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Abstract 

As a superfamily of multifunctional enzymes that is mainly associated with xenobiotic adaptation, glutathione 
S-transferases (GSTs) facilitate insects’ survival under chemical stresses in their environment. GSTs confer 
xenobiotic adaptation through direct metabolism or sequestration of xenobiotics, and/or indirectly by 
providing protection against oxidative stress induced by xenobiotic exposure. In this article, a comprehensive 
overview of current understanding on the versatile functions of insect GSTs in detoxifying chemical compounds 
is presented. The diverse structures of different classes of insect GSTs, specifically the spatial localization and 
composition of their amino acid residues constituted in their active sites are also summarized. Recent 
availability of whole genome sequences of numerous insect species, accompanied by RNA interference, X-ray 
crystallography, enzyme kinetics and site-directed mutagenesis techniques have significantly enhanced our 
understanding of functional and structural diversity of insect GSTs. 
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Introduction 
Insects constitute the largest class of animals 

encompassing about 53% of all living species on our 
planet [1]. Many of these species (about 45%) are 
herbivores by partly or completely feeding on plants 
and represent a significant proportion of pests or 
pollinators for economically important crops. 
Annually, the economic association of these 
herbivores with food production in the U.S. exceeds 
$50 billion [1, 2]. The arms race between plants and 
insect herbivores have driven their coevolution for 
hundreds of millions of years. To defend against 
insect herbivores, plants produce a wide range of 
chemical compounds, such as terpenoids, alkaloids, 
anthocyanins, glucosinolates, phenols, quinones, 
plant protease inhibitors (PIs), and herbivore-induced 
plant volatiles (HIPVs). These chemicals either 
directly reduce herbivores fitness or indirectly attract 
herbivores’ natural enemies and enhance the 
effectiveness of their natural enemies [3, 4]. In 
response, herbivores have simultaneously developed 
countermeasures against plant defense compounds 

[5]. Such adaptive capability has been proposed to be 
co-opted by herbivore arthropod pests for pesticide 
resistance when they are exposed to the pressure of 
recently introduced synthetic pesticides [6-8]. The 
similarities in modes of action between various 
naturally occurring chemical substances released by 
plants and synthetic pesticides further supports the 
possible linkage between host plant adaptation and 
currently prevailed pesticide resistance [9]. In fact, 
more than 50% of all agrochemicals are natural 
products or derived from natural products [10-12]. 

The xenobiotic adaptation in arthropods evolves 
through multiple mechanisms (Figure 1) [13, 14], 
including reduced penetration through the cuticle, 
behavioral avoidance [15, 16], microbiome-mediated 
detoxification [17-20], enhanced metabolic detoxifi-
cation [21-25], enhanced sequestration or excretion 
[13, 19, 26, 27], and target site insensitivity [28-32]. 
Among them, enhanced metabolic detoxification and 
target site insensitivity are the most common 
mechanisms [5, 33-35]. 
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There are several categories of enzymes involved 
in the metabolism of lipophilic xenobiotics and their 
conversions into less toxic compounds exhibiting 
increased hydrophilicity (Figure 2). The major 
enzyme superfamilies comprise cytochrome P450 
monooxygenases (P450s), glutathione S-transferases 
(GSTs), carboxylesterases (COEs), ATP-binding 
cassette (ABC) transporters, and UDP-glycosyl-
transferases (UGTs) [5, 26, 36-39] (Figure 2). In 
general, three phases of metabolic detoxification of 
xenobiotics have been often described in the 
literature. Phase I detoxification includes oxidation, 
reduction, and hydrolysis of lipophilic substances 
carried out by a variety of enzymes. Phase II reactions 
involve conjugation of hydrophilic compounds (i.e. 
glutathione) to xenobiotics and/or phase I products to 
produce more hydrophilic products. In Phase III, 
products of phases I and/or II are excreted from cells 
by multidrug resistance proteins and other ABC 
transporters [37]. Among metabolic detoxification 
enzymes, GST is a family of multifunctional enzymes 
that are ubiquitously present in eukaryotes and 
prokaryotes, playing an important role in the 
detoxification of numerous endogenous and 
exogenous compounds. As phase II enzymes, GSTs 
detoxify chemical compounds through catalyzing 
nucleophilic attack by the thiol group in reduced 
glutathione (GSH) on a wide range of electrophilic 
substrates [37, 40, 41]. These substrates can be plant 
allelochemicals, pesticides, environmental pollutants, 
or byproducts of oxidative stress [40, 42]. GSTs are 
also involved in the phase I detoxification process 
such as dehydrochlorination of 1,1,1-Trichloro-2,2- 
bis(p-chlorophenyl) ethane (DDT) to less toxic 
1,l-Dichloro-2,2-bis(p-chlorophenyl) ethylene (DDE) 

