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Abstract 

Aging is a necessary process of life associated with various mechanisms, such as genomic instability, loss 
of proteostasis, deregulated nutrient sensing, and cellular senescence, causing progressive dysregulation 
of the microenvironment, organ homeostasis and biological functions. The hepatic microenvironment is 
essential for maintaining liver homeostasis, in which hepatocytes, sinusoidal endothelial cells, stellate cells 
and immune cells are closely associated with the development of aging-related liver diseases. There is 
increasing evidence that immunocytes, especially myeloid cells, are involved in aging-related liver diseases 
such as alcoholic liver disease, nonalcoholic liver disease, liver fibrosis or cirrhosis and liver cancer, 
becoming promising treatment targets of these diseases. This review summarizes the phenotypic and 
functional alterations associated with aging liver and myeloid cells, as well as the roles of myeloid cells in 
the progression of aging-related liver diseases. 
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Introduction 
Aging is commonly characterized as an 

organism's functional decline over time, with 
characteristics such as loss of physiological integrity, 
disruption of organ homeostasis, and progressive 
degradation of many biological systems [1]. These 
changes reshape the immune landscape in both 
physiological and pathological states, increasing the 
susceptibility of the organism to pathogenic factors 
[2]. With the improvement in living standards and 
advances in medicine, human life expectancy is 
significantly increased, leading to the prominent 
aging of the population accompanied by various 
chronic diseases, which demonstrate a natural 
relationship between aging and the pathogenic 
processes of many chronic diseases [3, 4].  

Liver diseases cause approximately 1.2 million 
deaths each year, accounting for 3.5% of deaths and 
affecting the lives of 1.5 billion people worldwide [5]. 
The liver is a complex metabolic organ that maintains 
the homeostasis of the body by regulating energy 

metabolism, biosynthesis, and xenobiotic removal 
[6-8]. The liver is also an important immune organ, 
where a variety of immune cells are temporarily or 
permanently distributed to perform immune 
surveillance of pathogens of intestinal origin as well 
as senescent cells [7]. The aged liver typically exhibits 
a higher infiltration of immune cells such as 
macrophages, neutrophils, lymphocytes and natural 
killer (NK) cells, resulting in a higher inflammatory 
state [9] which aggravates liver aging and increases 
the susceptibility to aging-related liver diseases, 
including nonalcoholic fatty liver disease (NAFLD), 
alcoholic liver disease (ALD), liver fibrosis or 
cirrhosis, and liver cancer [10]. Among the immune 
cells, myeloid cells such as macrophages and 
neutrophils play major roles in the development of 
liver diseases independently or through crosstalk 
with nonimmune mesenchymal cells [11]. However, 
the specific mechanisms by which myeloid cells 
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induce aging-related liver diseases remain largely 
unclear. 

The incidence of aging-related liver diseases will 
continue to rise as the population ages, which poses 
new requirements for further in-depth studies on the 
mechanisms between myeloid cells and liver aging. 
This review summarizes the phenotypic and 
functional alterations of aging liver as well as myeloid 
cells and presents the latest research progress of 
myeloid cells in affecting aging-related liver diseases, 
which will provide new insights for further 
exploration of the clinical strategies of aging-related 
liver diseases. 

Aging liver 
Aging liver encompasses most of the hallmarks 

of aging (Figure 1) and is associated with progressive 
changes in hepatic structure and function, as well as 
various hepatocyte alterations, including reduced 
proliferative capacity, metabolic and nutritional 
imbalances and altered liver microenvironment, 
which ultimately leads to increased disease 
susceptibility. 

The liver is the most resilient organ in adults and 
is characterized by its unique regenerative capacity. 
From their maturity, the volume of hepatocytes starts 

to decrease gradually with age [4]. On the one hand, 
senescent hepatocytes accumulate in the liver as a 
result of DNA damage accumulation and the 
activation of the p53-p21 and p16ink4a-pRb pathways 
[12, 13]. On the other hand, DNA double-strand 
breaks (DSBs) [14] and mutations in mitochondrial 
DNA (mtDNA) [15] caused by ionizing radiation or 
reactive oxygen species (ROS) may cause aging 
phenotypes of the liver, including expression of aging 
markers, mitochondrial fusion and elongation, and 
altered gene expression profiles. Moreover, the 
process of liver diseases and natural aging is 
accompanied by increased hepatocyte polyploidy [13, 
16], which limits the ability of hepatocytes to 
proliferate and may affect the recovery from 
inflammatory liver injury and partial hepatectomy 
[17].  

Deregulation of the trophic and metabolic 
pathways is another hallmark of the aging liver, 
which significantly affects liver morphology, 
physiology, and oxidative capacity. Adenosine 
5'-monophosphate activated protein kinase (AMPK), 
a serine-threonine kinase, is essential for regulating 
the homeostasis of energy metabolism in cells, and 
phosphorylated AMPK (activation) stimulates the 
physiological process of energy production and 

 

