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Abstract 

Sleeping Beauty (SB) insertional mutagenesis has been widely used for genome-wide functional screening 
in mouse models of human cancers, however, intertumor heterogeneity can be a major obstacle in 
identifying common insertion sites (CISs). Although previous algorithms have been successful in defining 
some CISs, they also miss CISs in certain situations. A major common characteristic of these previous 
methods is that they do not take tumor heterogeneity into account. However, intertumoral 
heterogeneity directly influences the sequence read number for different tumor samples and then affects 
CIS identification. To precisely detect and define cancer driver genes, we developed SB Digestor, a 
computational algorithm that overcomes biological heterogeneity to identify more potential driver genes. 
Specifically, we define the relationship between the sequenced read number and putative gene number to 
deduce the depth cutoff for each tumor, which can reduce tumor complexity and precisely reflect 
intertumoral heterogeneity. Using this new tool, we re-analyzed our previously published SB-based 
screening dataset and identified many additional potent drivers involved in Brca1-related tumorigenesis, 
including Arhgap42, Tcf12, and Fgfr2. SB Digestor not only greatly enhances our ability to identify and 
prioritize cancer drivers from SB tumors but also substantially deepens our understanding of the intrinsic 
genetic basis of cancer. 
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Introduction 
The Sleeping Beauty (SB) DNA transposon 

system is a reconstructed Tc1-like transposon that is 
derived from fish [1]. This system consists of a 
conditionally expressed transposase and mutagenic 
transposon allele, which is flanked by inverted 
repeats/direct repeats [2, 3]. The transposase directs 
the transposon cut-and-paste mechanism by cataly-
zing the excision from its original location and 
promoting its reintegration into TA dinucleotides 
elsewhere in the genome. Because of this unique 
characteristic of SB, it is able to truncate tumor 

suppressors and/or activate oncogenes simultane-
ously in spontaneously developed tumors in the 
mouse model, which more closely mimics conditions 
for human tumor initiation and development. Thus, 
sequencing transposon insertion sites from tumor 
samples enable driver gene identification and reveal 
cancer-related pathways, which provide insight into 
the mechanisms underlying cancers. [4]. So far, the SB 
transposon has been used to identify driver genes in 
multiple types of cancers, including breast cancer [5], 
melanoma [6], osteosarcoma [7], liver cancer [8], 
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pancreatic cancer [9], colorectal cancer [10], nervous 
system cancer [11] and other tumors [2]. Further 
interrogation of the SB-tagged mutations could 
facilitate the identification of the sophisticated drivers 
that are responsible for several important aspects of 
cancer, including tumorigenesis, metastasis [12, 13], 
tumor microenvironment influences [14], and in vivo 
drug resistance [15]. 

To distinguish the genes involved in promoting 
tumorigenesis, high-throughput DNA sequencing 
was performed for SB-driven tumors to identify the 
transposon-activated and transposon-trapped genes. 
Several statistical algorithms have been developed to 
determine the hot spots of SB insertion loci in the 
tumor genome, including TAPDANCE [16], and SB 
Driver Analysis [17], Gaussian kernel convolution 
(GKC) [18], and gene-centric common insertion sites 
(gCISs) [19]. These approaches successfully defined 
some driver genes in previous studies. For example, 
locus-centric algorithms such as TAPDANCE and 
GKC can effectively identify highly condensed SB 
insertion sites but are moderately effective in defining 
scattered SB insertions. To solve this problem, 
Newberg et al. developed SB Driver software to 
identify tag mutations in an unbiased manner [17]. 
Nevertheless, the sequence depth cutoff determi-
nation of this software was experience-based, which 
could compromise its ability to eliminate artificial 
effects and correctly account for the tumor diversity. 

Tumor heterogeneity describes the observation 
that different tumor cells demonstrate distinct 
phenotypic and genotypic profiles, including distinct 
cellular morphology, gene expression, and driver 
genes [20]. Similarly, the number and the type of 
driver genes of SB tumors exhibit major differences, as 
revealed by our previous study carried out by 
analyzing 306 Brca1-related tumors using 
TAPDANCE [5]. Therefore, analysis relying on a 
uniform depth cutoff for all tumor samples would 
lead to either the inclusion of some background noise 
or the elimination of some potent drivers. Specifically, 
based on the calculation principle, when we choose an 
unsupervised and uniformed depth cutoff in a given 
tumor, the number of sequenced reads will greatly 
affect the identification of driver genes, i.e., more 
reads will generate a greater number of driver genes 
and vice versa. Moreover, the landscape of intertumor 
heterogeneity is reflected by striking molecular and 
biological variations. Thus, to better assess the natural 
course of the tumor, it is required to truly 
individualize read depth cutoff for the driver gene 
analysis of different tumors. 