[22, 43, 44]. In addition, GSTs may participate in the 
passive non-catalytic binding of substrates and 
sequestration, which prevents the binding of 
xenobiotics to their target proteins [45-48]. 

Besides triggering a sequence of events that 
cause toxic outcomes, exposure to xenobiotics leads to 
induced oxidative stress, generating an over 
production of reactive oxygen species (ROS) [49] and 
consequently triggering oxidative damage to 
macromolecules such as proteins, lipids, and nucleic 
acids [50, 51]. To cope with oxidative stress, arthro-
pods evolve antioxidant enzymes for removing excess 
ROS to maintain intracellular redox homeostasis and 
avoid oxidative damage. These antioxidant enzymes 
include GSTs, catalases, superoxide dismutases, 
thioredoxins, glutathione peroxidases, glutaredoxins 
and thioredoxin peroxidases [52, 53] (Figure 2). Insect 
GSTs not only are involved in xenobiotic conjugation 
but also play roles in protection against oxidative 
stress caused by exposure to pesticides [46], plant 
allelochemicals [54], as well as various other abiotic 
factors [55, 56]. Recent reviews had summarized 
functions of insect GSTs in insecticide resistance [22, 
57]. Therefore, the current review focuses on the 
structural and functional divergence of GST enzymes 
in arthropods and their potential roles in xenobiotic 
adaptation. 

Classification of GSTs 
In eukaryotes and aerobic prokaryotes, GSTs are 

grouped into at least four major protein families: 
cytosolic GSTs, mitochondrial GSTs, microsomal 
GSTs, and bacterial Fosfomycin-resistance proteins 
[40, 42, 58-59]. Mitochondrial GSTs are known as the 
kappa class in mammals and are mostly found in the 

mitochondrial matrix [60] and peroxi-
somes [61]. Research has indicated that 
mitochondrial GSTs in humans play 
important roles in the detoxification of 
lipid peroxide and lipid metabolism [61]. 
Microsomal GSTs belong to the MAPEG 
family (membrane‐associated proteins in 
eicosanoid and glutathione metabolism), 
which play a significant role in the 
reduction of lipid peroxidation and 
xenobiotic detoxification [62, 63]. In 
contrast to mitochondrial and micro-
somal GSTs, cytosolic GSTs are present in 
the cytoplasm and are soluble [44]. Both 
microsomal and cytosolic GSTs are found 
in arthropod species; however, the gene 
numbers in microsomal GSTs are fewer 
than the cytosolic GSTs (Table 1) [62, 64, 
65]. Moreover, cytosolic GSTs, which are 
typically 200-250 amino acids in length, 

 

 
Figure 1. Graphic representation of the xenobiotic adaptations in arthropods that have evolved through 
different mechanisms. The thickness of the blue arrows represents the concentration of xenobiotics. 
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form homo- or hetero-dimers, whereas microsomal 
GSTs are smaller (nearly 150 amino acids) and form 
trimers [62, 66]. Arthropod cytosolic GSTs are 
classified into several classes according to the 
sequence similarities and structural properties: Delta, 
Epsilon, Omega, Sigma, Theta, Zeta, and unclassified 
classes (Table 1). Among these classes, Omega, Sigma, 
Theta, and Zeta classes are identified in most 
metazoans [67] and some aerobic prokaryotes [58, 68]. 
Epsilon and Delta classes are insect-specific [62, 69]. 
These two classes of cytosolic GSTs have undergone 
species-specific gene expansion to a great extent [41, 
64, 65]. It was hypothesized that such expansion 
might have occurred during adaptation to 
environmental selection pressure. This expansion or 
duplication of genes resulted in sequence variations 
that expanded substrate functionality and/or 
responses to environmental stresses [62, 70, 71]. 

