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Abstract 

N6-methyladenosine (m6A) methylation, the most prevalent and abundant RNA modification in 
eukaryotes, has recently become a hot research topic. Several studies have indicated that m6A 
modification is dysregulated during the progression of multiple diseases, especially in cancer 
development. Programmed cell death (PCD) is an active and orderly method of cell death in the 
development of organisms, including apoptosis, autophagy, pyroptosis, ferroptosis, and necroptosis. As 
the study of PCD has become increasingly profound, accumulating evidence has revealed the mutual 
regulation of m6A modification and PCD, and their interaction can further influence the sensitivity of 
cancer treatment. In this review, we summarize the recent advances in m6A modification and PCD in 
terms of their interplay and potential mechanisms, as well as cancer therapeutic resistance. Our study 
provides promising insights and future directions for the examination and treatment of cancers. 
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Introduction 
Studies have revealed that more than 160 

chemical modifications occur in RNA molecules, and 
m6A modification is the sixth N atom of adenine to be 
methylated (1). It is the most common post-transcrip-
tional modification and exerts a variety of essential 
biological functions on mRNA and ncRNA (2, 3). 
M6A modification sites are often located in stop 
codons and the 3’-UTR region with a typical 
consensus sequence RRACH (R = G or A and H = A, 
C, or U) (4), and are regulated by writers, erasers, and 
readers. Studies have indicated that m6A 
modification is associated with many physiological 
processes, including the alternative splicing of pre- 
mRNAs, mRNA degradation, mRNA stabilization, 
miRNA processing, and cap-independent translation 
(5). Additionally, m6A plays an indispensable role in 
cancer and other diseases (6,7). 

Programmed cell death (PCD) is an active and 
orderly process of cell death, including apoptosis, 

autophagy, ferroptosis, pyroptosis, and necroptosis 
(8). To balance the homeostasis of the internal 
environment, PCD can clear and maintain abnormal 
cells. In addition, aberrant PCD, which has been 
extensively manipulated to affect the development of 
cancer and other diverse diseases, has received 
increasing attention (9). Since the regulation between 
m6A and apoptosis was first elaborated, emerging 
studies have focused on abnormal m6A levels as key 
regulators of PCD. In this review, we introduce the 
complex role of m6A and the latest progress 
regarding the connection between m6A modifications 
and PCD in diverse diseases. Additionally, the future 
clinical applications of m6A-modified PCD in 
chemotherapies and precision medicine are also 
discussed. 

M6A regulators 
M6A modification is a dynamic and reversible 
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progression that is modulated by methyltransferases 
and demethylases (10)(Fig.1). Regarding the M6A 
writers, such as methyltransferase-like protein 3/14 
(METTL3/14), Wilms tumor-associated protein 
(WTAP), and vir-like m6A methyltransferase associ-
ated (VIRMA) (11) are the key proteins responsible for 
catalyzing m6A methylation on RNA (12). METTL3 
and METTL14 are the catalytic cores of MTCs (13). 
Methyltransferase-like protein 3 (METTL3), an 
S-adenosylmethionine (SAM)-binding protein, cataly-
zes the transfer of methyl groups in SAM (14). 
Methyltransferase-like protein 14 (METTL14), another 
active component of MTC, is a support enzyme 
devoid of catalytic activity and can form a stable 
complex with METTL3 to stabilize the structure of 
MTC (15). Other subunits, such as Wilms tumor1- 
associated protein (WTAP) (16) and RNA binding 
motif protein 15 (RBM15) (17), can attract MTCs to 
specific regions of RNA to induce methylation. 
METTL3, METTL5 (18), and METTL16 (19), the newly 
discovered independent RNA methylases, as catalytic 
subunits, can also catalyze m6A modification via 
methyltransferase domains. Zinc finger CCCH 
domain-containing protein 13 (ZC3H13) enhances the 
MTC catalytic function by interacting with WTAP 
(20). Conversely, m6A erasers, such as fat mass and 
obesity-associated protein (FTO) and ALKB homolog 
5 (ALKHB5), perform the function of demethylating 
m6A modified bases (21,22). ALKBH3, a newly 
discovered demethylase, can also participate in this 
process via a similar mechanism (23). Moreover, m6A 
readers, m6A binding proteins recognize m6A 
modifications, including YTH domain-containing 

family protein (YTHDF1-3 and YTHDC1-2) (24, 25, 26, 
27), heterogeneous nuclear ribonucleoprotein 
(HNRNP) protein families (28), eukaryotic translation 
initiation factor 3 (eIF3) (29), and insulin-like growth 
factor-2 mRNA-binding proteins 1/2/3 (IGF2BP1 
/2/3) (30, 31, 32), and identify and bind to m6A marks 
directly to regulate downstream mRNA translation, 
decay, and stability. 

M6A modifications in RNA metabolism 
As noted above, m6A methylation elicits a wide 

range of efforts on mRNA processing, splicing, 
translation, and decay by m6A writer-complex 
component and m6A reader, as well as erasers that 
affect RNA metabolism to determine RNA fate and 
function (5). The importance of m6A as a post-trans-
criptional modification has been recognized, but the 
evolution, function and regulation of individual m6A 
sites remain largely unknown. M6A modification sites 
are broadly found in stop codons and the 3’-UTR 
regions with the consensus sequence RRACH (in 
which R represents A or G, and H represents A, C or 
U) (4). M6A methylation sites may appear with 
different functional consequences depending on their 
location. Concretely speaking, some research revealed 
that transcripts with m6A in the 5′UTR and/or CDS 
were related to energy metabolism, mitochondrial 
function and intracellular signals, while methylation 
of transcripts in the 3′UTR mostly code for proteins 
involved in pathways linked to more specific 
metabolic processes such as ‘acetyl-CoA or glycerol 
biosynthesis’ and ‘positive regulation of protein 
dephosphorylation’ (33). 

