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Abstract 

The heterogeneity of nasopharyngeal carcinoma (NPC) leads to mixed clinical outcomes. We collected 
92 regions of interest from 41 biopsies of patients with untreated NPC and obtained their transcripts 
using GeoMx Digital Spatial Profiling (DSP) technology. Spatial heterogeneity was determined by 
measuring the expression of marker genes in tumor cell-enriched (PanCK-expressing), immune 
cell-enriched (CD45-expressing), and normal epithelial (Endo) regions. We screened 16 prognostic 
markers in tumor cell-enriched regions and 4 prognostic markers in immune cell-enriched regions. The 
levels of CD8+ T follicular helper T cells, activated NK cells, and M0 macrophage contents were higher in 
tumor cell-enriched regions than in immune cell-enriched regions. Conversely, plasma cell and M2 
macrophage levels were lower. The follicular helper T cells in tumor cell-enriched regions were 
negatively correlated with resting NK cells and positively correlated with activated NK cells. In immune 
cell-enriched regions, this relationship was reversed. We also explored the heterogeneity of HLA gene 
families, immune checkpoints, and metabolism-related genes in the three regions. In tumor cell-enriched 
regions, we obtained 19 prognosis-related metabolism genes via univariate cox analysis. We used 
multiplex immunofluorescence to verify the elevated expression of SLC8A1 and MDH1 in immune 
cell-enriched regions and tumor cell-enriched regions, respectively, both of which were associated with 
prognosis of NPC. In conclusion, we explored the spatial heterogeneity of the NPC tumor environment 
and found specific diagnostic and prognostic markers that can be used to differentiate tumor 
cell-enriched regions from immune cell-enriched regions in NPC. 

Keywords: Nasopharyngeal carcinoma, Tumor microenvironment, Immune infiltration, Metabolic marker, Immune checkpoints, 
Digital spatial profiling 

Introduction 
Nasopharyngeal carcinoma (NPC) is mainly 

prevalent in North Africa, the Middle East, and 
Southeast Asia. Its occurrence is mainly attributed to 
the local environment, genetics, and infection with 

Epstein-Barr virus (EBV) [1]. In 2018, approximately 
130,000 cases were confirmed and over 70,000 deaths 
of NPC were recorded globally. In 2020, more than 
130,000 new cases of NPC and 80,000 deaths occurred 
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worldwide. These numbers show a consistently high 
prevalence and increasing mortality rate due to the 
disease [2]. Approximately 85% of these patients 
reside in Asia, and those at high risk of developing 
NPC are typically diagnosed at 45-59 years of age [3]. 
Radiotherapy and immune-targeted therapy are the 
two common clinical treatments for NPC, each with 
its own drawbacks. Although radiotherapy has been 
partly successful in treating NPC, its side effects are 
not well tolerated. As for immune-targeted therapy, 
the heterogeneity of the tumor microenvironment 
(TME) in NPC patients can lead to uneven outcomes. 
The disease burden may be lowered by determining 
the interactions among components of the NPC 
microenvironment and developing biomarkers for 
earlier diagnosis [4]. 

The tumor microenvironment is composed of 
tumor cells, immune cells, stromal cells, metabolites, 
cytokines, and the extracellular matrix [5, 6]. It is 
highly heterogeneous and complex in different 
patients with NPC [7]. Different regions show distinct 
cellular composition, active metabolic pathways, and 
overall function [8]. The role of cells and the 
extracellular matrix at these different locations remain 
unknown, suggesting the need to establish 
region-specific biomarkers for clinical diagnosis and 
therapy. 

The current study explored the spatial 
heterogeneity of NPCs in both composition and 
function. The digital spatial profiling (DSP) 
technology [9] was used to measure immune cell 
fractions, immune checkpoints, immune function, 
activities of HLA genes, immune cell functions 
impacting survival, and prognostic biomarkers in 
tumor cells (PanCK-expressing) and in immune cells 
areas (CD45-expressing). We also extracted 
metabolism-related genes, explored the signaling 
pathways involving these genes at different regions, 
and screened for prognosis-related metabolic markers 
in tumor cells areas. 