Arthropod cytosolic GSTs are mainly involved in 
xenobiotic adaptation. With genomes of arthropod 
species available, gene number variation in each class 
of cytosolic GSTs has been observed in different 
species (Table 1). It has been hypothesized that a 
smaller number of cytosolic GST genes in the 
European honey bee (Aphis mellifera) than in other 
insect species might be associated with pesticide 
sensitivity and reduction in vitality [72]. Besides, 
predator Orius laevigatus, monophagous or 
oligophagous agricultural pests Nilaparvata lugens and 
Diaphorina citri possess a low number of Delta, 
Epsilon, and total GSTs in their genomes (Table 1). 
The deficit in the number of GST genes is likely due to 
the low degree of exposure to xenobiotics in their 

natural environment. 

General structure of cytosolic GSTs 
Typically, cytosolic GSTs are hetero- or 

homo-dimeric proteins and are about 23-30 kDa per 
monomer. It has been proposed that heterodimer 
formation is restricted to both subunits being from the 
same class due to dimer interface compatibility 
interactions. Crystallographic evidence shows that 
homodimer subunits are related by a two-fold 
symmetry axis (Figure 3A&B) [73]. Each monomer of 
a cytosolic GST is composed of an N-terminal domain 
(domain I) and C-terminal domain (domain II). 
N-terminal domain has β strands and α helices, and 
the C-terminal domain consists of helices [42, 62, 74]. 
Domain I exhibits the structurally conserved 
thioredoxin-like fold motif βαβαββα (Figure 3A&C) 
[44, 68, 75]. The N-terminal domain I is connected to 
the C-terminal domain II by a linker loop region 
consisting of around 10 amino acids [42, 62, 76]. The 
C-term domain II consists of 4-8 helices depending on 
the GST class [42, 62, 73, 76]. One of the striking 
features of GST is that each subunit has two 
ligand-binding sites - “G” site and “H” site (Figure 3), 
which together constitute the catalytic active site [62, 
77]. The G-site is more hydrophilic and exhibits a 
higher degree of sequence conservation within GST 
families than the H-site [42]. The G-site is 
predominantly contained in the N-terminal domain 
and binds GSH and primes the thiol sulfur for 
nucleophilic attack on an electrophilic substrate 
[77-79]. In contrast, the hydrophobic H-site is 
predominantly contained in the C-terminal domain 

 

 
Figure 2. Schematic illustrating the process of xenobiotic metabolism, which encompasses three phases I, II, III (Adopted from [137]) as well as xenobiotic induced oxidative 
stress and molecular damage. 
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adjacent to the G-site and binds electrophilic 
substrates [62, 80]. The amino acid residues that make 
up the H-site are involved in recognizing and binding 
various exogenous and endogenous compounds and 
positioning their electrophilic centers for attack by the 
nucleophilic GSH. 

G-site 
The type and position of amino acids in the 

active site of GSTs (G-site and H-site) play important 
roles in substrate binding affinity and catalytic 
function [74]. It is thus important to make a 
comparison among different GSTs to understand their 
evolution and functions in the detoxification of 
diverse chemical substrates. With the aid of X-ray 
crystallography and site-directed mutagenesis 
techniques, the roles of GST active site amino acid 
residues were identified and evaluated [62, 81]. In 
Anopheles dirus, a delta GST GSTD3-3 (PDB: 1JLV), 
G-site residues Ser-9, Pro-11, Leu-33, His-38, His-50, 
Cys-51, Ile-52, Pro-53, Glu-64, Ser-65, Arg-66, and 
Met-101 are within a 4.0 Å distance cutoff of GSH 
(Figure 3C) [82, 83]. Among them, the Ser-65 residue 
was generally conserved across all GST classes. Ser-65 
forms a hydrogen bond with the GSH γ-glutamyl 