 
 

 
Figure 1. M6A regulators. M6A is deposited by writers, removed by erasers, and recognized by readers. Regulatory functions of m 6 A modification in RNA splicing, processing, 
translation and degradation. 
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RNA metabolism to be more specific. For m6A 
modification in RNA processing, METTL3 labeled 
pri-miRNAs for recognition and processing by 
DGCR8 and promotes the initiation of miRNA 
biogenesis (34). Depletion of HNRNPA2B1 reduced 
the processing of primary microRNA-106b to enhance 
NSCLC cell growth (35). For m6A modification in 
RNA splicing, m6A modification prevents the 
essential splicing factor U2AF35 from recognizing the 
3' splice site to inhibit RNA splicing (36). FTO 
regulates nuclear mRNA alternative splicing by 
binding with SRSF2 (37). YTHDC1 enhances an 
oncogenic RNA splicing of tumor suppressor RBM4 
(38). For m6A modification in RNA degradation, 
YTHDF2 changes the localization of bound mRNA 
from the translatable pool to mRNA decay sites to 
regulate mRNA degradation (39). In colorectal cancer, 
YTHDF2 can also upregulate the mRNA stability of 
lncRNA STEAP3-AS1 to affect the development of 
cancer (40). METTL3 delays SOCS2 mRNA 
degradation to regulate liver cancer progression (41). 
For m6A modification in RNA translation, m6A in 3 
'UTRs was found to improve translation efficiency by 
binding to YTHDF130(42), while m6A in 5' UTRs was 
reported to promote cap-independent translation 
under heat shock stress (43). M6A modifications can 
be found in mRNA and noncoding RNA (ncRNAs) to 
regulate gene expression in its 5′ or 3′ UTR. M6A 
modification not only drives translation on mRNA 
but also unexpected works on some ncRNAs (44, 45).  

The double sword of m6A in human 
cancers 

High-profile RNA epigenetic modification 
N6-methyladenosine (m6A), as a double-edged sword 
for cancer, can either promote or inhibit the 
occurrence and development of diverse diseases. 
However, the specific mechanism that determines the 
duality of m6A and the regulatory mechanism of m6A 
on core genes remain unclear. Here, we summarize 
the latest research progress on the intricate role of the 
same or similar function and different m6A-related 
enzymes in cancers. 

The intricate role of different m6A-related 
enzymes in cancers 

M6A methylation has been shown to play an 
important role in many cancer types, such as head and 
neck cancer (46), acute myeloid leukemia (AML) (47), 
glioblastoma (GBM) (48), nasopharyngeal carcinoma 
(NPC)(49), breast cancer (50), lung cancer (51), gastric 
cancer (52), pancreatic cancer (53), bladder cancer (54), 
hepatocellular cancer (HCC) (55), colorectal cancer 
(CRC)(56), endometrial cancer (57) etc (Fig.2). 

However, the role of m6A in different tumors is 
dynamic and contradictory. 

WTAP can promote the progression and 
metastasis of NPC by increasing the stability of 
lncRNA DIAPH1-AS1 (58). METTL3 plays oncogenic 
roles in esophageal squamous cell carcinoma (ESCC) 
by decreasing the expression of APC, a tumor 
suppressor gene (59). In non-small cell lung cancer 
(NSCLC), METTL3 induces drug resistance and 
metastasis through the m6A-MALAT1-YAP axis (60). 
Similarly, in another common type of lung 
adenocarcinoma (LUAD), METTL3 increases the 
stability of lncRNA LCAT3, leading to the binding of 
FUBP1, activating the oncogenic molecule c-MYC, 
and promoting tumor proliferation, invasion, and 
metastasis (61). In addition, METTL3 can promote 
tumor development in LUAD by stimulating ENO1 
translation mediated by YTHDF1 (62). Studies also 
revealed the critical part that m6A modification plays 
in drug resistance (63), (64). Recent studies have 
shown that m6A modification is important for 
immunoregulation. METTL3 depletion inhibits PD-L1 
expression in an m6A-IGF2BP3-dependent manner, 
which in turn enhances antitumor immunity in breast 
cancer (65). 

In GBM, the SPI1-induced downregulation of 
FTO promotes tumor progression by regulating 
pri-miR-10a processing in an m6A-dependent manner 
(66). In contrast, for NPM1-mutated AML, which 
accounts for approximately one-third of AML cases, 
FTO is aberrantly overexpressed and serves as a 
carcinogen by promoting the cell cycle and inhibiting 
apoptosis (67). Similarly, ALKBH5 promotes tumor 
growth and metastasis through the TRAF1-mediated 
activation of the NF-κB and MAPK signaling 
pathways in multiple myeloma (68).  

To better understand the role of m6A in various 
diseases, it is important to examine methylated 
reading proteins that also play an integral role in 
tumor progression. YTHDF2 positively correlates 
with the grade and low prognosis of gliomas. 
YTHDF2 can activate NF-κB by accelerating the 
degradation of UBXN1 mRNA, thereby promoting 
glioma growth, proliferation, and metastasis (69). In 
addition, YTHDF1 promotes tumor progression in 
CRC by promoting ARHGEF2 translation and RhoA 
signaling (70). In AML, the m6A reader IGF2BP3 is 
associated with low prognosis and can accelerate the 
occurrence and development of tumors by increasing 
the stability of RCC2 (71). 

In conclusion, m6A plays an important role in 
different tumors. However, the level of m6A in 
different tumors is bidirectional, both pro-cancer and 
anti-cancer, and the specific mechanism needs to be 
further explored. 
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Figure 2. The intricate role of m6A modification in different cancers.  

 

The contradictory role of m6A-related 
enzymes with the same or similar functions in 
cancers 

Methylation-related enzymes with opposite 
effects may have contradictory expression, even in the 
same tumor. In gastric cancer, ALKBH5 is expressed 
at a low level and is strongly associated with clinical 
tumor distal metastasis and lymph node metastasis, 

while the silencing of ALKBH5 promotes tumor 
invasion and metastasis (72). In a study of gastric 
cancer, METTL3 was surprisingly under-expressed in 
the opposite direction and the overexpression of 
METTL3 inhibited gastric cancer progression through 
the methylation modification of circORC5 (73). In 
pancreatic cancer, ALKBH5 plays a pro-oncogenic 
role and ALKBH5 overexpression can promote tumor 
progression by downregulating potassium two-pore 
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domain channel subfamily K member 15 and WISP2 
antisense RNA 1 (KCNK15-AS1), an oncogene, to 
promote tumor growth invasion and metastasis (74). 
Conversely, METTL3, a methyltransferase, plays a 
pro-oncogenic role in pancreatic cancer. METTL3 
accelerates the growth, invasion, and metastasis of 
pancreatic cancer by reducing SMS expression in an 
m6A-dependent manner (75). 