 
Figure 1. The hallmarks of aging hepatocytes. Aging hepatocytes encompass most of the hallmarks of aging. With age, DNA damage such as DSBs can occur spontaneously or 
be induced by ionizing radiation or ROS, causing pathological features of aging. Epigenetic alterations such as DNA methylation and histone acetylation were significantly reduced 
in aged livers, which possibly contributed to aging-related metabolic dysfunction. Deregulation of the trophic and metabolic pathways is another hallmark of aging hepatocytes, 
and decreased expression of MANF may promote lipid accumulation in the aged liver. Mitochondria in hepatocytes are also altered with age and are associated with a decrease 
in mitochondrial membrane potential and an increase in volume and peroxide production, supporting the key role of mitochondrial damage during aging. Senescent hepatocytes 
significantly accumulate in aged liver due to the accumulation of DNA damage and activation of the p53-p21 and p16ink4a-pRb pathways. In addition, abnormal intercellular 
communication between hepatocytes and immune cells such as macrophages and neutrophils can cause persistent sterile inflammation, known as inflammaging. DSBs: DNA 
double-strand breaks; MANF: mesencephalic-astrocyte-derived neurotrophic factor; ROS: reactive oxygen species. 
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inhibits energy utilization [18]. The AMPK signaling 
declines with age in a variety of tissues, thus affecting 
mitochondrial function and energy homeostasis [19]. 
Interestingly, although increased levels of phospho-
rylated AMPK can be observed in the aging liver, the 
signaling pathway is impaired because of the 
inactivated downstream signals [20]. Multiple 
approaches including exercise, dietary interventions 
and probiotic supplementation can improve liver 
aging and steatosis by activating the AMPK pathway 
[21, 22]. Moreover, decreased expression of 
mesencephalic astrocyte-derived neurotrophic factor 
(MANF) with age induces alterations in the 
transcriptome of lipid metabolism genes in mouse 
hepatocytes, promotes lipid accumulation in the liver 
through the induction of G0/G1 switch gene 2 (G0S2), 
and causes hepatic steatosis in response to metabolic 
stresses such as a high-fat diet (HFD) [23]. As the 
metabolic center, aging-related mitochondrial damage 
may decrease the metabolic capacity of hepatocytes. 
Recent studies have shown that the Hedgehog 
pathway is downregulated with age, leading to a 
decrease in the quantity and function of 
mitochondria, which results in reduced hepatocyte 
elasticity, impaired liver regeneration, and greater 
susceptibility to inflammation [24]. Epigenetic 
alterations, including DNA methylation and histone 
acetylation, may also affect liver metabolism [25-27]. 
Histone hypoacetylation is upregulated with age, 
leading to impaired hepatocyte plasticity, and 
selective inhibition of histone deacetylase (HDAC) 
can significantly restore plasticity and repopulation of 
aged hepatocytes confronting liver injury [28, 29]. Our 
previous studies have revealed that sirtuin-1 (SIRT-1), 
another class of histone deacetylases with antiaging 
effects [30, 31], is downregulated with age and 
increases the susceptibility of hepatocytes to alcohol 
damage [32]. The different regulation between SIRT-1 
and HDAC may reflect the functional diversity of 
acetylation modification.  

The hepatic microenvironment comprises 
mainly liver sinusoidal endothelial cells (LSECs) [33], 
hepatic stellate cells (HSCs) [34] and Kupffer cells 
(KCs) [35], which synergistically influence the aging 
process of the liver. Pseudocapillarization, a typical 
morphological change in aging LSECs [36], results in 
drug metabolism impairment [33] and lipoproteins 
[37] and insulin clearance [38], causing 
hyperlipidemia and hepatic insulin resistance, which 
may lead to cardiovascular and metabolic diseases. 
Hepatocyte growth factor (HGF) released by HSCs is 
significantly reduced with age, resulting in decreased 
regenerative capacity of the liver [34]. KCs are liver 
resident macrophages [39], the number of which 
gradually increases with age [40]. Autophagy and 

autophagy-associated protein 5 (ATG5) expression is 
reduced in KCs with age, promoting their 
polarization toward the pro-inflammatory M1 
phenotype [35]. In aged rats, the numbers of both 
pro-inflammatory M1 and anti-inflammatory M2 KCs 
have been reported to be increased [41], which may 
reflect the continued activation of the immune 
response in advanced age. 

For healthy aging, alterations in hepatocytes 
themselves reduce the proliferation and function, 
while the roles of pathological factors such as 
inflammation in liver aging have been understudied. 
As an important immune organ, in addition to KCs, a 
variety of immune cells also colonize the liver. Aging 
not only leads to a decrease in the defensive capacity 
of the liver but is also accompanied by greater 
inflammatory injury, known as inflammaging. 
Myeloid cells, including macrophages and 
neutrophils, have been reported to play significant 
roles in inflammatory liver injuries [42], which may be 
exacerbated by aging. Therefore, this review will 
further focus on the impact of aging immune cells, 
especially myeloid cells, on liver aging and disease 
susceptibility. 

Aging myeloid cells 
Aging of the immune system, which refers to an 

age-related decline in immune surveillance and 
clearance, dramatically increases the susceptibility to 
diseases [43]. Inflammaging, one of the hallmarks of 
immune aging, is the chronic progressive elevation of 
a low inflammatory response in naturally aging 
organisms in the absence of pathogens [44]. A major 
feature of inflammaging is the chronic activation of 
the innate immune system [45] with an imbalance in 
the secretion of pro- and anti-inflammatory factors 
[46], which may drive the aging of solid organs [47].  

The functional integrity of the immune system is 
shaped by hematopoietic stem cells, the source of 
immune cells [48]. Aging hematopoietic stem cells 
exhibit reduced output of lymphoid and erythroid 
lineages, whereas output of myeloid lineage is 
maintained or even increased compared with young 
hematopoietic stem cells [49]. This skew toward 
myeloid hematopoiesis appears to be related to early 
differentiation of hematopoietic stem cells, as old mice 
have increased numbers of common myeloid 
progenitor cells (CMPs) and decreased numbers of 
common lymphoid progenitor cells (CLP) compared 
to young mice [50, 51]. Myeloid cells include mainly 
monocytes/macrophages, neutrophils, eosinophils, 
basophils, myeloid-derived suppressor cells (MDSCs) 
and dendritic cells (DCs). Aging increases the 
accumulation of myeloid cells and causes a significant 
reduction in the capacity of movement and 
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surveillance, which further leads to organ injuries and 
diseases (Figure 2) [52-54]. Therefore, further studies 
focusing on aging myeloid cells in specific inflam-
matory settings are needed to better understand how 
such cells contribute to organ damage and diseases in 
the elderly population. 