carboxylate [80, 83]. Additionally, Ile-52 and Glu-64 
were generally maintained as either hydrophobic or 
polar residues across GST classes [82]. The Ile-52 
backbone amide forms a hydrogen bond with the 
backbone carbonyl of the GSH cysteinyl group and 
Glu-64 forms a salt-bridge with the amino group of 
γ-glutamyl moiety of GSH. In delta and epsilon GSTs, 
His-38 is maintained in most cases as a polar or 
charged residue and His-50 is conserved as part of an 
NPQHTVPTL motif. His-38 and His-50 are located 
within polar interaction distance of the glycyl 
carboxylate moiety of GSH [80, 84, 85]. Ser-9 is 
conserved in epsilon, delta, theta, and unclassified 
GSTs and works to stabilize the GSH thiolate through 
a hydrogen bonding interaction [42, 73, 80, 83, 84, 86]. 
In a zeta class GST of Homo sapiens, the GSH thiolate is 
stabilized by interaction with Cys-16, Ser-15, Gln-111, 
and Ser-14 [73]. In omega GSTs, BmGST-O Cys-38 is 
located adjacent to the GSH thiolate and dmGST-S1 
Tyr-54 plays a major role in stabilizing the GSH 
thiolate [76, 87]. The remaining amino acids that make 
up the core of the G-site are more variable across GSTs 
but are thought to aid in the positioning of GSH in the 
G-Site [84]. 

 

 
Figure 3. Structures of representative insect cytosolic GSTs. A. Ribbon diagram of Drosophila melanogaster dmGSTD1 (PDB: 3MAK). In subunit 1, the N-terminal domain I 
helices are shown in dark blue, and β-strands are shown in red, and the C-terminal domain II helices are shown in light blue. In subunit 2 the domain I helices are dark cyan 
β-strands are orange, and the domain II helices are light cyan. Glutathione is colored by the element and is shown in ball and stick format. B. Dimer (left) and monomer (right) 
ribbon diagrams of dmGSTD1 (PDB: 3MAK) overlayed with lipophilic surface representation. C. Secondary structure map of Anopheles dirus GSTD3-3 (PDB: 1JLV). Domain I 
helices are shown in dark blue and beta strands are shown in red. Domain II helices are shown in light blue. Loop regions for both domains I and II are shown in grey. The link 
region loop is dashed. Ribbon and surface diagrams were generated with UCSF ChimeraX. 
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Table 1. GST gene number in diverse species across six insect orders 

Order Name Type Delta Epsilon Omega Sigma Theta Zeta Unclassified Microsomal Total Reference 
Coleoptera Leptinotarsa 

decemlineata 
Pest (Oligophagous) 3 10 5 4 4 1 2 1 30 [66] 

Tribolium castenaum Pest (Polyphagous) 3 19 3 7 1 1 2 5 41 [64] 
Diptera Aedes aegypti Pest (Oligophagous) 8 8 1 1 4 1 3 - 26 [138] 

Anopheles gambiae Pest (Sanguivorous, 
Oligophagous) 

12 8 1 1 2 1 3 3 31 [72] 

Bactrocera dorsalis Pest (Polyphagous) 4 8 2 0 1 1 1 - 17 [139] 
Chironomus riparius Pest (Sanguivorous, 

Oligophagous) 
3 1 1 4 1 1 2 - 13 [140] 

Culex 
quinquefasciatus 

Pest (Sanguivorous, 
Oligophagous) 

14 9 1 1 6 0 4 5 40 [141] 

Drosophila 
melanogaster 

Pest (Polyphagous) 11 14 5 1 4 2 0 1 38 [72, 149] 

Hemiptera Bemisia tabaci Pest (Polyphagous) 14 0 1 6 0 2 - 2 25 [142] 
Diaphorina citri Pest (Oligophagous) 2 2 0 3 0 0 1 2 11 [142] 
Myzus persicae Pest (Polyphagous) 8 0 0 8 2 0 0 2 21 [143] 
Nilaparvata lugens Pest (Monophagous) 2 1 1 3 1 1 0 2 11 [144] 
Orius laevigatus Predator (Polyphagous) 1 0 2 16 1 1 0 3 24 [145] 