Similarly, even m6A-related enzymes, which 
have the same roles in the same tumor, exhibit 
paradoxical roles. METTL14 is under-expressed in 
CRC and is associated with poor prognosis in 
patients. METTL14 inhibits tumor cell proliferation by 
abolishing the m6A level of XIST and augmenting 
XIST expression mediated by YTHDF2 (76). In 
another CRC study, METTL3 shows higher 
expression in CRC tissues than in normal tissues, and 
the overexpression of METTL3 promotes tumor 
progression by regulating the m6A-CRB3-Hippo axis 
(77). METTL3 induces GLUT1 translation to promote 
glucose uptake and lactate production, leading to the 
activation of mTROC1 signaling, thereby promoting 
tumor progression (78). In summary, it has been 
suggested that m6A plays conflicting roles not only in 
different tumors, but also in the same tumor. The 

specific reasons for this may include the heterogeneity 
of cell and tissue samples as well as the amount of 
m6A that varies dynamically in tumors. The same 
m6A-related enzymes may have other unknown 
potential roles. Different m6A-related proteins that 
perform the same function may have different 
unknown roles apart from their role in methylation, 
which can lead to opposite outcomes. The type of 
molecule regulated by m6A (pro-cancer or 
anti-cancer) may differ. The recognition of different 
reading proteins of m6A and the type of disease to a 
greater or lesser extent are also variable. The specific 
mechanisms also need to be further investigated. 

The combination of m6A and PCD in 
cancers 

Here, we mainly discuss the connection between 
m6A and cell apoptosis, autophagy, pyroptosis, and 
ferroptosis, as well as necroptosis. M6A is controlled 
by regulatory factors (writers and erasers) and 
recognition factors (readers) to mediate downstream 
targets to regulate PCD (Fig. 3). It is certain that the 
connection of m6A and PCD pathways will provide 
new insights into the management of related diseases.  

 
 
 

 
Figure 3. Role of m6A modification in mediating different types of PCD. 
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Figure 4. Role of m6A modification in mediating apoptosis. 

 

M6A and apoptosis 
Programmed death refers to physiological death, 

which is a predetermined and tightly programmed 
cellular and molecular biological process in ontogeny. 
As one of the modes of programmed death, the 
apoptosis-related signaling pathway is classified into 
three types: classic mitochondria, endoplasmic 
reticulum, and exogenous death receptor pathways 
(79). Apoptosis-related molecular types include the 
Bcl-2 subfamily and the caspase family (80), (81). Since 
METTL3 depletion was reported to induce apoptosis 
and decrease AML development in 2017 (82), an 
increasing number of studies have revealed that 
apoptosis is regulated by m6A, which plays a crucial 
role in the occurrence and development of cancer by 
promoting or suppressing apoptosis (Fig.4).  

In Alzheimer's disease, low levels of METTL3 
lead to memory loss by promoting neuronal apoptosis 
with extensive synaptic loss, neuronal death, and 
multiple AD-related alterations, including oxidative 
stress and aberrant cell cycle events (83). The 
M6A-mediated upregulation of circMDK promotes 
cancer progression and apoptosis via the miR-346/ 
874-3p-ATG16L1 axis (84). In the progression of 
osteosarcoma, the expression of ALKBH5 is low and 
its overexpression inhibits STAT3 activity to reduce 
cell proliferation and apoptosis in an m6A-YTHDF2- 
dependent manner (85). In contrast, ALKBH5 is 
upregulated in myeloma, and its inhibition represses 
the myeloma cell proliferation, invasion, and 

migration ability, while it promotes apoptosis (86). 
Increasingly, studies have also demonstrated 

that the m6A-apoptosis axis plays a crucial role in the 
tumor microenvironment. The inhibition of IGF2BP1, 
as a crucial m6A reader protein, exerts a tumor 
suppressor effect in HCC by inducing apoptosis and 
subsequently activating immune cell infiltration as 
well as blocking PD-L1 expression to regulate the 
tumor immune microenvironment (87). COL10A1 
secreted by cancer-associated fibroblasts (CAFs) and 
upregulated by METTL3, facilitates cell proliferation 
and represses apoptosis-induced oxidative stress in 
LUSC (88). 

Apparently, m6A-apoptosis axis plays an 
indispensable role when it comes to addressing the 
problem of drug resistance in cancer. In a study of 
sunitinib resistance in renal cell carcinoma, TRAF1 
increases significantly in sunitinib-resistant cells, 
while the TRAF1 overexpression promotes sunitinib 
resistance by modulating apoptosis in a METTL14- 
dependent manner (89). In gastric cancers, lncRNA 
ABL is significantly elevated, while the ABL 
overexpression inhibits GC cell apoptosis and 
enhances multidrug resistance. Mechanistically, ABL 
is stabilized by METTL3-mediated m6A modification 
and subsequently binds to APAF1 to block the 
apoptosome assembly and caspase-9/3 activation, 
thereby leading to increased sensitivity to chemo-
therapy (90). For chemoresistance in ESCC, the highly 
overexpressed ALKBH5-induced lncRNA CASC8 
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activate the Bcl2/Caspase3 pathway to decrease the 
cisplatin sensitivity of ESCC and promote tumor 
development (91). 

M6A and autophagy 
Autophagy is an endogenous defense process 

that relies on autophagic lysosomes that degrade their 
encapsulated contents to meet the metabolic needs of 
the cell and the renewal of some organelles, thus 
playing an important role in tumor development and 
evolution (92). It is characterized by the formation of 
autophagosomes (Frankelet al., 2017), autophagy- 
related genes (ATG), uncoordinated 51-like kinase 1 
(ULK1), and transcription factor EB (TFEB), which act 
as important regulators of autophagy. In 2018, the 
first research on m6A and autophagy was conducted. 
FTO deficiency promotes the expression of ULK1, a 
key protein associated with autophagy, to delay 
tumor progression in an m6A-YTHDF2-dependent 
manner (93). Since then, valuable insights have been 
provided regarding the role of m6A-related 
autophagy in the occurrence and development of 
tumors. 