Macrophages 
Macrophages are versatile immunocytes that 

perform critical roles in innate immunity, inflam-
mation and tissue homeostasis [55, 56]. Macrophages 
can be classified as either tissue-resident or monocyte- 
derived populations. Tissue-resident macrophages, 
such as KCs, are differentiated from erythro-myeloid 
progenitors (EMPs) in the yolk sac and fetal liver, 
while monocyte-derived macrophages are differen-
tiated from bone marrow [57]. During inflammation 
or tissue injury, depending on the tissue type and 
stimuli, both resident and monocyte-derived 
macrophages engage in migration, expansion, and 
signaling. During extravasation into inflammatory 
sites under chemokine guidance [58], monocytes 
differentiate into macrophages to perform immune 
functions, largely based on various signaling 

molecules presented in the local microenvironment 
[59]. Depending on the stimulus, macrophages can be 
classified as the pro-inflammatory M1 phenotype, 
which is polarized by either lipopolysaccharide (LPS) 
alone or in combination with T helper 1 (Th1) cell 
cytokines, or the anti-inflammatory M2 phenotype, 
which is polarized by T helper 2 (Th2) cell cytokines 
such as interleukin-4 (IL-4) [60, 61]. However, the 
scenario in vivo is often more complex, and they are 
generally accepted as transient, reversible, and 
occurring along a spectrum [62].  

The number of monocytes in the bone marrow 
and peripheral circulation rises with age, creating 
chronic inflammation by secreting more cytokines 
such as tumor necrosis factor (TNF) and IL-6 [63]. 
Macrophages are found to infiltrate more in liver and 
white adipose tissue with age [64] but less in bone and 
skeletal muscle [65, 66]. Aged macrophages have a 
significantly altered transcriptional profile and often 
exhibit a stronger pro-inflammatory phenotype (M1) 
than younger macrophages [64, 65]. Therefore, the 
M1/M2 ratio could reflect the age-related functional 
status of macrophages. 

 

 
Figure 2. Effect of myeloid cells on aging-related organ injuries and diseases. Hematopoietic stem cells in the aged body exhibit reduced output of lymphoid and erythroid 
lineages but relatively more output of myeloid lineage cells than those in the young body. With age, macrophages with reduced phagocytic activity and increased secretion of 
TNF/IL-6 result in polarization to the pro-inflammatory M1 phenotype as well as chronic inflammation in the liver and central nervous system, and the anti-inflammatory M2 
phenotype in muscles. Aging neutrophils may induce paracrine telomere dysfunction and senescence of liver cells, and loss of neutrophil-directed motility at epithelial junctions 
may lead to re-entry of neutrophils into the circulation and cause distant lung tissue injury. The degranulation capacity of eosinophils is significantly reduced in elderly individuals, 
which may trigger airway inflammation. Aging DCs are significantly less efficient in cross-presenting antigens and activating CD8+ T cells, which may lead to a decrease in adaptive 
immune responses in aged hosts. DCs: dendritic cells; IL-6: interleukin-6; M1: M1 macrophages; M2: M2 macrophages; NETs: neutrophil extracellular traps; PGE2: prostaglandin 
E2; ROS: reactive oxygen species; TNF: tumor necrosis factor. 
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The phagocytic capacity of macrophages decrea-
ses with age, which reduces bacterial killing and 
inflammatory clearance. 1A/1B-light chain 3 
(LC3)-associated phagocytosis (LAP) is an important 
innate immune response of macrophages [67]. Bone 
marrow-derived macrophages (BMDMs) in aged mice 
not only lack LAP and bacterial killing but also 
produce higher levels of pro-inflammatory cytokines, 
resulting in susceptibility to pathogens [67]. Increased 
macrophage p38 mitogen-activated protein kinase 
(MAPK) activity in elderly individuals leads to a 
decrease in T-cell immunoglobulin mucin receptor-4 
(TIM-4) on macrophages, causing reduced effero-
cytosis of apoptotic vesicles [68]. Therefore, although 
the onset of inflammation is similar between young 
and elderly individuals, the ability to eliminate 
inflammation is greatly diminished in elderly indivi-
duals, resulting in persistent chronic inflammation. 

Recent studies have highlighted the critical role 
of metabolism in the programming of the immune 
response [69]. In aging macrophages and microglia, 
prostaglandin E2 (PGE2), a typical senescence- 
associated secretory phenotype (SASP) [70], signals 
through the EP2 receptor to promote glycogen 
synthesis and reduce glucose flux and mitochondrial 
respiration [71]. This energy-deficient state triggers an 
undesirable pro-inflammatory response. The NAD+ of 
macrophages is derived mainly from the kynurenine 
pathway metabolism of tryptophan. Although the 
immune response triggers upstream kynurenine 
pathway activation, aging inhibits NAD+ de novo 
synthesis in macrophages and suppresses mitochon-
drial NAD+-dependent signaling and respiration, 
which shift macrophages toward a pro-inflammatory 
phenotype and impair phagocytosis and resolution of 
inflammation [72].  

There is great heterogeneity of macrophages 
from different organs during aging [73-75]. Single-cell 
RNA sequencing (scRNA-seq) analysis revealed a 
significant increase in the proportion of interstitial 
lung macrophages but a decrease in the proportion of 
alveolar macrophages. There was an increase in the 
proportion of hepatic macrophages expressing 
chemokine (C-X3-C motif) receptor-1 (CX3CR-1), but 
the number of peritoneal macrophages expressing 
intercellular adhesion molecule 2 (ICAM2) was 
significantly reduced [74]. In addition, scRNA-seq 
analysis of aged mice showed enhanced inflammatory 
function of KCs, which may exacerbate inflammatory 
injury in the liver [75]. Recent research revealed that 
the number and transcriptional characteristics of 
alveolar macrophages that change with age are not 
cell autonomous, but rather are formed by the 
alveolar milieu in which they live, irrespective of 
signaling molecules or cells in the circulation [76]. 