Homoptera Acyrthosiphon pisum Pest (Oligophagous) 10 0 2 6 2 0 0 2 22 [144] 
Hymenoptera Apis mellifera Pollinator (polyphagous) 1 0 1 4 1 1 0 2 10 [72] 

Nasonia vitripennis Parasitoid (Monophagous) 5 0 2 8 3 1 0 - 19 [146] 
Lepidoptera Bombyx mori Economic (Monophagous) 4 8 4 2 1 2 2 - 23 [147] 

Plutella xylostella Pest (Oligophagous) 5 5 5 2 1 2 2 - 22 [65] 
Spodoptera litura Pest (Polyphagous) 5 21 3 7 1 5 3 2 47 [148] 

-: There is no known gene in these classes. 
 
 

H-site 
In the GST H-site, the amino acids that 

contribute to the binding of multiple substrates 
ultimately facilitate the tolerance that an organism 
exhibits in a specific stress environment. Amino acid 
mutations in the H-site can significantly alter the 
catalytical activity of GST enzymes towards their 
substrates [88, 89]. However, the sequence variability 
in GST active sites across species and enzyme families 
result in differing enzyme activities for various 
substrates [58]. In contrast to the G-site that binds 
GSH across GST classes, the H-sites that bind various 
substrates have distinct variations in amino acid 
sequence and structural conformation [90]. While the 
G-site is more hydrophilic in nature compared to the 
H-site, the extent of hydrophobicity of the H-site 
varies across GST classes and amongst individual 
GSTs [77, 78, 91]. 

In general, hydrophilic amino acids contribute to 
the formation of a hydrophobic pocket in the H-site 
adjacent to the GSH-binding site (Figure 3B&C) [80, 
85]. In Anopheles gambiae, residues in the H-site of 
AgGSTe2 were presumptively responsible for DDT 
binding and they were mostly hydrophobic residues 
[84]. In Plutella xylostella, the amino acids Phe-9, 
Pro-10, Ile-11, Leu-14, Gly-49, Pro-52, Ala-100, and 
Tyr-107 are the putative H-site residues in a sigma 
class GST, PxGSTσ [77]. Site-directed mutagenesis and 
inhibition assays revealed that Phe-9 is potentially an 
important residue for the binding of the inhibitor 
S-hexyl glutathione (GTX) [77]. In Blattella germanica, 

Tyr-107, Tyr-115, Phe-119, and Phe-206 constitute the 
H-site of BgGSTD1. Purified BgGSTD1 had the 
highest cumene peroxidase activity among insect 
GSTs reported at that time that played a vital role in 
defending against oxidative stress [92]. Studies have 
shown that the H-sites of different classes of GSTs are 
dissimilar. Diverse H-sites allow for binding and 
catalytic activity towards a wider range of xenobiotic 
substrates [93]. Despite lifetime exposure to a wide 
variety of toxic chemicals, the presence of multiple 
GST classes with diverse substrate specificities 
facilitates an organism adaptation to adverse 
environments. 

Functions of insect GSTs in host plant 
adaptation and pesticide resistance 

Many studies have found that plant 
allelochemicals are inducers of phase II detoxification 
enzymes in herbivorous arthropods [5-7]. In 
Choristoneura fumiferana, the expression of CfGST was 
induced by balsam fir foliage and other multiple 
stresses suggesting its potential role in xenobiotic 
detoxification [94]. The isothiocyanates produced 
from the breakdown of glucosinolates by the action of 
the enzyme myrosinase [95] are highly electrophilic, a 
property of a compound that makes it readily 
available for the nucleophilic GSH when in the 
presence of GST [96]. Gonzalez et al. reported that the 
expression of GSTD2 in Drosophila melanogaster was 
significantly higher in the taste organs (labellum and 
forelegs) when exposed to an isothiocyanate, 
insecticidal compounds naturally present in 
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cruciferous plants [91]. In addition, the mechanism of 
detoxification by GSTD2 was revealed via its strong 
affinity towards isothiocyanate and catalysis of the 
conjugation between GSH and isothiocyanate. Zou 
and others showed that glucosinolate and xanthotoxin 
present in Brassica juncea stimulated the expression of 
GSTE1 in the midgut of Spodoptera littoralis larvae after 
feeding. The conjugation activity towards these 
allelochemicals was reduced when suppressing 
GSTE1 gene expression via RNA interference (RNAi), 
suggesting a role for GSTE1 in host plant adaptation 
[97]. In the Hessian fly, Mayetiola destructor, feeding on 
wheat varieties led to increased production of 
deterrent allelochemicals and the consequent 
upregulation of delta class GST genes [98]. The 
enhanced expression of MdesGST-1 (Delta group) in 
the midgut and fat body of Hessian fly larvae might 
explain its involvement in the detoxification of plant 
defense compounds such as flavonoids and 
scavenging endogenous ROS. Indeed, based on 
evidence from GST activity and RNAi studies, three 
GSTs are thought to have contributed to the 
adaptation of N. lugens to the host rice plant 
allelochemical (gramine) [99]. Recently, Ma et al. 
identified two Lymantria dispar GST genes, LdGSTe4 
and LdGSTo1 induced by host poplar allelochemicals. 
After silencing these two GST genes individually, the 
adaptation of L. dispar to host poplar allelochemicals 
was depleted [100]. 

