Supplementary materials

Figure S1. FAK signaling activation is adaptively induced by entrectinib

(A-E) Western blot analysis for FAK signaling and downstream markers after entrectinib

treatment for various times. Total protein was extracted for Western blotting.

Figure S2. Co-treatment with crizotinib or entrectinib plus FAK inhibitors inhibits growth of *CDH1*-deficient cancer cells better than either monotherapy

(A-E) Inhibition of cell growth was assessed following FAK inhibitor monotherapy. Cells were treated with various concentrations of IN10018 and VS-4718 for 72 h. (F-T) Assessment of cell viability after co-treatment with ROS1 inhibitors and a FAK inhibitor. Non-resistant *CDH1*-deficient cells were incubated with various concentrations of ROS1 inhibitors with or without a FAK inhibitor (3 μ M or 5 μ M) for 72 h. Cell viability was determined using the CellTiter-Glo luminescent assay. The IC50 value was shown in Table

S3. Data represent mean \pm SEM, n \geq 3. (F-J) Analysis of co-treatment with crizotinib and VS-4718. (K-T) Analysis of co-treatment with entrectinib and IN10018 or VS-4718. (U) Bliss analysis using SynergyFinder 2.0 software, with a Bliss score >10 suggesting synergistic effects for the drug combination.

Figure S3. Crizotinib and IN10018 co-therapy has synergistic effects in crizotinibresistant cell lines.

(A-H) Effects of co-treatment with IN10018 and crizotinib on crizotinib-resistant cell lines. Cells were co-treated with IN10018 (3 μ M or 5 μ M) and a serial dilution of 100 μ M crizotinib for 72 h. Cell viability was determined using the CellTiter-Glo luminescent assay. Data represent mean ± SEM; n ≥ 3. (B, D, F, H) Bliss analysis was conducted with SynergyFinder, with a Bliss score >10 suggesting synergistic effects for the drug combination. The Bliss synergy scores represent overall synergies for combination.

(A-D) Vehicle control (0.5% Natrosol 250 HX) or 25 mg/kg of IN10018 and 25 mg/kg of entrectinib was orally administered to mice once daily. Tumor size and mouse body weight were recorded twice each week. Data represent mean \pm SEM; n \geq 5. Comparisons were performed using unpaired student's T-tests. *P < 0.05, **P < 0.01, and ***P < 0.001.

(A) Heatmap of genes differentially expressed after crizotinib monotherapy and after cotreatment with crizotinib plus IN10018. NUGC-4 cells were incubated with 1 μ M crizotinib, 1 μ M IN10018, or both (as indicated) for 24 h. (B) Volcano plot showing 2487 differentially expressed genes. Red (n = 1466) and blue (n = 1021) represent genes up-regulated and down-regulated, respectively, in the co-treated group relative to the crizotinib-treated group. (C) Intracellular ROS production as assessed by DCFH-DA fluorescence flow cytometry. Representative flow cytometry profiles are shown. NUGC-4 cells were treated with 3 μ M crizotinib with or without 3 μ M IN10018 (as indicated) for 6 h. (D) Expression levels of YAP signaling signature genes by RT-qPCR. The gene expression data of 6 h treated in NUGC-4 cells which were normalized to the DMSO control group. (Data represent Mean ± SEM, n ≥ 3). (E) Western blot tests on NUGC-4 cells with Crizotinib treatment for 6h. (F) ImageJ analysis of YAP immunofluorescence from Fig 4. Data represent mean ± SEM; n = 50. Comparisons were conducted using unpaired student's T-tests. *P < 0.05, **P < 0.01, ***P < 0.001. (G, H) DNA damage with YAP knockdown in NUGC-4 cells as assessed by the comet assay following treatment with 3 μ M crizotinib for 6 h. (H) Quantification of the results (G). Data are presented as the mean ± SEM; n = 100. *P < 0.05, **P < 0.01, and ***P < 0.001 compared with crizotinib-treated cells.

(A, B) YAP, γ H2AX and Cleaved Caspase3 IHC staining for the NUGC-4 CDX model tumors. Scale bar = 50 µm. (B) Quantification of the expression levels of YAP, γ H2AX and cleaved Caspase3 in NUGC-4 tumors from (A) using ImageJ. (Data represent Mean ± SEM, n≥100). (C) Quantification of the expression levels of YAP, γ H2AX and cleaved Caspase3 in NUGC-4 tumors from Figure 4 (M). (Data represent Mean ± SEM, n≥100). Statistical

analysis was done using unpaired student's T-test. *P < 0.05, **P < 0.01, ***P < 0.001 and ****P < 0.0001.