This finding emphasized that the local microen-
vironment of tissues may play a dominant role in 
macrophage aging. 

Although aging is irreversible, the inflammatory 
state of an aging organism can be improved to some 
extent by reducing food intake and avoiding 
malnutrition [77]. Recent studies revealed that caloric 
restriction (CR) [64] and fibroblast growth factor-21 
[78] could regulate macrophage polarization from the 
M1 to M2 phenotype in several organs of an aged 
mouse model, thereby suppressing the persistent 
inflammation associated with aging. Therefore, 
strategies targeting macrophages may extend human 
lifespan and improve susceptibility to aging-related 
diseases. 

Neutrophils 
Neutrophils, the most prevalent leukocytes in 

the body, serve as the first line of defense against 
pathogens and respond to a variety of inflammatory 
stimuli [79]. Neutrophils originate from CMPs in the 
bone marrow and extramedullary tissues such as 
spleen [79]. After differentiation into granulocyte 
macrophage progenitor cells (GMPs) [80], neutrophil- 
committed differentiation starts with neutrophilic 
promyelocytes and myelocytes, which both have the 
propensity to divide and are part of the so-called 
“mitotic neutrophil pool”. The presence of mature 
neutrophils in the bone marrow represents the end of 
the “postmitotic pool”, where neutrophils undergo 
terminal differentiation before being liberated into the 
peripheral blood. Then, mature neutrophils in the 
“mature neutrophil pool” enter a state of exchange 
between the bone marrow, blood, and other tissues 
[81]. When stimulated by pathogens, neutrophils in 
blood can rapidly migrate to the site of infection 
through cytokine-mediated chemotaxis [82], β2 
integrin-mediated vascular endothelial adhesion, 
ICAM-1- and ICAM-2-mediated transendothelial 
migration [83], and defend against invading 
pathogens [84] through the release of cytotoxic 
proteins, peptides and enzymes in the phagolysosome 
[85], ROS [86] and neutrophil extracellular traps 
(NETs) formation (NETosis) [87]. Eventually, 
neutrophils that have engulfed bacteria accumulate in 
the liver and are taken up by KCs, which reduces the 
generation of inflammatory cytokines by macro-
phages and promotes inflammation resolution once 
infections have been removed [88]. However, if 
pathogens are not cleared promptly, neutrophils may 
induce or aggravate many inflammatory diseases, 
including both acute and chronic diseases pertaining 
to the liver, lung and other organs [89, 90].  

During the aging process, neutrophil infiltration 
is increased in a variety of organs [64], but neutrophil 
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chemotaxis [91], phagocytosis and bacterial killing 
activity are significantly reduced [92]. This decrease in 
chemotactic directionality causes neutrophil elastase- 
mediated tissue degradation and neutrophil- 
mediated local inflammation, leading to additional 
tissue injury [93, 94]. Neutrophils produce a burst of 
ROS that can directly kill pathogens. Compared to 
neutrophils in younger individuals, acute ROS 
generation is substantially lower in older individuals 
[95], whereas spontaneous ROS is significantly higher 
[96, 97], which may indirectly lead to persistent 
inflammation and a reduced immune response to 
pathogens. Aging can also cause excessive neutrophil 
activation, which is involved in liver injury and 
mortality associated with viral infection by inducing 
IL-17 production from natural killer T (NKT) cells 
[98]. In addition, NETosis is the ability of neutrophils 
to expel genomic DNA to capture pathogens. With 
age, NETosis decreases and leads to delayed 
pathogen clearance and increased susceptibility to 
infection [99].  

The aging inflammatory microenvironment 
significantly reprograms neutrophils and in turn 
affects multiple organs throughout the body. Aging 
neutrophils cannot efficiently clear inflammation but 
instead induce aggravated telomere damage and 
cellular senescence in organ parenchymal cells 
through the release of matrix metalloproteinases 
(MMPs) and ROS, resulting in chronic tissue and 
organ damage [100]. Enhanced reverse trans- 
epithelial migration of neutrophils can be observed in 
aged mice. Due to the accumulation of mast cells 
expressing C-X-C chemokine ligand-1 (CXCL-1), 
neutrophil C-X-C chemokine receptor-2 (CXCR-2) 
was desensitized and lost neutrophil-directed motility 
at epithelial junctions, resulting in neutrophil re-entry 
into the circulation and causing distant lung tissue 
damage [101].  

In summary, aging-related neutrophil hypofunc-
tion delays pathogen clearance and injury repair, 
increases local inflammation, and exacerbates 
aging-related inflammatory diseases [102]. Further 
exploration of the interactions between neutrophils 
and multiple inflammatory microenvironments may 
help explore the underlying mechanism of 
aging-related multiorgan dysfunction syndrome. 

Other myeloid cells 
In contrast to macrophages and neutrophils, the 

functional alterations and mechanisms of aging in 
other myeloid cells still lack in-depth studies. For 
example, aging DCs are significantly less efficient in 
cross-presenting antigens and activating CD8+ T cells 
[103], leading to a decrease in adaptive immune 
responses in aged hosts [104]. However, it is still 

controversial whether different DC subtypes exhibit 
altered antigen-presenting ability [105]. Studies in 
human patients have found that eosinophil 
degranulation capacity is significantly reduced in 
elderly patients, which may explain the differences in 
disease manifestations and drug sensitivity of airway 
inflammation in older and younger patients [106], but 
its role in diverse aging-related inflammatory diseases 
remains poorly understood. Activation of NF-κB, a 
key transcription factor in the cellular response to 
injury and stress, partially causes a significant 
increase in the proportion of MDSCs in the bone 
marrow and spleen of aged animals, thereby 
suppressing the immune response and leading to an 
impaired response to stress [107]. Currently, the role 
of different subpopulations of myeloid cells in 
aging-related diseases remains unclear due to low cell 
abundance, and future omics tools such as single-cell 
sequencing may better explore the potential roles and 
mechanisms of myeloid cell subpopulations in aging. 