Therefore, in this study, we developed the SB 
Digestor, which is a tailored SB driver gene 
identification approach that could initially distinguish 

a variety of driver genes for individual tumors based 
on saturation analysis of the putative drivers. This 
tool helped us to elicit the intertumor heterogeneity 
effect and then diagnose driver genes for SB tumors 
with high precision. To illustrate the power of SB 
Digestor, we used it to reanalyze data from 
Brca1-related tumors (n=306) and identified 170 
candidate cancer driver genes, including 121 potential 
drivers that were not identified by our earlier study 
[5]. The newly identified genes included several 
well-known cancer drivers, such as Fgfr2, Hras, 
Tgfbr2, Nf1, and Erbb2, as well as others whose 
function in cancer remains elusive. Finally, we 
conducted functional validation using Fgfr2, 
Arhgap42, and Tcf12 to illustrate their roles in 
BRCA1-associated tumorigenesis. 

Results 
The overall design of the SB Digestor 

The SB Digestor includes 6 modules, which are 
critical for the unbiased identification of cancer 
drivers. After obtaining the SB cancer datasets, we 
filtered the low-quality of reads and trimmed the 
adapters (Fig. 1A). In order to enhance the ability to 
analyze and interpret cancer drivers, we gave 
sufficient consideration to one of the most important 
tumor biology features-the tumor heterogeneity. We 
try to design a strategy to individualize depth cut-off 
for each sample to replace the previous tools used-the 
uniform and empirical depth values. So, with clean 
data, we’ll first get significant SB insertional genes 
with the binomial test and generate a gene library for 
each sample (Fig. 1B). Later, saturation analysis 
would be executed to depict the relationship between 
the read number and the significant SB insertional 
gene number (Fig. 1C). Based on the above 
relationship, the depth cutoff calculation formula 
could be deduced (Fig. 1D). Then, we can determine 
the candidate drive genes for each sample and 
generate the common insertion gene list of all tumors 
(Fig. 1E). Finally, we predicted and characterized 
whether a candidate driver gene is an oncogene or a 
tumor suppressor (Fig. 1F).  

Get significant SB insertional genes within the whole 
genome 

Previous studies have indicated that Sleeping 
Beauty transposons insert only into TA dinucleotides. 
To identify genes with significant SB transposon 
insertions, we first calculated the expected insertion 
probability for each gene (Fig. 2A). Specifically, we 
counted the TA (TG) dinucleotides for the whole 
mouse reference genome (mm10), and the number 
was 88475427. Then, we calculated the number of TA 
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dinucleotides in each gene (Tg) (Supplementary Table 
1). To detect oncogenic insertions, we extended the 
TA counting region to 3000 bp upstream of each gene. 
Then we did the data mapping and gene annotation, 
counting reads for each gene of each sample (Fig. 2B). 
Since Sleeping Beauty transposons randomly jump 
within the mouse genome, the probability of SB 
insertion in each TA dinucleotide is the same (1/TG). 
Additionally, each SB insertion is independent, which 
means that none of the insertions affect the probability 
of other insertions. Thus, we assumed that our 
distribution is binomial (Fig. 2C). To test whether a 
given observed insertion number of a certain gene is a 
significant insertion, we calculated the insertion 
probability of each gene p by Tg/TG (Fig. 2D-Equation 
1) and its binominal P value by using the formula (Fig. 
2D-Equation 2). If a gene had a Pg smaller than 0.05, 
we defined it as a significant SB insertion gene. Then, 
we evaluated the statistical significance of each SB 

insertion gene and generated a gene library for each 
sample.  

Determination of read depth cutoff for each sample 
with saturation analysis 

Based on the driver gene analysis principle in a 
previous study, more candidate driver genes could be 
identified with more sequenced reads [19]. We 
randomly selected 3 SB tumor samples and annotated 
the genome locations, we indeed found that using a 
greater number of reads for a particular tumor 
increased the capacity of identifying the putative 
genes (Fig. 3A). Moreover, due to tumor 
heterogeneity, the number and the type of cancer 
driver genes in different tumors could vary [21]. In 
our test samples, as the figure shows, that different 
tumors have different numbers of putative driver 
genes (Fig. 3A).  

 
 

 
Figure 1. Overview of SB Digestor analysis pipeline. A. Raw data pre-processing. The raw data were processed by filtering the low-quality reads and trimming the 
adapters. B. Define significant insertional genes by binomial test. C. Saturation analysis. To determine the sequencing depth cutoff, 50 sample sizes of reads were extracted 
randomly, followed by gene annotation. Then, a curve was fitted, and an adapted formula was obtained to reflect the correlation between the number of annotated genes and the 
50 sample sizes of reads for each sample. D. Defining depth for each sample. The depth cutoff value for each sample was calculated with the formula depth=reads num/gene 
number. E. Identify drivers. The candidate driver genes for each sample were sorted out based on the depth cutoff. Then, generate common insertion genes list for all tumors. 
F. Characterize drivers. The driver genes were further characterized based on the SB transposon insertion patterns, including both locations and transposon promoter 
directions. 