Impaired autophagy has also been observed in 
the progression of osteoarthritis-synoviocytes. In 
terms of the mechanism, METTL3 decreases the 
expression of autophagy-related 7, an E-1 enzyme 
crucial for the formation of autophagosomes, 
enhances autophagic flux, and promotes cellular 
senescence and osteoarthritic progression (94). In the 
process of malignant skin transformation and tumori-
genesis, FTO is upregulated and stabilized by 
low-level arsenic through the inhibition of p62-medi-
ated selective autophagy (95). Similarly, FTO is also 
upregulated and closely related to autophagic flux in 
clear cell renal cell carcinoma, whereas FTO 
knockdown enhances autophagic flux and impairs 
tumor growth and metastasis (96). Methylated 
proteins can also regulate autophagy. YTHDF1 defici-
ency inhibits HCC autophagy, growth, and metastasis 
by promoting the translation of autophagy-related 
genes ATG2A and ATG14 in an m6A-dependent 
manner (97). 

Emerging evidence indicates that autophagy 
regulated by m6A also influences the efficacy of 
immunotherapy. Melanoma tumorigenesis and 
anti-PD-1 resistance are promoted by m6A mRNA 
demethylase FTO, which is induced by metabolic 
starvation stress through the autophagy and NF-κB 
pathways (98). In addition, m6A methylation is 
involved in immune infiltration and autophagy in 
primary Sjögren's syndrome (pSS) (99). Furthermore, 
emerging studies have reported that the 
m6A-autophagy axis plays an important role in drug 
resistance. For gefitinib resistance in NSCLC cells, 

METTL3-mediated autophagy reverses this drug 
resistance by regulating β-elemene (100). The 
upregulated lncRNA ARHGAP5-AS1 is affected by 
autophagy, and SQSTM1 is responsible for trans-
porting ARHGAP5-AS1 to autophagosomes in 
chemo-resistant gastric cancer cells (101). In addition, 
METTL3 improves the resistance of HCC cells to 
sorafenib by stabilizing FOXO3 mediated by YTHDF1 
in an m6A-dependent manner, thereby inhibiting the 
expression of autophagy-related genes including 
ATG3, ATG5, ATG7, ATG12, and ATG16L1 (102). 

In summary, the m6A-autophagy axis seems to 
be involved in the initiation and progression of 
different cancers and plays an important role in the 
immune phenotype and drug resistance. M6A-auto-
phagy could be contributing to multifarious cancer 
progression and potentially represent a novel 
therapeutic target. 

M6A and ferroptosis 
Ferroptosis, a newly discovered type of 

programmed cell death, is an underlying therapeutic 
strategy for the inhibition of cancer occurrence and 
development (103). Since the discovery of ferroptosis 
in 2012 (104), an increasing number of studies have 
demonstrated the important role of ferroptosis in 
various cancers. Ferroptosis has been used to describe 
a highly complex process that requires the 
coordination of a series of signals from different 
organelles. The organelles involved include the 
endoplasmic reticulum, peroxisomes, and lysosomes. 
Several common mechanisms of ferroptosis are 
related to oxidative damage and antioxidant defense. 
Specifically, iron accumulates first, followed by lipid 
peroxidation, and finally the rupture of the 
cytoplasmic membrane occurs (105). Ferroptosis is an 
iron-dependent and non-apoptotic oxidative form of 
cell death, whose definitive hallmark genes are 
related to iron accretion and lipid peroxidation. It can 
be regulated at different levels, particularly in 
epigenetics. To date, an increasing number of studies 
have demonstrated a potential relationship between 
m6A modifications and ferroptosis (Table 1). 

Doxorubicin, which plays a toxic role in the 
heart, upregulates METTL14 and promotes cardio-
myocyte ferroptosis via the KCNQ1OT1-MIR-7- 
5P-TFRC axis. Therefore, targeting METTL14 and 
ferroptosis may provide a promising strategy for 
controlling DOX-induced cardiac injury (106). In 
addition, METTL3-mediated SLC7A11, a subunit of 
the Xc- system, enhances the ferroptotic resistance and 
promotes proliferation and apoptosis in LUAD (107). 
Similarly, m6A medicated SLC7A11 in ferroptosis has 
been found in hepatoblastoma (108), glioblastoma 
(109), thyroid cancer (110), and LUAD (111). For FSP1, 
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an iron suppressor protein 1, another key factor in 
ferroptosis, miR-4443 is highly expressed in 
cisplatin-resistant tissue-derived exosomes in NSCLC, 
and miR-4443 overexpression can pass METLL3 by 
cisplatin treatment. This inhibits FSP1-mediated 
ferroptosis and promotes tumor growth (112). 

In addition, m6A reading proteins have also 
been demonstrated to play an indispensable role in 
cancer. In LUAD, YTHDC2 is a ferroptosis inducer 
that promotes the development of cancer by targeting 
the SLC3A2 subunit of system Xc- (111). 

Ferroptosis plays an important role in drug 
resistance. In recalcitrant HER2-positive breast cancer, 
FGFR4 knockdown reduces resistance to anti-HER2 
therapy by activating ferroptosis. Mechanistically, 
FGFR4, modified by m6A, blocks glutathione 
synthesis and Fe2+ efflux efficiency via the β-catenin/ 
TCF4-SLC7A11/FPN1 axis, resulting in excessive 
ROS production and labile iron pool accumulation 
(113). Hypoxia-induced lncRNA-CBSLR increases 
chemoresistance in gastric cancer by inhibiting 
ferroptosis. In detail, CBSLR decreases the stability of 
CBS mRNA in an m6A-YTHDF2-dependent manner, 
leading to the polyubiquitination and degradation of 
ACSL4, which decreases the pro-ferroptotic 
phosphatidylethanolamine (PE) (18:0/20:4) and PE 
(18:0/22:4) content to inhibit the activation of 
ferroptosis (114). In NSCLC, m6A-medicated miR- 
4443 also enhances cisplatin resistance through the 
inhibition of ferroptosis (112). 