Interaction among myeloid cells and 
nonimmune systems 

As one of the main features of cellular 
senescence, the production and secretion of SASPs not 
only triggers local inflammation but also induces 
infiltration of immune cells such as macrophages, 
neutrophils, NK cells and T cells [100, 108, 109]. The 
surveillance and clearance of senescent cells by 
immune cells is crucial for preserving tissue 
homeostasis and preventing hazardous inflammation 
[108, 110]. Senescent cells accumulate as a result of 
age-related immune system degradation, which may 
cause age-related functional decline and diseases 
[111]. Elimination of senescent cells by gene editing 
prevents or delays tissue dysfunction and extends 
healthy lifespan, suggesting that immunosurveillance 
and clearance of senescent cells can help ameliorate 
aging-related diseases [112, 113].  

The hypothesis that an aging immune system 
can drive solid organ aging is directly evidenced by 
the study from Yousefzadeh et al [47]. The 
investigators established a mouse model of premature 
immune failure from deletion of Ercc1 in 
hematopoietic stem cells and observed that along with 
aging of the immune system, nonlymphoid organs 
also showed increased aging and injury, whereas 
transplantation of immune cells from young mice 
blocked organ aging [47]. In liver studies, infiltration 
of macrophages and NK cells in aged liver can inhibit 
hepatocyte DNA synthesis and liver regeneration by 
producing excess interferon-γ (IFN-γ), while 
depletion of such cells can significantly improve liver 
regeneration [114]. In a mouse model of acute liver 
injury (ALI), the telomeres of hepatocytes are highly 
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susceptible to oxidative damage caused by neutrophil 
infiltration, and depletion of neutrophils reduces 
telomere dysfunction and cellular senescence in 
hepatocytes [100]. Therefore, the aging immune 
system can drive systemic aging and may serve as a 
therapeutic target to extend healthy lifespan. 

Senescent nonimmune cells can also regulate the 
functional state of immune cells. scRNA-seq analysis 
revealed that the age-related changes in the number 
and transcriptional characteristics of alveolar 
macrophages are regulated mainly by the alveolar 
microenvironment but not by circulating growth 
factors and cells [76]. During aging, senescent cells 
gradually accumulated in the liver and visceral white 
adipose tissue may induce macrophage proliferation 
with SASPs secretion [115]. The interaction between 
immune and nonimmune cells in the aging process is 
still not sufficiently studied. A better understanding 
of the interaction during aging will help to develop 
new therapeutic interventions to eliminate harmful 
senescent cells and maintain the youthfulness of the 
organism. 

Myeloid cells and aging-related liver 
diseases 

The immune system plays an integral role in 
developing liver diseases [116]. There is growing 
evidence supporting that aging immune cells, 

especially myeloid cells, directly or indirectly 
contribute to liver aging and increased susceptibility 
to aging-related diseases, including NAFLD/ 
nonalcoholic steatohepatitis (NASH), ALD, liver 
fibrosis/cirrhosis, hepatocellular carcinoma (HCC) 
and comorbidities involving the liver (Figure 3). 

Nonalcoholic fatty liver disease 
NAFLD is the leading cause of chronic liver 

disease worldwide [117]. Compared to young people, 
elderly people are more likely to progress to NASH 
[118]. The mechanisms underlying the development 
of aging-related steatosis are not fully understood and 
may be attributed to the accumulation of toxic free 
fatty acids caused by mitochondrial dysfunction [119], 
reduced autophagy [35, 120] and endoplasmic 
reticulum stress [121] in aged hepatocytes. 

During the disease process of NAFLD, macro-
phages accumulate in the liver through C-C motif 
ligand-2 (CCL-2)/CCR-2 chemotaxis [122]. M1 
macrophages promote the development of aging- 
related NAFLD/NASH, while M2 KCs promote the 
apoptosis of M1 KCs and reduce hepatocyte apoptosis 
and steatosis, thereby alleviating the disease 
progression of NAFLD [123]. Fontana et al. [124] used 
an HFD to trigger NAFLD in mice of different ages. 
Liver injury occurred mostly in older mice with more 
pronounced M1 macrophages in the liver and adipose 

 

 
Figure 3. The roles of myeloid cells in aging-related liver disease. An increase in M1 macrophages and a decrease in M2 macrophages were observed in NAFLD and ALD. 
Reduced SIRT-1 expression in aged neutrophils suppressed miR-223 expression, causing more severe inflammatory injury in ALD. Increased macrophage infiltration and 
fibrogenesis can be observed in the early stage of chronic injury, while decreased macrophage infiltration leads to decreased fibrinolysis and promotes liver fibrosis through 
activation of HSCs in the late stage. During aging, macrophages express increased complement C1q which promotes the proliferation and dedifferentiation of HPCs and 
tumorigenesis through the β-catenin pathway. ALD: alcoholic liver disease; HCC: hepatocellular carcinoma; M1: M1 macrophages; M2: M2 macrophages; miR-223: 
microRNA-223; NAFLD: nonalcoholic fatty liver disease; NASH: nonalcoholic steatohepatitis; SIRT-1: sirtuin-1. 
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tissue than in younger mice. Similarly, a significant 
positive correlation between CD163, a marker of M1 
macrophages, and the severity of NAFLD was 
observed in human patients [125]. Therefore, the 
infiltration and polarization of macrophages influ-
ences the course of aging-related NAFLD/NASH, and 
therapies targeting macrophages may improve the 
incidence and severity of this disease in the elderly 
population. 