Int. J. Biol. Sci. 2023, Vol. 19 
 

 
https://www.ijbs.com 

1767 

 
Figure 2. Define significant SB insertional genes. A. Calculate the expected SB insertion probability of each gene. The expected trapping probability of each 
gene in the mouse genome was calculated based on the gene size and the number of TA dinucleotides. B. Clean data alignment and annotation. After the data pre-processing, the 
clean data was mapped to the mouse reference genome, and did the loci annotation. C. The binomial test was applied to sort the significant SB insertional genes for each sample 
and generate a gene library for each sample. D. The equations to calculate the expected SB insertion probability (Equation 1) and the binomial P value of each gene (Equation 2), 
where Tg is the number of TA sites in a given gene and TG is the number of TA dinucleotides in the whole genome. p is the probability of a transposon jumping into the given gene 
within the whole mouse genome (Equation 1); k is the observed insertion number in a certain gene, which is also the mapped read number of the gene. Pg is the binomial 
probability (Equation 2).  

 
In addition, when calling tumor driver genes 

with SB screening tumors, due to the diversity of 
sequencing coverage in different genes, a read depth 
cut-off was usually applied. However, this cut-off 
value was empirically determined. If an unsupervised 
depth cutoff is set for all tumor samples, as was done 
in previously reported tools, the number of detectable 
putative driver genes is different under different 
depth cutoffs. For example, if we have 3 tumors with 
the same number of sequenced reads, 10000, due to 
tumor heterogeneity, if the driver gene numbers of 
these 3 tumors are 10, 100, 1000, then the average 
depths of these genes are 1000, 100, 10. Therefore, if 
we set 1000 as the depth cutoff, we would miss many 
true-positive candidate genes in the last two samples, 
but if we set it as 10, we may obtain many 
false-positive candidate genes in the first two 

samples. Therefore, this approach is not conducive to 
accurately finding true SB insertion genes. Also, 
different samples showed different slopes, which 
means that different samples require different read 
numbers to detect the same number of candidate 
genes (Fig. 3A). Thus, it is not reasonable to uniform 
the depth cutoff to all tumor samples when calling the 
SB insertion genes, rather, this value should be 
tailored for different tumor samples. 

To address the above problems, in our 
algorithm, we not only consider the statistical 
significance like other tools did but the biological 
aspect (tumor heterogeneity) was also taken into 
account to identify tumor driver genes. First, for each 
sample, we computed the clean read number. Next, 
we randomly extracted 50 sample size numbers 
(gradients) of reads for each sample to conduct the 
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saturation analysis. For example, if a sample had 
10000 reads, the gradient is 200, and the extracted 
sample sizes were 200, 400, 600, 800, 1000, 
1200…10000 (Fig. 3B-a). Here, for each read sample 
size, we did the alignment and annotated the reads to 
obtain the located genes (Fig. 3B-b), and once the 
annotated gene existed in the previous significant 
insertional gene library of the sample, we took it into 
account and calculated the gene number for each 
sample size (Fig. 3B-c). Thus, for these 50 sample size 
numbers of reads of each sample, we obtained 50 gene 
sets (Fig. 3B-d). Following that we plotted the 
correlation curve to depict the read number and 
candidate gene number, which is called saturation 
analysis. (Fig. 3B-e). Then, we used the R function 
“nls” (Nonlinear Least Squares) to estimate the 
parameters a and b of this nonlinear model (Fig. 3C) 
to digitalize the relationship between read number 
and gene number. To evaluate the accuracy of the 
fitting curve, we estimated the R-squared, which is 
widely used to evaluate how well the data fit the 
regression model. Then, we tested the model with 
DNA sequencing data from 67 Brca1co/co SB tumor 
samples. The R-squared value of these samples 
showed that the formula we established here could 
exactly reflect the correlation between read number 
and gene number with particular “a” and “b” values 
for each tumor sample (Fig. 3D).    

Based on the fitting curve formula, we were able 
to calculate the sequencing depth (Fig. 3E) for each 
individual sample under different sequenced read 
numbers. For each test sample, we obtained a depth 
(Fig. 3F), and we set this depth as the depth cutoff for 
each sample. For example, the depth we calculated for 
sample ‘MK3242-3R_E75_B’ was 169, and the 
significant insertion number (determined by the 
binomial test, and P value=0) of Fgfr2 in this sample is 
513. Thus, we defined Fgfr2 as a putative candidate 
gene for this sample. 

In the test samples, as we expected, the 
intertumoral heterogeneity was reflected in the 
number of putative driver genes. We might obtain 
tons of sequenced reads in an SB tumor, but after 
analysis, we only got a few of the putative driver 
genes. For example, a sample MK2590-4L_BW75_B 
had the most reads (Fig. 3F), but more than 97% of 
them were located at position 100383957 of 
chromosome 11, within the gene ‘Jup’ region. Finally, 
only 11 candidate genes were identified in this 
sample. Inversely, sample MK3280-4R_BE40_B got 
more than 500 candidate drivers with less than a total 
of 34411 reads. Thus, these results indicate that an 

individualized depth cutoff is necessary for SB tumor 
driver gene identification analysis. 