Figure S7. ALK knockdown has little effect on FAK signaling or DNA damage

(A, B) Western blot analysis of FAK signaling and downstream markers following addition of siRNA ALK to NUGC-4 and MDA-MB-231 cells. (C) Western blot analysis of YAP signaling and DNA damage following addition of siRNA ALK to NUGC-4 cells.

Antibody	Vendor	Catalogue Number		
FAK	Cell Signaling Technology	71433		
Phospho-FAK (Tyr397)	Thermo	PA5-17084		
YAP	Proteintech	13584-1-AP		
Phospho-YAP (Ser127)	Cell Signaling Technology	13008		
ROS1	Thermo	PA1-30318		
Phospho-ROS1	Cell Signaling Technology	3078		
(Tyr2274)				
ALK	Cell Signaling Technology	3633		
AKT	Cell Signaling Technology	4691		
Phospho-AKT (Ser473)	Cell Signaling Technology	4060		
TRX	Abcam	ab26320		
γΗ2ΑΧ	Cell Signaling Technology	80312		
LATS1	Cell Signaling Technology	3477		
LATS2	Cell Signaling Technology	5888		
α-Tubulin	Proteintech	HRP-66031		
Anti-rabbit HRP	Cell Signaling Technology	7074		
Goat anti-Rabbit Alexa	Thermo	A-11008		
Fluor™ 488				
DAPI	Thermo	D21490		
CYR61	Proteintech	26689-1-AP		
CTGF	Proteintech	25474-1-AP		
Cleaved caspase 3	Cell Signaling Technology	9661		

Table S1: List of antibodies used in this study.

Table S2: List of siRNA and primers used in this study.

Cana	Γ_{a} reprint Γ_{a}^{i} $(\Gamma_{a}^{i}, \Omega_{a}^{i})$	$D_{\rm evenue}$ write en (Γ', Ω')
Gene	Forward primer (5 - 3)	Reverse primer (5 - 3)
Namo		
Name		
Control		
Control		
siRNA		
FAK siRNA	CCUGUAUGCCUAUCAGCUUTT	AAGCUGAUAGGCAUACAGGTT
Lats1	GGUAGUUCGUCUAUAUUAUTT	AUAAUAUAGACGAACUACCTT
siRNA		
Lats2	CUACCAGAAAGAGUCUAAUTT	AUUAGACUCUUUCUGGUAGTT
SIRINA		
	GACAUCUUCUUGUUCAGAGAN	
CTGE	GTTTGGCCCAGACCCAACTA	GGCTCTGCTTCTCTAGCCTG
AJUBA	AGCCACCAGGTCCTTTCGTTCC	GGCATTGCTCTGCCCATAGATG
TGFB2	AAGAAGCGTGCTTTGGATGCGG	ATGCTCCAGCACAGAAGTTGGC
CYR61	CAGGACTGTGAAGATGCGGT	GCCTGTAGAAGGGAAACGCT
BIRC5	ATCGCCACCTTCAAGAACTG	GGCCAAATCAGGCTCGTTCT
AXL	AACCTTCAACTCCTGCCTICICG	CAGCTTCTCCTTCAGCTCTTCAC
AMOTL1	AGIGAGCGACAAACAGCAGACG	AICICIGCICCCGIGITIGGCA
	CAACCTCTCCTCTTTCCCCAAC	
IEAD4	GAAGGICIGCICIIICGGCAAG	GAGGIGCIIGAGCIIGIGGAIG
GAPDH	GTCTCCTCTGACTTCAACAGCG	
OAI DIT		

All the siRNAs and primers used in the study were synthesized by Genepharma.

Cell Line		IC50(µM)								
	VS- 471	IN100 18	Crizotinib		Entrectinib					
	8		DMS O	+VS - 471 8 3µM	+VS - 471 8 5µM	DMS O	+IN100 18 3μΜ	+ΙΝ100 18 5μΜ	+VS - 471 8 3μΜ	+VS - 471 8 5μΜ
SNU- 668	14.8 4	12.30	7.6	4.37 2	1.94 7	10.30	6.371	4.734	9.03 1	5.29 3
NUG C-4	18.9 7	12.33	11.48	8.20	5.78 5	17.72	11.83	9.122	14.2 5	8.85 8
MGC- 803	17.0 3	10.38	10.41	6.98 8	3.99 7	6.717	4.259	1.681	4.41 9	2.90 6
MDA- MB- 231	15.5 9	20.09	8.28	6.12 5	3.88 9	5.9	2.667	1.747	3.43 4	2.45
Hs- 578t	19.3 1	14.52	6.906	5.32 1	3.53 2	11.4	6.475	3.504	7.21	5.9

 Table S3: List of IC50 value in Figure S2.