Alcoholic liver disease 
ALD is one of the leading causes of death from 

liver diseases, and its pathological changes include a 
series of processes, including steatosis, steatohepatitis, 
cirrhosis, and HCC [126, 127]. In recent years, the 
incidence of ALD has tended to be stable, but the 
incidence of alcohol-related cirrhosis and HCC and 
the need for liver transplantation are continuing to 
rise [128]. Elderly people are prone to excessive 
alcohol consumption, and the risk of alcoholism is 
further increased due to altered metabolism or 
tobacco and illicit drug use [129]. Old individuals 
tend to have a chronic low-grade inflammatory state, 
as evidenced by elevated circulating levels of 
pro-inflammatory cytokines and local infiltration of 
inflammatory cells, which further exacerbates ALD 
[130, 131].  

KCs are the major defense of hepatic innate 
immunity. Increased intestinal permeability and high 
levels of endotoxin in portal blood were found to lead 
to the activation of KCs [132]. KCs play key roles in 
early alcohol-induced liver injury by recognizing 
endotoxins in the portal circulation and inducing an 
innate immune response through polarization to the 
pro-inflammatory M1 phenotype [132]. Wan et al. 
[133] found that promoting the polarization of KCs to 
the anti-inflammatory M2 type prevented alcohol- 
induced hepatocyte steatosis and apoptosis. A high 
M2/M1 ratio may be a protective feature of ALD 
[123].  

Emerging evidence supports liver infiltration of 
neutrophils as a key mechanism in promoting ALD, 
possibly by producing ROS and inflammatory 
mediators [134, 135]. SIRT-1 is a recognized antiaging 
protein, and knockdown of SIRT-1 may exacerbate 
ALD [136]. Our recent study found that neutrophilic 
SIRT-1 expression was significantly downregulated in 
aged and ethanol-fed mice, and myeloid cell-specific 
sirt-1 knockout mice had more severe ALD [89]. In 
addition, downregulation of SIRT-1 decreased the 
expression of anti-inflammatory/antifibrotic 
microRNA-223 in neutrophils [137, 138], leading to an 
increase in the production of ROS and inflammatory 
mediators, which ultimately resulted in acute 
alcoholic liver injury in alcohol-fed mice and patients 

with chronic alcohol consumption.  
Recent study from Ma and Gao et al. [139] have 

expanded existing knowledge on the roles of hepatic 
neutrophils in mediating liver injury. Based on the 
extent of inflammatory cell infiltration, severe 
alcoholic hepatitis was divided into high intrahepatic 
neutrophils with low CD8+ T cells (NeuhiCD8lo) and 
NeuloCD8hi subtypes, and the effects of the neutrophil 
cytosolic factor-1 (NCF-1)/SIRT-1/AMPK axis on 
lipid metabolism and the NCF-1/p-38 MAPK/ 
miR-223 pathway on alcohol-induced inflammation 
and fibrosis were further revealed [139]. Consistent 
with the notion that neutrophils in young adults have 
a greater capacity to release ROS [95], NeuhiCD8lo 
patients were relatively younger and had more severe 
liver injury compared with those with NeuloCD8hi. 
However, considering the inclusion of patients who 
are mostly middle-aged in the two groups, it remains 
unknown whether hepatic neutrophils exert 
pro-inflammatory effects through similar pathways in 
the truly aged population. But one thing is clear that 
treatments targeting neutrophil must be a promising 
direction for future translational research, which is 
expected to improve the prevention and treatment of 
ALD as well as its complications.  

Liver fibrosis and cirrhosis 
Liver fibrosis, which can progress to cirrhosis, 

HCC, and eventually liver failure, is one of the main 
outcomes of various chronic liver diseases. Liver 
fibrosis is a dynamic and reversible process of wound 
repair, including progression and regression stages 
[140]. Various cytokines and chemokines secreted by 
macrophages, including TGF-β, TNF-α, IL-1β and 
CCL-2, activate HSCs and enhance myofibroblast 
proliferation through NF-κB-dependent signaling 
pathways, eventually resulting in liver fibrosis [141].  

The incidence of liver fibrosis increases with age 
and is typically characterized by age-related changes 
in macrophage infiltration. In the early stages of 
chronic injury, macrophages infiltrate more in the 
aged liver than in the young liver, which promotes 
inflammation and fiber formation. In the later stages, 
macrophage infiltration of the aged liver is reduced 
and insufficient to adequately lyse fibers, thereby 
exacerbating liver fibrosis [142]. The direction of 
macrophage polarization may also influence the liver 
fibrosis process. Mohammed et al. [143] found that 
markers of M1 macrophages, pro-inflammatory 
cytokines (TNF-α, IL-6 and IL-1β), and markers of 
fibrosis were significantly upregulated in aged mice 
with necroptosis-induced liver injury. To inhibit 
macrophage recruitment, a recent clinical trial using 
CCR-2/CCR-5 antagonists found that, as compared to 
placebo, twice as many participants achieved fibrosis 
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improvement and no exacerbation of steatohepatitis 
[144]. Subgroup analysis showed that the therapy was 
equally effective in patients under and over 56 years 
of age, indicating its potential therapeutic value in 
aging-related liver fibrosis [144].  