Determination of common insertion genes and 
classification of oncogenes and tumor suppressors 

To call common insertion genes among the 
above candidate genes across all tumors, we used an 
appearance in at least 3 or more than 5% of all tumors 
as a cutoff. To estimate whether the candidate gene is 
an oncogene or a tumor suppressor, we evaluated the 
insertion patterns of transposons in each candidate 
gene (i.e., whether the insertions are clustered within 
a hotspot region or widely distributed and in the same 
or opposite direction as transcription of the host 
gene). If more than 50% were forward insertion reads 
and only a few hotspot insertion regions were found, 
we defined the gene as an oncogene; otherwise, the 
host gene was presumed to be a tumor suppressor. 

Comparison of SB Digestor with TAPDANCE 
and SB Driver 

We next conducted a comparative analysis of our 
SB Digestor with two previously reported represen-
tative SB cancer gene identification algorithms: the 
gene-centric method and the locus-centric method. 
For these two algorithms, we selected a typical tool 
respectively: TA Poisson distribution statistics 
(TAPDANCE) [16, 22], which is the most commonly 
used locus-centric tool, and SB Driver [17], the most 
recent development gene-centric based tool. For 
TAPDANCE, default parameters were used; for SB 
Driver, we used the Trunk Driver analysis model, and 
we set the minimum read depth cutoff as 20. With 67 
tumor samples, SB Digestor identified 222 common 
insertion genes, while TAPDANCE and SB Driver 
detected 278 and 243 genes, respectively. Then, we 
compared the top 50 candidate genes generated from 
these three tools. The Venn diagram showed that the 
overlap among these three tools tended to be low, 
with only 3 genes. SB Digestor shares 13 and 10 genes 
with TAPDANCE and SB Driver, respectively (Fig. 
4A). As shown in Fig. 4B, cross-comparison of these 
genes from each approach, SB Digestor provides the 
most representative candidates in both rank and gene 
number, indicating SB Digestor could cover the 
majority of the top genes identified by other tools. 

In addition, to evaluate how stably SB Digestor 
performed with the different number of sequenced 
reads, for the above test sample cohort, we chose 33 
samples with sequenced reads numbers more than 
250000, then we randomly extracted 10000, 50000, 
150000, and 250000 reads for each sample to conduct 
common insertion gene identification by using SB 
Digestor, TAPDANCE, and SB Driver.  
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Figure 3. Read depth determination. A. Correlation curve of input read number and annotated significant insertional gene number. Here, the three curves represent 3 
different tumor samples. For each sample, we extracted the same number of reads and then mapped and annotated them one by one. For a certain sample, if an annotated gene 
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exists in the previous binomial test statistics library, we deemed it to be a reliable insertional gene. B. The strategy of saturation analysis. B-a. For each sample, 50 sample sizes 
of reads were randomly extracted. B-b. Alignment and gene annotation were applied for each sample size of reads, then counted the number of reads number for each gene. 
B-c.d. Statistical the significant SB insertional gene number and generate 50 gene sets for each sample. B-e. Fitting a curve to descript the relationship between reads number and 
gene number by the 50 sample sizes of reads and the corresponding gene sets. C. Flowchart of fitting curve calculation. We used the R function nls to deduce the relationship 
between the read number and gene number (X: 50 sample sizes of read number, Y: corresponding gene number, both a and b are constant). D. The a, b, and R squared values 
of each sample. E. The depth calculation formula, where y is the total significant insertion gene number of each sample; and x is the total clean read number of each sample. F. 
The read number, the calculated depth cutoff, and the detected candidate driver gene numbers of 67 test samples. 

 

 
Figure 4. Comparison of SB Digestor and other tools. A-E. Comparison of the top 50 candidate genes identified with three different tools by Venn diagram (A) and 
scatter plot (B). To further demonstrate the performance stability of each tool, different numbers of reads were extracted randomly for candidate gene calling with different 
tools, namely, SB Digestor (C), TAPDANCE (D), and SB Driver (E). Then, the top genes were listed in the heatmap. The color indicates the abundance of each gene in tumor 
samples. 

 
As shown in Fig. 4C, the top genes were 

consistently identified by SB Digestor regardless of 
the number of reads extracted, while the other two 
algorithms did not yield consistent results (Fig. 4D, E). 
This indicates that after taking tumor heterogeneity 
into account, the algorithm of SB Digestor is more 
suitable for identifying SB tumor driver genes, even at 
a lower sequenced read number. Thus, when 
compared to the uniform depth cutoff for all SB 
tumors used by SB Driver and TAPDANCE, the depth 
cutoff tailored for each sample is more appropriate. 
From a biological perspective, due to tumor 
heterogeneity, the driver genes for each tumor or even 
the different cells from one tumor are different. 

Additionally, although more sequenced reads indeed 
enable the detection of more driver genes, SB Digestor 
can compensate even when a sample has fewer read 
numbers. 