Although several ferroptosis-associated 
lncRNAs have been analyzed for their correlation 
with m6A-related genes in terms of immune efficacy 
(115, 116, 117), few studies have investigated the 
specific targets or pathways of m6A and ferroptosis in 
immune therapy. Given that ferroptosis and m6A 
play critical roles in tumors, further research on 
m6A-modified ferroptosis in diverse cancers is 
needed. 

M6A and pyroptosis 
Pyroptosis, a lytic form of cell death, is 

characterized by NLR pyrin domain containing 3 
(NLRP3), apoptotic speck-like protein containing 
CARD (ASC), cleaved Caspase-1, Gasdermin-D 
(GsdmD) p30, IL-1β, and IL-18, which serve as 
important regulators of pyroptosis (120). Although an 
increasing number of studies have demonstrated the 
critical role of pyroptosis or m6A in different diseases, 
including different cancers (121), studies on the 
m6A-pyroptosis axis in cancer seem to be few, while 
most focus on ischemic diseases and some chronic 
diseases (Table 2). In hypoxic pulmonary hyper-
tension, the degradation of lncRNA FENDRR 
mediated by YTHDC1 promotes HPAEC pyroptosis 
by regulating DRP1 promoter methylation (122). In 
slow-transit constipation, METTL3 promotes the 
pyroptosis of glutamic acid-induced ICCs by 
interacting with DGCR8 and modulating the 
miR-30b-5p/PIK3R2 axis in an m6A-dependent 
manner (123).  

In terms of m6A-pyroptosis in ischemia- 
reperfusion injury, hypothermia protects neurons 
from cerebral ischemia-reperfusion injury by downre-
gulating the secretion of the pyroptosis-related 
proteins NLRP3, ASC, and some pro-inflammatory 
factors by activating PI3K/Akt signaling via the m6A 
modification of PTEN mRNA (124). Meanwhile, 
METTL3 promotes pyroptosis in myocardial cells to 
exacerbate myocardial ischemia-reperfusion injury in 
an m6A-dependent manner (125). The m6A- 
pyroptosis axis seems to play an important role in 
ischemia-reperfusion injury, which is consistent with 
the results of a similar summary (126), but the 
regulation of m6A-pyroptosis at other sites of 
ischemia-reperfusion injury and more specific 
mechanisms remain to be explored. 

 

Table 1. M6A-ferroptosis axis in diverse cancers. 

Disease models m6a regulation Type of PCD Biofunction Reference 
Glioblastoma METTL3  ferroptosis RNA binding protein NKAP promotes SLC7A11 mRNA splicing in an 

m6A-dependent manner. 
(109) 

Thyroid Cancer FTO  ferroptosis FTO can inhibit the development of Thyroid cancer by downregulating 
SLC7A11 in m6A independently. 

(110) 

ALKBH5 ferroptosis ALKBH5 inhibits thyroid cancer progression by promoting ferroptosis 
through TIAM1-Nrf2/HO-1 axis. 

(118) 

Non-Small Cell Lung 
Carcinoma 

METTL3  ferroptosis miR-4443 in cisplatin-resistant NSCLC tumor tissue-derived exosomes 
regulated the expression of FSP1 in an m6A manner via METLL3. 

(112) 

Lung Adenocarcinoma. YTHDC2 ferroptosis YTHDC2 suppressed SLC3A2 via inhibiting HOXA13 in an m6A-indirect 
manner. 

(111) 

Breast Cancer METTL14 ferroptosis METTL14 regulated FGFR4 diminishes glutathione synthesis and Fe2+ 
efflux efficiency via the β-catenin/TCF4-SLC7A11/FPN1 axis. 

(113) 

Gastric Cancer YTHDF2 ferroptosis lncRNA-CBSLR interacted with YTHDF2 to form a 
CBSLR/YTHDF2/CBS signaling axis to reduce the expression of ACSL4. 

(114) 

Hepatocellular Carcinoma IGF2BP3 ferroptosis IGF2BP3-NRF2 axis regulates ferroptosis in hepatocellular carcinoma. (119) 
Hepatoblastoma METTL3 ferroptosis METTL3-mediated SLC7A11 m6A modification enhances HB ferroptosis 

resistance in an IGF2BP1 dependent manner. 
(108) 
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Additionally, m6A-mediated pyroptosis occurs 
in some chronic diseases. In patients with diabetic 
nephropathy (DN), WTAP is highly expressed, and 
WTAP knockdown inhibits the m6A methylation of 
NLRP3 mRNA to downregulate NLRP3 inflam-
masome activation, which further induces cell 
pyroptosis and inflammation (127). Similarly, in 
diabetic nephropathy, the total flavones of Abelmos-
chus manihot (TFA) inhibit the pyroptosis of podocytes 
under high glucose conditions by regulating 
METTL3-dependent m6A modification and inhibiting 
the activation of the NLRP3 inflammasome and 
PTEN/PI3K/Akt signaling (128). Additionally, 
METTL3 expression is lower in T2DM patients. The 
overexpression of METTL3 alleviates high-glucose- 
induced apoptosis and pyroptosis in human retinal 
pigment epithelial (RPE) cells via the METTL3/ 
miR-25-3p axis (129). The same mechanism is 
involved in diabetic cardiomyopathy. METTL3 
degrades lncRNA TINCR mediated by YTHDF2, 
which further decreases the expression of NLRP3, a 
key pyroptosis-related protein, to regulate the 
occurrence of pyroptosis and diabetic cardiomyo-
pathy (130). In diabetic retinopathy, circFAT1 
interacts with YTHDF2, which increase the expression 
of LC3B to promote autophagy and inhibit pyroptosis 
in high glucose-induced retinal pigment epithelial 
(RPE) cells (131). The m6A-pyroptosis axis appears to 
play a profound role in the chronic complications of 
diabetes, but more research is needed to extend our 
understanding of the epigenetic regulation of 

pyroptosis in DCM progression. Interestingly, the 
m6A-pyroptosis is not restricted to epithelial cells and 
is involved in some immune cells. In atherosclerosis 
and acute coronary syndrome (ACS), IRF-1 represses 
circ-0029589 expression in an METTL3 dependent 
manner, thereby promoting macrophage pyroptosis 
and inflammatory responses (132). In addition, the 
METTL3/MALAT1/PTBP1/USP8/TAK1 axis in liver 
fibrosis promotes pyroptosis and macrophage M1 
polarization, thereby exacerbating liver fibrosis 
progression (102). Although m6A-modified pyrop-
tosis plays an important role in non-neoplastic 
diseases, its role in tumors requires further study. 