Hepatocellular carcinoma 
HCC occurs mostly on the basis of viral infection 

or noninfectious chronic hepatitis [145]. These chronic 
inflammatory conditions create a pro-tumorigenic 
microenvironment that is an important factor in 
inducing the transformation of hepatocytes into 
cancer cells [146]. Advanced age is a high-risk factor 
for HCC due to the constant low-grade inflammation 
that comes with aging [44]. Research from Ho et al. 
[147] revealed that aged mice with knockout of 
hepatocyte β-catenin had an inflammatory 
microenvironment contribute to the development of 
HCC. C1q, a complement released from macrophages 
in the inflammatory microenvironment, is thought to 
activate the nonclassical pathway of β-catenin in 
periportal hepatic progenitor cells (HPCs), promoting 
the proliferation and dedifferentiation of HPCs and 
thus inducing hepatocarcinogenesis. C1q inhibitors 
blocked the β-catenin pathway in HPCs and HCC but 
not the classical pathway in normal hepatocytes. The 
above mechanism was also verified in liver specimens 
from patients with chronic hepatitis. Therefore, C1q in 
macrophages may be a new target for blocking 
carcinogenesis in elderly patients. 

Other liver diseases 
In addition to the abovementioned diseases, 

aging may also affect liver diseases pertaining to the 
dysregulation of proliferation, healing, and tolerance. 
During severe acute injury, the liver regenerative 
capacity may be impaired, leading to ALI and even 
acute liver failure (ALF). Compared with young 
people, ALI in elderly individuals is more likely to 
develop into ALF with a worse prognosis. Our recent 
study, using the thioacetamide (TAA)-induced ALI 
mouse model (TAA-ALI), demonstrated that aging 
can polarize macrophages to the M1 phenotype 
through the secretion of inflammatory factors and 
SASPs and thus exacerbate liver injury [35]. 
Macrophages are also involved in postoperative 
ischemia and reperfusion (IR) liver injury. In aged IR 
mice, NLRP3 activation can be observed in the liver 
and macrophages, while knockdown of the 
STING-NLRP3 axis in macrophages eliminates the 
deleterious role of aging in exacerbating intrahepatic 
inflammation and IR injury [148]. Other aging-related 
liver comorbidities, such as multiorgan dysfunction, 
may also be regulated by KCs [149], and more studies 

are needed to reveal the impact of the immune system 
on aging-related liver diseases. 

Promising therapeutics targeting aging 
As the population ages, the rise of aging-related 

liver diseases is not just a medical issue but also a 
significant social issue without new preventive and 
curative therapeutics specifically for not only young 
and middle-aged populations but also elderly people. 
In this scenario, several strategies focused on the 
aging immune system, a novel therapeutic target, to 
treat aging-related liver diseases have shown 
promising prospects, and some of them may have 
potential in clinical application (Table 1). 

 

Table 1. Clinical trials with anti-aging strategies for liver diseases. 

Strategy Study ID  Indication Regimen Status 
Senolytic Therapy NCT00382668 Liver diseases Dasatinib Completed 

NCT00459108 HCC Dasatinib Terminated 
NCT02143401 HCC Navitoclax  Active, not 

recruiting 
Caloric Restriction NCT04230655 NAFLD Low energy 

diet 
Recruiting 

NCT05041673 Fatty liver Metformin Active, not 
recruiting 

NCT04972396 NASH  Metformin Recruiting 
NCT04033107 HCC Metformin Recruiting 

Microbiological 
Therapy 

NCT03796598 Liver cirrhosis FMT Recruiting 
NCT04594954 NAFLD FMT Recruiting 
NCT04758806 Alcoholic 

hepatitis 
FMT Recruiting 

NCT05007470 ALD VSL #3 
Capsule 

Recruiting 

Aberrations: ALD: alcoholic liver disease; FMT: fecal microbiota transplantation; 
HCC: hepatocellular carcinoma; NAFLD: Nonalcoholic fatty liver disease: NASH: 
nonalcoholic steatohepatitis. 

 

Senolytic therapy 
As mentioned above, aging-related immune 

senescence, which leads to a reduction in the phago-
cytosis capacity of macrophages and neutrophils, may 
result in the accumulation of senescent cells and 
increased susceptibility to diseases. Senolytic therapy 
was designed to compensate for immune clearance 
and maintain organ rejuvenation. Using a 
hypothesis-driven strategy that targeted senescent cell 
antiapoptotic pathways which were more highly 
expressed by senescent than nonsenescent cells, the 
first generation senolytic medicines dasatinib, 
quercetin, fisetin, and navitoclax were discovered 
[150]. In preclinical models, senolytics prevent or 
alleviate cardiovascular [151], liver [119], lung [152], 
kidney disorders [153] as well as complications of 
organ transplantation [154], age-dependent fracture 
healing [155] and disc degeneration [156].  

Preclinical studies of senolytic therapies for liver 
diseases have shown promising results. The classic 
senolytic cocktail of dasatinib plus quercetin (D + Q) 
reduced overall hepatic steatosis, thus alleviating 
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aging-related NAFLD [119] and CCl4-induced liver 
fibrosis [157] in mice. Fisetin has also been shown to 
improve APAP-induced hepatotoxicity by promoting 
autophagy and inhibiting inflammasome activation 
[158]. In addition to chemical drugs, chimeric antigen 
receptor (CAR) T cells that target senescent cells have 
also shown promising results in ameliorating liver 
fibrosis induced chemically or by diet [159]. However, 
senolytic therapy is not a panacea. Research from 
Cheng et al. [160] showed that ABT263 (navitoclax) 
may impair liver regeneration following partial 
hepatectomy through elimination of senescent HSCs, 
which induces multiple signaling pathways to 
stimulate liver regeneration by secretion of IL-6 and 
CXCR-2 ligands. Moreover, D + Q was ineffective 
against age-associated NAFLD-induced HCC [161]. 
Therefore, until the pharmacological mechanism, 
efficacy, and safety of senolytics are well clarified, 
there is still a long way to go before senolytic 
therapies can be clinically applied in aging-related 
liver disease. 