SB Digestor more accurately identifies 
functional drivers 

In our previous study [5], to identify genes 
involved in Brca1-related tumorigenesis, we collected 
306 tumors from 4 transgenic mice strains: Brca1Co/Co; 
WAP-Cre; SB; T2Onc3-12740 (BrWSB40), Brca1Co/Co; 
WAP-Cre; SB; T2Onc3-12775 (BrWSB75), Brca1Co/Co; 
MMTV-Cre; SB; T2Onc3-12740 (BrMSB40), and 
Brca1Co/Co; MMTV-Cre; SB; T2Onc3-12775 (BrMSB75) 
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[5]. Using the same cutoff criteria, that is, appearance 
in at least 5% of tumors, in the 12740 and 12775 
strains, SB Digestor identified 61 putative driver 
genes (Supplementary Table 2) from the BrWSB 
group and 144 genes from the BrMSB group 
(Supplementary Table 3). Combining the two groups 
yielded a total of 170 (Supplementary Table 4) distinct 
genes, including 35 genes that were mutated by SB in 
both BrWSB and BrMSB mice (Fig. 5A). These 35 
genes were mutated at frequencies ranging from 
7-40% and should be considered the top tier of 
candidates (Fig. 5B). Next, we compared the 170 
newly identified genes with the 169 driver genes 
previously identified by TAPDANCE [5]. The data 
revealed that 50 genes were common, with 120 and 
119 genes that were specifically identified by SB 
Digestor and TAPDANCE, respectively (Fig. 5C). 
Further comparison between this 50-gene list and the 
35-gene list identified 18 common genes, whereas 32 
and 17 genes appeared in the separate lists (Fig. 5D). 

Among the 17 genes that were not identified by 
TAPDANCE, there were 3 groups of genes. The first 
group of genes was well-known cancer-related genes, 
i.e., Fgfr2, Hras, Tgfbr2, Nf1, and Erbb2. The second 
group contains genes that were originally annotated 
by MGI but were not officially named yet (Gm20388, 
Gm37240, Gm10801, and Gm10800). The third group 
of genes includes Arhgap42, Tcf12, Maml2, Prkg1, 
Wdr33, Uvrag, Mtmr2, and Atad2. Some of these 
genes have been implicated in cancer, although their 
functions remain unclear. Next, we conducted 
functional validation of two genes, Arhgap42 and 
Tcf12, which were mutated by SB at 15% and 14%, 
respectively (Fig. 5B). The insertion patterns and 
directions were distributed randomly for both genes 
(Fig. 5E, F), indicating that they are tumor 
suppressors. To provide further evidence for this 
model, we disrupted these two genes in G600 cancer 
cells by CRISPR‒Cas9-mediated gene editing. Our 
data indicated that knocking out these genes could 
significantly increase cell proliferation in vitro (Fig. 
5G). Furthermore, implantation of G600 cells into the 
fat pad of nude mice demonstrated that loss of 
Arhgap42 or Tcf12 dramatically increased 
tumorigenesis (Fig. 5H).  

Oncogenic functions of Fgf/Fgfr family 
members in the Brca1-associated 
tumorigenesis revealed by SB Digestor  

Next, we focused on fibroblast growth factor 
receptor 2 (Fgfr2), which has been implicated in the 
breast cancer formation [23-26]. The SB Digestor 
identified SB-mediated mutations in Fgfr2 in 23% of 
tumors (Fig. 6A), whereas it was not identified by the 
other two approaches. To further evaluate whether 

the gene Fgfr2 plays an active role in tumorigenesis, 
we first studied the insertion patterns of the SB 
transposon. Among 628330 reads, 551166 (87.7%) 
demonstrated transposon inserts that engage the CAG 
promoter in the same manner as the Fgfr2 transcript 
(Fig. 6B), suggesting that the transcription of Fgfr2 
might be upregulated in these tumors. Consistently, 
real-time RT‒PCR analysis detected higher mRNA 
expression levels of Fgfr2 in Brca1 mutant cells (Fig. 
6C), suggesting that Fgfr2 may act as an oncogene 
downstream of Brca1 to enhance Brca1-associated 
tumorigenesis. Further on this line, we have recently 
demonstrated that mammary activation of Fgfr2 
signaling in transgenic mice could initiate mammary 
tumorigenesis by suppressing Brca1 via the ERK-YY1 
axis [27]. Thus, these results not only highlight the 
power of SB Digestor in the identification of cancer 
drivers, but also reveal a potential reciprocal 
regulation of Brca1 and Fgfr2 signaling during 
tumorigenesis, which certainly deserves further 
studies. 

Fgfr2 is one of the four membrane-spanning 
tyrosine kinases that mediate the signaling of at least 
22 fibroblast growth factors (Fgfs) [28]. Next, we 
analyzed the involvement of other Fgfr and Fgf family 
members. The data revealed 100 tumors in 88 mice 
carrying SB insertions in various members of the 
Fgf/Fgfr families (Fig. 6A). RT‒PCR analysis also 
detected increased expression of Fgf7, Fgf10, and 
Fgf12 (Fig. 6C). Comparison of tumorigenesis in these 
88 mice with that in the control mice, which carry only 
mammary-specific Brca1 knockout by MMTV-Cre or 
WAP-Cre (Brca1-MSK n=118), indicating that the 
mice with Fgf pathway activation exhibited much 
faster tumor progression than the control mice (Fig. 
6D). The protein levels of Fgfr2 and FRS2 (an Fgfr2 
direct downstream gene) were also higher in 
Brca1-MSK/SB tumors than in Brca1-MSK tumors 
(Fig. 6E, F). These data suggest that activation of the 
Fgf pathway is a potent driver of Brca1-associated 
tumorigenesis. To further validate its function during 
tumor progression, we overexpressed Fgfr2 in 
MDA-MB-231 (231) cells (Fig. 6G) and 231-shBrca1 
cells (Fig. 6H), and the results showed that 
overexpression of Fgfr2 could dramatically activate 
tumor cell growth and downstream targets, 
regardless of whether Brca1 was wild-type (Fig. 6G, I) 
or knocked down (Fig. 6H, J). 