Plant volatile compounds play roles in host 
selection by insects. For example, herbivore-induced 
plant volatile compounds could serve as repellents of 
some insects and reduce their activities, which is 
termed allelochemical nonpreference [4]. Even for the 
adapted herbivore species, these volatile compounds 
can cause direct physiological damage to herbivores 
due to their neurotoxic properties at high 
concentrations [101, 102]. As odorant degrading 
enzymes (ODEs), GSTs play an important role in 
chemoreception for the adaptation to host plant 
volatiles and termination of stimulation from signals 
(i.e., sex pheromones and plant volatiles). Antenna 
expressed GSTs present in the sensillar lymph of 
insect antennae, function in signal termination and 
odorant clearance, enhancing olfactory and neuron 
sensitivity [103-106]. In Manduca sexta, an antenna 
specific GST, GST-msolf1 is expressed in the 
sex-pheromone-sensitive sensilla and can modify 
trans-2-hexenal, a plant derived green leaf aldehyde, 
suggesting its dual role in protecting sphinx moth 
olfactory system from harmful xenobiotics and 
pheromone inactivation [107]. Likewise, in male silk 
moth (Bombyx mori), the antennae specific BmGSTD4 
had high GSH-conjugating activity towards 
1-chloro-2, 4-dinitrobenzene (CDNB), indicating its 

potential role in the metabolism of xenobiotics [108]. 
Recently, the antenna expressed GmolGSTD1 was 
found to exhibit high degradation activity to both the 
sex pheromone ((Z)-8-dodecenyl alcohol) and the host 
plant volatile butyl hexanoate in Grapholita molesta 
[109]. Most recently, the high abundance of a delta 
GST, SzeaGSTd1 in Sitophilus zeamais antennae, 
inhibition of SzeaGSTd1 catalytic activity by capryl 
alcohol, along with the degradation of capryl alcohol 
by recombinant SzeaGSTd1 were observed [110]. 
Since capryl alcohol is a volatile component generated 
during grain storage, the inhibitory effects and 
degradation of capryl alcohol by the antenna specific 
SzeaGSTd1 suggest its functions in locating food and 
favorable oviposition site locations [110]. 

