZMA and IFNG, as well as 
immune checkpoints PDCD1 and CTLA4, provided 
favorable conditions for immunotherapy [14]. 
Besides, high TMB level, along with potential 
neoantigen production, might activate T-cells effector 
and improve response to immunotherapy [72]. In 
summary, these findings supported that HAS patients 
might potentially benefit from anti-ERBB2 or 
anti-PD-1 therapy, warranting additional further 
investigation in clinical trials. 

There are several limitations in this study. First, 
although this study comprised the largest clinical 
cohort to date, it remains difficult to timely obtain 
HAS samples due to extremely low incidence and rare 
surgical resection for this aggressive disease. Hence, 
genomic analysis results are limited by the small 
sample size. Second, liver metastasis was identified as 
a hallmark event for metastatic HAS patients. This 
organ-specific metastasis pattern with high 
occurrence observed in this study requires additional 
functional analysis using preclinical models to 
elucidate its molecular mechanism. In addition, the 
single-center retrospective design might introduce 
potential selection bias. Besides, the efficiency 
evaluation for anti-ERBB2 and anti-PD-1 therapies 
was mainly based on the limited number of HAS 
patients, requiring further investigation in larger 
clinical cohorts and validation in prospective clinical 
trials. 
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5. Conclusions 
This study systematically demonstrated a high 

risk of liver metastasis and poor prognosis in HAS, 
elucidated the clinicogenomic landscape underlying 
these unfavorable clinical characteristics, and 
provided novel therapeutic insights into HAS. These 
findings lay the foundations for developing more 
precise diagnostic and therapeutic strategies for this 
rare but lethal disease. 
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