Taken together, these data indicated that our 
newly developed software, SB Digestor, could 
identify cancer drivers much more efficiently and 
consistently regardless of read number and tumor 
heterogeneity. 
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Figure 5. Candidate gene validation. A. Venn diagram indicating CIS genes for the BrWSB and BrMSB groups by using SB Digestor. B. Oncoplot shows the top overlapping 
35 genes in both BrWSB and BrMSB tumors and their frequency in all tumor samples. C. Venn diagram showing the candidate genes identified by SB Digestor and previously by 
TAPDANCE. D. Venn diagram showing 18 overlapping genes among the 35 common genes identified by SB Digestor (Fig. 5A) and 50 common genes (Fig. 5C). E-F. SB 
transposon insertion patterns (appearing at more than 0.2%) in Arhgap42 and Tcf12. G. Candidate tumor suppressor genes were knocked out by using the CRISPR‒Cas9 system 
in G600 cells to evaluate their function. Cell proliferation was monitored with real-time cell analysis. H. Candidate gene knockout tumor cells and control cells were inoculated 
into nude mice for tumorigenesis evaluation. 
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Figure 6. The Fgf/Fgfr pathway is a potent gain-of-function pathway for tumorigenesis. A. Oncoplot of the Fgf/Fgfr-related genes in both BrWSB and BrMSB tumors 
showing their frequency in all tumor samples. B. Representation of the distribution (percentage more than 5%) of CISs in the gene Fgfr2. Predicted effect of candidate genes, as 
indicated by their sense fraction of insertions based on the direction of the CAG promoter and the transcriptional direction of the inserted gene. C. The qPCR data revealed the 
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Fgfs (Fgf7, Fgf10, Fgf12) and Fgfr2 (Fgfr2b, Fgfr2c) mRNA levels in Brca1 wild-type and deficient tumors (n=3). D. Kaplan–Meier curve showing the mammary tumor-free rate for 
SB mice with Fgfs/Fgfr-driven mice (n = 88) and control mice (n=118): BrW (n = 62) and BrM (n = 56). Fgf/Fgfr-related tumors tended to show earlier onset than control tumors 
(p < 0.0001) according to the log-rank test. E-F. IF/IHC staining shows the comparison of Fgfr2 expression (E) and Fgfr2 downstream phosphorylation (F) levels between Brca1 
wild-type and Brca1-deficient mouse tumors. G. Cell viability comparison between control and Fgfr2-activated MDA-MB-231 cells. H. Brca1 knockdown and Brca1 knockdown 
with Fgfr2 activation in MDA-MB-231 cell lines. I. J. Representative Western blot showing Fgfr2 activation and Brca1 knockdown with Fgfr2 activation in the MDA-MB-231 cell 
line. 

 

Discussion 
High-throughput sequencing-based technology, 

including whole genome/exome analysis and 
transcriptomic analysis, has helped to illustrate the 
genomic landscape of human cancers [29, 30]. 
However, it is still challenging to distinguish drivers 
based only on the analysis of massive genomic 
resources. Due to Sleeping Beauty transposon’s 
inherent ability to continually move among 
chromosomal locations, this transposon mutagenesis 
system offers a function-based approach to precisely 
identify driver genes to reveal how cancer develops 
and evolves [2, 31, 32]. Also, it can spontaneously and 
continually modulate driver genes in an unbiased 
manner in an in vivo tumor model, it is perfectly 
adapted to various experiments that could help 
researchers decipher the impact of the tumor 
microenvironment on the cancer biology [33, 34]. 
Therefore, it is critical to comprehensively decipher 
the SB insertional spectrum.  

Previous studies have applied different tools and 
algorithms to characterize the SB insertion spectrum 
to identify SB-trapped driver genes [16, 17, 19]. The 
locus-centric algorithms, such as TAPDANCE and 
GKC, can effectively identify highly condensed SB 
insertion sites, however, they are moderately effective 
in defining scattered SB insertions, and therefore, the 
insertion sites identified are fewer and relatively 
concentrated. Although the most recently developed 
gene-centric tool SB Driver identifies driver genes in 
an unbiased manner, which can complement some 
scattered SB insertion genes, the sequence depth 
cutoff determination of this software is experience 
based and the same value for all tumors, which would 
compromise its ability to eliminate artificial effects 
and correctly account for the intertumoral 
heterogeneity. The intertumoral heterogeneity might 
cause the failure of driver gene identification. For 
example, if we have 3 tumors with the same number 
of sequenced reads, 10000, due to tumor 
heterogeneity, if the driver gene numbers of these 3 
tumors are 10, 100, 1000, then the average depths of 
these genes are 1000, 100, 10. Therefore, if we set 1000 
as the depth cutoff, we would miss many 
true-positive candidate genes in the last two samples, 
but if we set it as 10, we may obtain many 
false-positive candidate genes in the first two 
samples. 