M6A and necroptosis 
Necroptosis is a form of programmed necrosis 

that occurs when apoptosis is blocked by extracellular 
signals (death receptor-ligand binding) or intra-
cellular triggers (microbial nucleic acids) through a 
series of phosphorylation events that result in the 
production of pore complexes on the plasma 
membrane by MLKL, leading to the secretion of 
DAMP and subsequent cellular self-destruction (136). 
Necroptosis is characterized by organelle swelling, 
cell membrane rupture, and the disintegration of the 
cytoplasm and nucleus, with RIPK1, RIPK3, and 
MLKL as the main molecules involved (137). In 
addition, tumor necrosis factor (TNF), Toll-like 
receptor (TOLLR) family members, interferon, and 
other mediators have been demonstrated to act as key 
genes in necroptosis (138). 

 

Table 2. M6A-pyrpotosis axis in no-cancer diseases. 
Hypoxic pulmonary hypertension YTHDC1 pyroptosis YTHDC1-induced decay of lncRNA FENDRR promotes HPAEC pyroptosis 

by regulating DRP1 promoter methylation. 
(122) 

Slow transit constipation METTL3 pyroptosis METTL3 contributes to slow transit constipation by regulating 
miR-30b-5p/PIK3R2/Akt/mTOR signaling cascade through interacting 
with DGCR8. 

(123) 

Sepsis YTHDF1 pyroptosis YTHDF1 alleviates sepsis by upregulating WWP1 to induce NLRP3 
ubiquitination and inhibit caspase-1-dependent pyroptosis. 

(133) 

Liver fibrosis METTL3 pyroptosis The METTL3/MALAT1/PTBP1/USP8/TAK1 axis promotes pyroptosis 
and M1 polarization of macrophages and contributes to liver fibrosis. 

(134) 

Atherosclerosis (AS) and acute coronary 
syndrome (ACS) 

METTL3 pyroptosis IRF-1 can repress circ-0029589 expression in a METTL3-dependent manner, 
thereby promoting macrophage pyroptosis and inflammatory responses 

(132) 

Myocardial Ischemia-Reperfusion Injury METTL3 
 

pyroptosis METTL3 promotes DGCR8 binding to pri-miR-143-3p in an m6A dependent 
manner, thus enhancing miR-143-3p expression to inhibit PRKCE 
transcription and further aggravating cardiomyocyte pyroptosis and MI/R 
injury. 

(125) 

Cerebral ischemia/reperfusion (I/R) 
injury 

m6A pyroptosis Hypothermia protects neurons against ischemia/reperfusion-induced 
pyroptosis via m6A-mediated activation of PTEN and the 
PI3K/Akt/GSK-3β signaling pathway. 

(124) 

Diabetic nephropathy 
 
 

WTAP pyroptosis WTAP promotes the expression of NLRP3 in a IGFBP2 dependent manner 
to upregulate NLRP3 inflammasome activation, which further induces cell 
pyroptosis and inflammation. 

(127) 

Diabetic nephropathy METTL3 pyroptosis TFA can ameliorate pyroptosis by regulating the expression of METTL3 and 
regulating NLRP3-inflammasome activation and PTEN/PI3K/Akt 
signaling. 

(128) 

Diabetic cardiomyopathy (DCM) METTL14 
 

pyroptosis METTL14 suppresses pyroptosis and DCM via downregulating lncRNA 
TINCR, which further decreases the expression of key pyroptosis-related 
protein, NLRP3. 

(135) 

Diabetic retinopathy YTHDF2 pyroptosis CircFAT1 interact with YTHDF2 to increase the expression of LC3B, thus 
promoting autophagy and inhibiting pyroptosis of RPE cells induced by 
HG. 

(131) 
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In CRC, patients resistant to oxaliplatin have 
higher METTL3 expression and infiltration of 
M2-type macrophages. Further studies revealed that 
the TRAF5-mediated inhibition of necroptosis contri-
butes to METTL3-triggered OX resistance. This 
finding shows the role of the m6A-necroptosis axis in 
OX resistance and provides a new target for patients 
with OX resistance in CRC (139). In addition, 
necroptosis-related genes, such as necroptosis-related 
mRNA and necroptosis-related lncRNA, are indica-
tors of a worse prognosis and correlate with m6A 
gene expression and immune function, which are 
used to predict the prognosis and immune response 
in different cancers; however, the specific mechanism 
remains need to be further investigated (140), (141), 
(142), (143). Few studies have examined the role of 
m6A modification in necroptosis; therefore, the 
precise regulatory mechanisms involved are still 
unknown. 

Small molecular compounds targeting m6A 
modification in various cancers 

The m6A modification has been found to act as a 
pivotal role in various cancers. Therefore, inhibitors 
and regulators targeting m6A regulators may be 
effective new approaches for cancer therapy. 
STM2457, a highly potent and selective first-in-class 
catalytic inhibitor of METTL3, was demonstrated to 
hinder the growth of AML without impacting normal 
hematopoiesis (144). It had also been proven to block 
the proliferation of intrahepatic cholangiocarcinoma 
in an m6A-YTHCF2-dependent manner (145). In 
addition to METTL3, other m6A regulators are also 
key targets for treating cancers with abnormal m6A 
levels. Rhein, competitively bounds to FTO or AlkB 
catalytic in vitro, displayed the enhancement of 
antiproliferative effects of atezolizumab based on 
breast cancer (4T1) regression (146). It also examined 
the inhibitory effect in breast cancer in vitro and in vivo 
(147). Meclofenamic acid (MA), a highly selective 
inhibitor of FTO, restored gefitinib sensitivity via 
FTO/m6A-Demethylation/c-Myc in Non-Small Cell 
Lung Cancer (148). It also played a protective effect in 
cisplatin-induced acute kidney injury (149). In glioma, 
MA2 (the ethyl ester form of meclofenamic acid) 
inhibited FTO and suppressed proliferation by 
increasing the effect of the chemotherapy drug 
temozolomide (150). MA2 could also rescue the 
cisplatin-induced cytotoxicity of bladder cancer cells 
(151). Subsequently, other FTO inhibitors, such as 
MO-I-500, FB23-2, R-2HG, CS1, and CS2, are also 
showed the antitumor effect on diverse cancers, 
including Alzheimer's disease (AD) (152), 
nasopharyngeal carcinoma (153), Breast Cancer (154), 
AML (155), (156), (157), cholangiocarcinoma (158), 