As phase II detoxification enzymes, arthropod 
GSTs confer pesticide resistance through direct 
metabolism or sequestration of pesticides and 
indirectly by providing protection against oxidative 
stress induced by synthetic pesticides [22]. In 
Rynchophorus phoenicis, the enhanced glutathione 
transferase activity was associated with degradation 
of dichlorvos, an organophosphate insecticide [111]. 
Yu and Killiny reported upregulation of DcGSTe2 and 
DcGSTd1 in the Asian citrus psyllid (Di. citri) when 
exposed to thiamethoxam and fenpropathrin 
treatment. Silencing of these GST genes enhanced 
mortality of Asian citrus psyllid [112]. In Tetranychus 
cinnabarinus, GST TcGSTm02 was overexpressed in a 
cyflumetofen resistant strain compared to a suscep-
tible one. The activity of recombinant TcGSTm02 
could be inhibited by cyflumetofen and the enzyme 
catalyzed the conjugation of GSH to cyflumetofen 
[113]. Recently, RNAi-mediated knockdown of four 
overexpressed GST genes in the imidacloprid 
resistant N. lugens resulted in increased sensitivities to 
the insecticide, suggesting the roles of these GSTs in 
imidacloprid resistance of N. lugens [114]. One P. 
xylostella GST, GSTu1 upregulated in several 
chlorantraniliprole-resistant P. xylostella strains was 
confirmed to contribute to chlorantraniliprole 
resistance [115]. In that study, GSTu1 was suggested 
to be regulated by a novel noncoding RNA-mediated 
pathway [115]. In Locusta migratoria, LmGSTE4 was 
found to metabolize malathion and DDT. However, 
insecticide bioassay showed that after suppression by 
RNAi, L. migratoria insect mortality was increased in 
malathion treated insects but not in deltamethrin- or 
DDT-treated insects [116]. Most recently, 25 GST 
genes including 22 cytosolic and 3 microsomal genes 
were identified in insecticide resistance to 
lambda-cyhalothrin in Cydia pomonella. Among these 
GSTs, recombinant CpGSTd1, CpGSTd3, CpGSTe3, 
and CpGSTs2 could bind and metabolize 
lambda-cyhalothrin, however, no metabolites were 
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detected. Therefore, the authors suggested that the 
involvement of these GSTs in lambda-cyhalothrin 
resistance might be through sequestration [117]. 

Functions of insect GSTs in defense of 
xenobiotics induced oxidative stress 

Eukaryotic cells have evolved to respond against 
a range of environmental stresses. Oxidative stress is a 
compromised state for the lipidic cell membrane due 
to its peroxidation by different free radicals. Pesticides 
produce oxidative stress in the cell, which in turn 
generates several ROS free radicals [50]. Free radicals 
are atoms or molecules with unpaired electrons [118]. 
In the quest for electronic stability, free radicals attack 
other molecules to stabilize their electronic state and 
thereby alter chemical structures and disrupt 
biomolecular functions [50, 118]. A buildup of ROS 
such as H2O2 (hydrogen peroxide) and O2− 
(superoxide anion) can lead to changes in metal 
homeostasis or oxidation states of protein metal 
complexes, such as the release of Fe from ferratin or 
the reduction of iron in cytochrome C [119]. 
Additionally, exposure to ROS can lead to 
modifications that cause genomic DNA mutations, 
negatively affect protein activity, damage cellular 
membranes, and eventually leading to cell death. 
Evolutionarily, GSH has been one of the key 
nucleophilic chemicals in living organisms that 
convert a range of electrophilic compounds into a less 
toxic form [120, 121]. In the case of redox stress, two 
molecules of GSH reduce one molecule of hydrogen 
peroxide in the presence of glutathione peroxidases, 
generating one molecule of glutathione disulfide 
(GSSG), an oxidized form of GSH, and two molecules 
of water [122, 123]. The glutathione peroxidase, which 
is responsible for protecting lipids and proteins from 
oxidation, is regulated by the essential trace metal 
element Selenium (Se) [124]. The Se-dependent 
glutathione peroxidase metabolizes hydrogen 
peroxides and hydroperoxides [40, 125]. In the 
absence of Se, GST performs glutathione peroxidase 
activity mostly towards organic hydroperoxides [121, 
126, 127]. Once GSSG is formed, flavin adenine 
dinucleotide (FAD)-dependent enzyme glutathione 
reductase transfers electrons from NADPH, 
regenerating two molecules of GSH [121]. 

Many Se-independent peroxidase reactions 
performed by GSTs in insects have been reported. In 
Dr. melanogaster, DmGSTS1-1 exhibited glutathione 
peroxidase activity towards cumene hydroperoxide 
(CHP, oxidative stress inducer). Since DmGSTS1-1 
was highly expressed in the flight muscle, the 
localization of the corresponding GST enzyme might 
provide a protective role against oxidative stress 
generated from mitochondrial respiration [128]. 