In this study, we have developed SB Digestor, 
which is a gene-centric and user-friendly, Perl-coded 
tool to enhance tumor driver gene identification and 
make better use of the SB transposon system. In our 
computational algorithm, we consider not only 
statistical significance, similar to other tools, but also 
the biological aspect-tumor heterogeneity. We first 
detect significant SB insertion genes by binomial test. 
Then we conducted saturation analysis to describe the 
relationship between identified gene number and 
sequenced read number for each tumor individually 
to identify the intertumoral heterogeneity, based on 
which we calculated the tailored driver gene 
identification parameters (constant a and b) for 
further data processing. As each tumor was analyzed 
separately, we obtained stable results, no matter how 
many sequence reads were available or how 
large-scale the samples were. The application of 
saturation analysis enables a more exact correlation 
between the read number and identified gene 
number. Therefore, it benefits the data depth cutoff 
threshold determination. The principle might also be 
adapted for general tumor genome analysis. 

As we expected, when we reanalyzed our 
previously published function-based driver gene 
screening dataset (306 tumors) [5], we identified 170 
driver genes responsible for Brca1-related 
tumorigenesis. Among these, we have identified 
additional well-known drivers, including Erbb2 and 
Hras, and other potential drivers, such as Fgfr2, 
Arhgap42, and Tcf12, which failed to be discovered by 
other tools. In our 67 training samples, compared to 
other tools, SB Digestor showed more stable 
performance with different numbers of randomly 
extracted sequencing reads, which indicates that even 
a driver clone at an initial stage or present at a lower 
proportion could also be detected by our algorithm. 
This study also provided some clues to explain why 
some important tumor driver genes, such as Fgfr2, 
were missed in our previous study [5]. Further 
validation of Arhgap42 and Tcf12, the functions of 
which in cancer were previously unclear, indicated 
that both serve as tumor suppressor genes for 
Brca1-associated tumorigenesis. 

Many previous studies have identified Fgfr2 as 
an oncogene for breast cancer [35, 36], yet its role in 
BRCA1-associated breast cancer remains unclear. 
Using both parental and shBrca1 knockdown 
MDA-MB-231 cells, we demonstrated that overex-
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pression of FGFR2 could dramatically promote tumor 
cell growth and activate downstream targets, 
illustrating the oncogenic role of FGFR2 and its 
related signaling in breast cancers regardless of 
BRCA1 status. To further illustrate the role of Fgfr2 in 
BRCA1-associated breast cancer, we studied a mouse 
strain carrying an Fgfr2 allele (Fgfr2pLoxpneo-S252W) [37] 
that can be activated specifically in mammary tissue 
after crossing with a Cre transgenic mouse [38]. We 
demonstrated that the activation of Fgfr2 signaling 
could initiate tumor formation by suppressing Brca1 
via the ERK-YY1 axis. Our subsequent functional 
study in Fgfr2/Brca1 double mutant mice confirmed 
the cooperation between Fgfr2 activation and Brca1 
deficiency in accelerating mammary tumorigenesis 
[27]. Thus, these results indicate the accuracy of SB 
Digestor in the identification of cancer drivers. 

In summary, after considering both statistical 
and biological factors in our computational algorithm, 
the performance of SB Digestor is enhanced greatly in 
terms of both accuracy and stability. SB Digestor 
could identify the intertumoral heterogeneity and 
shape the relationship between sequenced read 
number and identified driver gene number. Based on 
this property, it defines an appropriate read depth 
cutoff for each tumor to dissect the effects of tumor 
heterogeneity to further help driver gene detection. 
More specifically, it can avoid the obvious drawbacks 
of using a uniform depth threshold for all tumors, the 
main manifestations of which are the exclusion of true 
driver events when the uniform depth is too high and 
the inclusion of false-positive events when it is too 
low. Thus, the tool we have provided, SB Digestor, 
can enhance the utility of SB insertional mutagenesis 
to prioritize drivers and enhance our understanding 
and interrogation of the natural course of cancers. 

Materials and Methods 
DNA sequencing and data pre-processing 

SB mouse experiments were performed as in our 
previously published paper [5]. Sixty-seven tumor 
samples from Sleeping Beauty transposon screens 
were collected. DNA sequences with transposon were 
identified and enriched by restriction enzymes BfaI 
and NlaIII. Then a sequence library was prepared by 
using Splinkerette-PCR [39]. Following that is a 
second round of PCR with SB Illumina adaptors. 
DNA sequencing was performed with 150 bp 
paired-end reads on the Illumina HiSeq X Ten 
platform. The sequence reads were then filtered by 
removing sequencing adapters, SB transposon 
sequences and splinkerette linker sequences by using 
cutadapt version 1.18. Here, we also discarded the 
processed sequences that were shorter than 20 bp 

since they were prone to mapping to multiple 
genomic locations. Then we obtained the clean reads. 
The clean reads were aligned to the mouse reference 
genome (mm10: Mus_musculus.GRCm38.dna. 
primary_assembly.fa) by bowtie2 version 2.2.5 with 
default parameter. 