renal cell carcinoma (96). Furthermore, IGF2BP1 acts 
as the post-transcriptional super-enhancer of 
E2F-driven gene expression in cancer. The small 
molecule, BTYNB, could disrupt this enhancer 
function by impairing the IGF2BP1-RNA association. 
It also showed the inhibitory potency in the treatment 
of solid cancers (159). In conclusion, although the 
small molecular compounds targeting m6A modifi-
cation for clinical application is still in the initial 
phase, it is expected that drugs targeting m6A 
modification will be improved and developed and 
finally be used for clinical treatment over the next few 
years with more understanding of the function and 
mechanism of m6A in cancer.  

Potential therapeutic applications of 
m6A-modified PCD in cancers 

Increasing evidence has gradually proven that 
an anti-tumor strategy based on PCD and m6A may 
solve some existing problems in anti-cancer therapies 
(Table 3). In chemotherapy efficacy and resistance, 
diverse types of regulators of PCD and m6A 
molecules show efficacy in the chemoresistance of 
tumor cells (160), (161). The combination of m6A and 
PCD also improves anti-cancer efficacy. In the 
m6A-apoptosis axis, WTAP knockdown facilitates cell 
apoptosis and inhibits cisplatin resistance in 
nasal-type natural killer/T-cell lymphoma (162). 
Conversely, FTO enhances chemoresistance in CRC 
through SIVA1-mediated apoptosis via a YTHDF2- 
dependent mechanism (163). In terms of m6A- 
autophagy, METTL3-mediated autophagy reverses 
gefitinib resistance in NSCLC cells by β-elemene 
(100). In seminomas, METTL3 regulates autophagy 
and sensitivity to cisplatin by targeting ATG5 (164). 
5-Azacytidine, a methyltransferase inhibitor and 
anticancer drug, stimulates an autophagic response to 
sensitize cancer cells to drug responsiveness during 
hydrogen peroxide-induced oxidative stress in 
insulinoma β-TC-6 cells (165). Regarding the 
m6A-ferroptosis axis, METTL14-modified FGFR4 
increases anti-HER2 resistance by inhibiting ferrop-
tosis mediated by the β-catenin/TCF4-SLC7A11/ 
FPN1 axis in recalcitrant HER2-positive breast cancer 
(113). The low level of hypoxia-inducible lncRNA- 
CBSLR manifests a worse clinical outcome and a 
poorer response to chemotherapy, and regulates 
ferroptosis and chemoresistance through m6A- 
YTHDF2-dependent modulation (114). In terms of the 
m6A-pyroptosis axis, recent research indicated that 
the lower expression levels of DFNA5/GSDME in 
most tumor cells than in normal cells is attributed to 
the methylation of mRNA, thus making it difficult to 
activate pyroptosis to increase the sensitivity of 
chemotherapeutic drugs in most tumor cells. 
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Therefore, appropriate chemotherapeutic drugs can 
be selected based on the expression levels of 
DFNA5/GSDM, in order to increase their effects 
(166). In immune therapy, ALKBH5-dependent 
HMGB1 expression decreases hepatocyte apoptosis 
and mediates the STING-IFN regulatory factor 3 
innate immune response in radiation-induced liver 
diseases (167). FTO promotes melanoma processing 
and anti-PD-1 resistance, and suggests the potential of 
the combination of FTO inhibition with anti-PD-1 
blockade in resistance to immunotherapy (98).  

In conclusion, m6A-PCD may play a critical role 
in drug efficacy and resistance, including chemo-
therapy resistance, immune efficacy, and drug side 
effects in m6A-apoptosis. An increasing number of 
studies on m6A-PCD have focused on m6A 
autophagy and m6A-apoptosis. However, few studies 
have investigated the therapeutic application of 
m6A-modified pyroptosis and necroptosis, and 
further studies are needed. 

Summary 
Emerging studies have shown that m6A 

modification affects apoptosis and autophagy, 
thereby influencing the development of diverse 
cancers. However, few studies have examined the 
effects of m6A modification on ferroptosis, pyrop-
tosis, and necroptosis in cancer. M6A-pyroptosis 
mainly focuses on non-neoplastic diseases, while 
m6A-necroptosis has been rarely studied in cancer. In 
brief, these studies revealed that m6A plays a 
remarkably important role in PCD and tumor 
development. However, the influence of m6A 
modification on PCD remains largely unclear, similar 
to the contradictory role of m6A modification in 
diverse cancers. For instance, METTL3 acts as an 
apoptotic driver in LUAD (173) whereas WTAP 
serves as a suppressor in endometrial cancer (174). In 
addition, m6A modification serves as an autophagy 
driver in NSCLC (100) whereas METTL3 functions as 
a suppressor in HCC (175). Whether PCD regulated 
by m6A exerts a promotive or inhibitive effect may 
primarily depend on the level of m6A (the dynamic 
balance between writers and erasers), the different 
readers, the variety (mRNA or ncRNA), the function 
of target genes, and different diseases.  

 

Table 3. The potential clinical application of m6A-modified PCD 
M6A 
associated 
molecules 

Target gene Type of 
PCD  

Disease models Clinical 
application 

Biofunction  Reference 

IGF2BP1 PDL1 apoptosis hepatocellular 
carcinoma 

immunotherapy The inhibition of IGF2BP1 inhibits the development of hepatocellular 
carcinoma through activating immune cells infiltration and blocking 
PD-L1 expression to regulate the tumor immune microenvironment. 