Caloric restriction  
CR is typically a daily decreased nutrient uptake 

intervention without malnutrition [162]. CR extends 
the lifespan of various model organisms ranging from 
yeast, worms and flies to mice and primates [163] by 
regulating hallmarks of aging, including deregulated 
nutrient sensing, cellular senescence, stem cell 
exhaustion and altered intercellular communication 
[162]. Recently, scRNA-seq analysis revealed that 
aging may be delayed by CR by reversing the 
aging-disturbed immune ecosystem, which has 
excessive pro-inflammatory ligand-receptor interplay 
[64] and extends health lifespan [164]. In humans, a 
two-year study of CR identified a reduction in the rate 
of living and systemic oxidative stress and improved 
biomarkers of aging [165]. CR also leads to a marked 
improvement in glucose metabolism [166] and reverse 
fatty liver caused by saturated fat overeating [167].  

Given that a healthy lifestyle requires sustained 
efforts and discipline, it is easier said than done for 
routine application of CR. Therefore, several 
pharmaceutical compounds or dietary supplements 
that mimic the effects of CR are being explored. 
Metformin, previously used as an antidiabetic drug, is 
viewed as a CR mimetic via activation of AMPK [168]. 
Studies have shown evidence of metformin 
attenuating aging hallmarks [169] and ameliorating 
age-related changes in LSECs via AMPK and 
endothelial nitric oxide pathways, which may 
improve liver insulin sensitivity, especially in old age 
[170]. In addition to metformin, resveratrol, another 
classic CR mimetic, has shown promising results in 
preclinical studies pertaining to ALI [171] and 

NAFLD [172]. However, current evidence, including 
results from clinical trials, does not support supple-
mentation with resveratrol for the management of 
NAFLD [173-175]. We believe that healthy lifestyle 
and dietary habits may contribute more to delaying 
aging and improving susceptibility to aging-related 
diseases than the use of synthetic drugs [176]. 
Individualized strategies that combine genetic 
alteration, disease pathology and lifestyles will bring 
the greatest benefit to patients. 

Microbiological therapy 
Gut microbes occupy the interface between the 

external environment and the host [177], which 
significantly influences human aging and diseases 
[178]. Dysbiosis is characterized by an imbalance in 
the microbiota including local distribution, functional 
composition and metabolic activities [179]. 
Aging-related dysbiosis of the gut microbiome was 
proven to contribute to a global inflammatory state 
and diseases in the elderly [180] through chronic 
upregulation of pro-inflammatory mediators (TNF-α 
and IL-6), thus serving as a catalyst for fueling 
inflammaging [44]. These mediators activate many 
signaling pathways influencing immune function, 
leading to a gradual deterioration of the immune 
system, known as immunosenescence [181]. 
Accumulating evidence suggests that both 
inflammaging and immunosenescence are responsible 
for most aging-related diseases, including but not 
limited to disorders pertaining to the cardiovascular 
[182], neurological [183], respiratory [184] and 
digestive systems [143].  

Changes in the composition and function of the 
gut microbiota have profound effects on the 
development and management of liver disorders, 
including steatosis [185], cirrhosis [186], liver failure 
[187] and even HCC [188]. Recently, new promising 
probiotics, such as Saccharomyces boulardii, have 
been discovered and have potential therapeutic effects 
in ALI, ALF and liver fibrosis [189]. Living materials 
of a hierarchy-assembled dual probiotic system 
containing bulgaricus and Lactobacillus rhamnosus 
GG, fabricated by Chen et al. [190], effectively 
prevented cholestatic drug-induced liver injury 
through inhibition of hepatic bile acid synthesis and 
facilitation of bile acid excretion. Fecal microbiota 
transplantation (FMT), which involves the transfer of 
donor stool into recipients, is increasingly being 
explored as a potential treatment in gastric intestinal 
and liver diseases [191]. Clinical trials supported the 
safety of FMT and have shown improvement of 
survival and clinical severity in patients with severe 
alcoholic hepatitis [192, 193]. However, FMT can be 
lethal for elderly people because of serious compli-



Int. J. Biol. Sci. 2023, Vol. 19 
 

 
https://www.ijbs.com 

1574 

cations, such as infections from multidrug-resistant 
organisms [194]. Therefore, FMT should be used with 
appropriate monitoring and careful donor selection in 
treating aging-related liver diseases in elderly 
population. With a further understanding of the 
crosstalk among the microbiome, aging and disease, 
individualized treatment focusing on different disease 
conditions and populations will better balance the 
efficacy and safety when being administered in 
aging-related liver diseases. 

Conclusion and outlooks 
Aging is the process of gradual decline of 

organisms over time. Liver, the largest digestive and 
immune organ in the body, also deteriorates with age, 
increasing the risk of chronic liver diseases. Immune 
surveillance and clearance maintain the homeostasis 
and normal functioning of the liver, whereas the 
aging immune microenvironment inappropriately 
releases excessive inflammatory factors, causing and 
exacerbating various aging-related liver diseases. 

There are still many unknowns in the field of 
liver aging, such as whether immune cells that form 
different liver structures affect the course of 
aging-related diseases differently, the interaction 
between immune cells and nonimmune mesenchymal 
cells and the functional or metabolic changes they 
cause, and the unique roles of low-abundance 
myeloid cells such as DCs and eosinophils in liver 
aging. In addition, the lack of clinical exploration has 
limited the translation of results from animal research. 
Distinguishing physiological aging from age-related 
conditions can be challenging, and more studies are 
needed to assess the effects of aging on the liver prior 
to the onset of age-related conditions to separate the 
mechanisms of aging from the manifestations of the 
pathological conditions themselves. In the future, as 
new technologies become more available, multiomics 
analysis at the single-cell level will further reveal the 
roles immune cells play in regulating aging at the 
organ and even systemic level, providing an updated 
understanding and individualized treatment 
strategies for aging-related diseases. 
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