The genome was annotated with genes by using 
Mus_musculus.GRCm38.94.gff3 (n=54532 genes, 
including bidirectional_promoter_lncRNAs, ncRNAs, 
pseudogenes, and genes). Here, we aimed to identify 
either protein-coding genes or other noncoding 
genome structures that contribute to tumorigenesis. 
Note that the GFF3 file was downloaded from 
Ensembl. Other annotation sources, such as UCSC 
and GENCODE, could also be used. 

Gene knockout and functional validation 
Candidate genes were knocked out by using the 

CRISPR‒Cas9 system with sgRNA, Arhgap42-sg1 
(AGTCACTGAAAGAATTCGCA), Arhgap42-sg2 
(GACTTCCAGTTTGAGTGTAT), Tcf12-sg1 (AGTA 
GTCAGTTCAGCGGGTC) and Tcf12-sg2 (ACTTAC 
TCTAGATGAATCAT) or overexpressed with 
pBp-FGFR2c-WT in the G600 cell lines (Addgene 
plasmid No. 45699). 

Cell growth curves were measured according to 
the cellular density at seeding using impedance 
measurements with the xCELLigence Real-Time Cell 
Analysis system (Agilent Technologies) with an 
E-plate. 

All mouse experiments were performed under 
the ethical guidelines of the University of Macau 
(animal protocol number: UMAEC-037-2015). Mice 
were housed in a specific-pathogen-free (SPF) facility 
at 23–25 °C on a 12-h light/dark cycle. Cultured G600 
cells were dissociated into single cells and 
resuspended in 50% Matrigel (Corning, 356234) for 
inoculation. Nude mice were anesthetized with 
tribromoethanol, and a small abdominal incision was 
made. Mammary fat pads were exposed gently by 
forceps, and 1 million cells were injected using a 
microliter syringe with a 27-gauge needle. Tumor 
volume was calculated as V = (W2 × L)/2. 

Quantitative Real-Time (qRT)-PCR: A 
QuantiTect reverse transcription kit (205313; Qiagen, 
Hilden, Germany) was used for reverse transcription, 
and RT‒qPCR was performed by a QuantStudio 7 
Flex real-time PCR system (Thermo Fisher Scientific, 
Waltham, MA). The primer sequences are listed in 
Table 1. 

Immunofluorescence (IF) & Immunohisto-
chemistry (IHC) staining: Tumor tissue sections were 
fixed with paraformaldehyde (4% v/v). Deparaf-
finized thin sections of the tumors were heated with 
Retriever (62700-10; Electron Microscopy Sciences, 
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Hatfield, PA) in Buffer A (citrate; pH 6.0) followed by 
antibody staining and Fgfr2 (Abcam, ab10648, 1:500) 
and p-FRS2 (Abcam, ab10425, 1:500) antibodies. A 
NikonA1R confocal system (NikonCorp., Tokyo, 
Japan) was used to acquire images. 

 

Table 1. Primer sequences 

Oligonucleotides 
Primer: mFgfr2 IIIb Forward: AAGGTTTACAGCGATGCCCA 
Primer: mFgfr2 IIIb Reverse: AGAGCCAGCACTTCTGCATT 
Primer: mFgfr2 IIIc Forward: GTGTTAACACCACGGACAAA 
Primer: mFgfr2 IIIc Reverse: TGGCAGAACTGTCAACCATG 
Primer: mFgf7 Forward: GAACAAAAGTCAAGGAGCAACC 
Primer: mFgf7 Reverse: GTCATGGGCCTCCTCCTATT 
Primer: mFgf10 Forward: GAGAAGAACGGCAAGGTCAG 
Primer: mFgf10 Reverse: CTCTCCTGGGAGCTCCTTTT 
Primer: mFgf12 Forward: GTACCATTGATGGGACCAAGG 
Primer: mFgf12 Reverse: ACGCAGTCCTACAGGAATTAGAT 

 
 
Viral Infection and Western blotting: Lentivirus 

were used to infect MDA-MB-231 or MDA-MB-231- 
shBRCA1 cells with FGFR2, and infected cells were 
selected; then, these selected cells were used for cell 
viability or Western blotting assays. Western blotting 
antibodies were as follows: anti-FGFR2 (Abcam, 
ab10648, 1:1000); phospho-FRS2-α (CST, #3864L, 
1:1000); and β-actin (A5316, Sigma, 1:4000). 

Abbreviations 
SB: Sleeping Beauty; CIS: Common insertion 

sites. 

Supplementary Material 
Supplementary tables.  
https://www.ijbs.com/v19p1764s1.zip 
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