(87) 

METTL3 COL10A1 apoptosis LUSC immunotherapy COL10A1 secreted by Cancer-associated fibroblasts (CAFs), upregulated 
by METTL3, can promote LUSC cell proliferation and repress 
apoptosis-induced oxidative stress. 

(88) 

ALKBH5 HMGB1 apoptosis radiation-induced liver 
diseases (RILD) 

immunotherapy ALKBH5-modicated HMGB1 expression mediates STING-interferon 
regulatory factor 3 innate immune response. 

(167) 

FTO PDK1 apoptosis glioblastoma 
multiforme 

temozolomide 
chemoresistance 

Long noncoding RNA just proximal to X-inactive specific transcript 
promotes stability of PDK1 mRNA in an m6A-dependent manner. 

(168) 

METTL14 TRAF1 apoptosis renal cell carcinoma sunitinib 
resistance 

TRAF1 overexpression can promote sunitinib resistance by modulating 
apoptotic in a METTL14-dependent manner. 

(89) 

METTL3 microRNA-221-3p apoptosis breast cancer adriamycin 
resistance 

METTL3 accelerates pri-microRNA-221-3p maturation in a 
m6A-dependent manner. 

(169) 

ALKBH5 LncRNA CASC8 apoptosis esophageal squamous 
cells 

cisplatin 
resistance 

LncRNA CASC8 overexpression can activate the Bcl2/caspase3 pathway 
to decrease the cisplatin sensitivity of esophageal squamous cells. 

(91) 

METTL3 TRIM11 apoptosis nasopharyngeal 
carcinoma 

chemoresistance METTL3-medicated TRIM11 promoted Daple ubiquitin-mediated 
degradation to upregulate β-catenin expression, thus inducing ABCC9 
expression. 

(170) 

METTL3 lncRNA SNHG17 apoptosis lung adenocarcinoma gefitinib 
resistance 

METTL3-induced lncRNA SNHG17 reduces the expression of LATS2. (171) 

METTL3 miR-146a-5p apoptosis bladder cancer Melittin 
resistance 

METTL3-guided m6A modification can accelerate the pri-miR-146 
maturation. 

(172) 

FTO PD-1 autophagy melanoma immunotherapy FTO can increase the anti- PD-1 resistance of melanoma through the 
autophagy and NF-κB pathway. 

(98) 

METTL3 β-elemene autophagy non-small cell lung 
cancer 

gefitinib 
resistance 

METTL3-mediated autophagy can reverse this gefitinib resistance by the 
regulation of β-elemene. 

(100) 

METTL3 FOXO3 autophagy HCC sorafenib 
resistance 

METTL3 can improve the sorafenib resistance of HCC cells through 
stabilizing forkhead box class O3 (FOXO3) mediated by YTHDF1 and 
inhibiting the occurrence of autophagy. 

(102) 

METTL14 FGFR4 ferroptosis breast cancer anti-HER2 
therapy 

METTL14 medicated FGFR4 can reduce the resistance to anti-HER2 
therapy through the activation of ferroptosis by blocking glutathione 
synthesis and Fe2+ efflux efficiency. 

(113) 

METLL3 miR-4443 ferroptosis non-small cell lung 
cancer 

cisplatin 
resistance 

METLL3 medicated miR-4443 can regulate the expression of FSP1 to 
increase the resistance to cisplatin and promote tumor growth. 

(112) 
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More importantly, the mechanism of methyla-

tion modification of all m6A-related proteins is not 
the same, the diverse biological processes which be 
affected by m6A modification is not specificity, the 
target genes may be regulated by diverse readers, and 
the m6A-related proteins identified thus far may have 
more than one role beyond methylation, which may 
lead to diametrically opposed roles in disease. 

Interestingly, in addition to m6A, which 
regulates PCD, it also affects the m6A levels. The 
release of neutrophil extracellular traps (NETs) acti-
vates ferroptosis depending on the METTL3-induced 
m6A modification of GPX4 in sepsis-associated acute 
lung injury (176). Meanwhile, NET-activated METTL3 
leads to abnormal autophagy in sepsis-associated 
acute lung injury (177). 

Moreover, except for the regulation of m6A in a 
single type of PCD, m6A indirectly regulates one type 
of PCD through another type of PCD. For example, in 
hepatic stellate cells, m6A-modified BECN1 promotes 
the activation of autophagy, thus inducing ferroptosis 
(178). M6A-medicated PCD may be an indirect way to 
influence the activation of other PCD signals. It is 
believed that further studies on PCD interactions will 
provide an explanation. Further studies are needed to 
explore the mutual link between m6A modification 
and PCD in different diseases.  

In addition, m6A modification could also 
happen on TAM, especially in immune cells, to 
indirectly effect tumor development. The balance 
between cancer cells and TAM may account for the 
contradictory role of m6A and PCD. Studies have 
shown that RNA modification is involved in the 
development, differentiation, activation, migration, 
polarization and other biological processes of immune 
cells, thus regulating immune response and partici-
pating in the occurrence of some immune-related 
diseases (179). Such as m6A methyltransferase in 
TAMs promotes CD8+ T cell dysfunction and tumor 
progression (180). It also revealed that the immune 
cell can also occur PCD to influence the development 
of cancers. But the specific mechanisms that tie them 
together still require further study. Moreover, except 
for m6A, other chemical modifications in DNA, RNA, 
and protein are also irreplaceable, such as DNA 
methylation, m1A, m5C, ubiquitylation, Phospho-
rylation, lactation, glycosylation modification, and so 
on. Whether these epigenetic modifications play an 
indispensable role as m6A in PCD? Are the other 
types of PCD, such as immunogenic cell death and 
cuproptosis, also regulated by m6A or other 
epigenetic modifications? These questions remain 
needed to be further explored.  

In general, m6A-associated targets would pro-
vide a new direction for clinical diagnosis, treatment, 
prognosis, and therapy resistance in cancer. In 
general, investigating the intricate relationship 
between m6A and PCD could improve our 
understanding of how certain diseases develop and 
lead to the development of new treatments. 
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