Similarly, Sawicki and others found six delta class 
GST genes (GSTD1, GSTD2, GSTD3, GSTD7, GSTD9, 
and GSTD10), one epsilon class GST (GSTE1), and one 
sigma class GST gene (GSTS1) in Dr. melanogaster that 
could conjugate 4-hydroxynonenal (4-HNE), an 
electrophilic end-product of lipid peroxidation [129]. 
The role of GSTs in attenuating pyrethroid-induced 
oxidative stress, which conferred insecticide 
resistance in the rice brown planthopper (N. lugens) 
was highlighted by Vontas et al. [46]. It was reported 
that the increase in GST-based peroxidase activity and 
the increased amount of GSH indicated the role of 
GST in reducing the damage from pesticide-induced 
oxidative stress. Zhang and others showed GSTO2 in 
Apis cerana cerana had peroxidase activity toward CHP 
and t-butylhydroperoxide [130]. Similarly, a defen-
sive role against oxidative stress by RpGSTO1 
towards different concentrations of CHP was 
observed in the bird cherry-oat aphid, Rhopalosiphum 
padi [131]. The GST antioxidant role has also been 
highlighted in an urban pest, the German cockroach 
B. germanica. Cockroaches exhibited high GSTD1 
peroxidase activity against CHP, indicating a role in 
insecticide metabolism and reduction of redox stress 
[92]. Similarly, GSTE1-1 in both DDT resistance and 
susceptible An. gambia, showed peroxidase activity 
with CHP but was unable to perform dehydro-
chlorination activity. The opposite result was 
obtained for GSTE2-2, indicating these two GSTs play 
an important role in gaining resistance to DDT via 
conjugation and peroxidase activity, respectively [49]. 
In two-week-old adults of Ap. cerana cerana, the 
expression of AccGSTS1 was high when exposed to 
various environmental stressors such as temperature 
(cold and heat shock), heavy metal (HgCl2), pesticides 
(phoxim, cyhalothrin, and acaricide), H2O2, and 
ultraviolet [45] radiation which are known for their 
property to generate oxidative stress [55]. The 
researchers observed dose-dependent removal of 
H2O2, indicating AccGSTS1 functions in the 
elimination of oxidative stress [55]. A similar result 
was obtained for AccGSTZ1 in Ap. cerana cerana when 
exposed to varying temperatures and H2O2, 
suggesting a protective function against oxidative 
stress [132]. 

During evolution, insects have adapted to 
stresses posed by plant-derived toxic chemicals. 
When feeding on plant species in the Apiaceae or 
Rutaceae families, which contain furanocoumarin- a 
toxic photoactive pro-oxidant, Papilio polyxenes 
exhibited significantly higher GST-mediated peroxi-
dase activity. This is indicative of an insect adaptive 
mechanism against oxidative stress generated by the 
plant-derived toxic chemical substances [54, 133], 
suggesting many GSTs are responsible for protecting 
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tissues and reducing the mortality rate of insects 
caused by oxidative stress. There are also some cases 
where specific GSTs are not able to conduct 
peroxidase activity, such as theta class GSTs [134, 
135]. Interestingly, some insects do not have 
Se-dependent glutathione peroxidases or have 
enzymes with limited expression and/or activity [49, 
54, 127, 136]. Finding evidence on how insects 
eliminate oxidative stress in the absence of 
Se-dependent glutathione peroxidase for survival or 
adaptations to environmental stressors is the direction 
of future research. 

Conclusions 
GSTs play a vital role in detoxifying or 

metabolizing a diverse range of chemical compounds, 
of xenobiotic or endobiotic origin. GST mediated 
detoxification is critical for adaptation against 
xenobiotics including plant allelochemicals and 
synthesized pesticides. GSTs confer adaptation to a 
diverse range of xenobiotics through metabolism or 
sequestration of chemicals and protection against 
chemical induced oxidative stress. The key to the 
diverse roles of different classes of GSTs is due to their 
structure, specifically the composition and spatial 
localization of amino acid residues composed in the 
enzymatic active sites. Through a combination of 
arthropod structural biology, enzyme kinetics and 
site-directed mutagenesis techniques, our under-
standing of such diversity in GST structural and 
functional complexity can be improved. 
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