Methods 
Patient sample collection 

We collected paraffin-embedded tumor tissue 
from 58 NPC patients who underwent initial 
nasopharyngeal biopsy without treatment at the 
Affiliated Houjie Hospital of Guangdong Medical 
University. This study was approved by the Ethics 
and Scientific Committee of the Affiliated Houjie 
Hospital of Guangdong Medical University. A tissue 
microarray (TMA) was constructed with 1.5 mm2 
tissue cores obtained from 58 patients using a 
TMArrayer (Pathology Devices). Regions consisting 
of high tumor content with large numbers of tumor 

infiltrating lymphocytes (TILS) were selected 
following preparation of the TMA block using H&E 
sections from the whole tissue block to ensure the 
presence of NPC cells in each sample. Subsequent 
DSP RNA assays were performed using 41 cores 
including 95 regions of interest (41 pairs of regions 
enriched with tumor and immune cells, and 13 
regions enriched with normal epithelial cells). Three 
regions of interest (ROIs) were excluded from paired 
analyses due to loss of tissue integrity during staining. 
Finally, 38 cores containing paired tumor cell- and 
immune cell-enriched ROIs were included in the 
differential analysis. 

Another commercial NPC TAM (Shanghai 
Mingyi Biotechnology Co., Ltd) containing 126 cases 
of NPC tissue were used for Immunofluorescence 
analysis. Five cores were excluded from analyses due 
to loss of tissue integrity during staining. Extreme 
values (< 10th percentile; > 90th percentile) were 
excluded from survival analysis. 

Digital spatial profiling and analysis 
NanoString GeoMx DSP RNA assays were 

performed at CapitalBio Technology (Beijing, China) 
using the standard protocol. Slides were prepared 
following the Manual RNA Slide Preparation Protocol 
in the GeoMx DSP Slide Preparation User Manual 
(NanoString, MAN-10115-05 for software v2.3). The 
Whole Transcriptome Atlas (WTA) probe reagent was 
added to slide. We stained the tissue with GeoMx 
Solid Tumor TME Morphology Kit (Nanostring, 
Cat#GMX-RNA-MORPH-HST-12) to distinguish 
various morphology: epithelial cells were positively 
stained with PanCK while immune cells were 
positively stained with CD45, and nuclear stained 
with SYTO13. The pathologist distinguishes normal 
epithelial cells from cancerous epithelial cells based 
on histological morphology. Regions of interest 
(ROIs) were selected and assessed by a pathologist 
and illuminated using UV light. The indexing 
oligonucleotides released from each ROI were 
collected and deposited into designated wells on a 
microtiter plate. DSP assay sequencing data were 
processed with the GeoMx NGS Pipeline (DND). 
After sequencing, the reads were trimmed, merged, 
and aligned to a list of indexing oligos to identify the 
source probe. The unique molecular identifier (UMI) 
region of each read was used to remove PCR 
duplicates and duplicate reads, thus converting reads 
into digital counts. The limit of quantitation (LOQ) 
was estimated as the geometric mean of the negative 
control probes plus two geometric standard 
deviations of the negative control probes. Targets that 
consistently fell below the LOQ were removed, and 
the datasets were normalized via upper quartile (Q3) 
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normalization. We used the prcomp function to 
perform principal component analysis from the gene 
expression matrix and plotted it with the 
scatterplot3d package. 

Differential expression and enrichment 
analysis 

Comparisons between the two groups were 
performed using the Mann-Whitney U test or 
Wilcoxon signed-ranks test. Genes of significance 
were defined based on a fold change > 1.5 and 
p-values <0.05. Gene ontology (GO) enrichment and 
KEGG enrichment analyses of DEGs were performed 
using clusterProfiler R-packages with Benjamini- 
Hochberg multiple testing adjustment. 

Weighted correlation network analysis 
(WGCNA) and protein-protein interaction 
(PPI) networks of differentially expressed 
genes 

Weighted correlation network analysis 
(WGCNA) of 2940 differential genes filtered from 
18675 genes from matched 38 PanCK-expressing and 
38 CD45-expressing regions was performed using the 
WGCNA and limma packages. The gene expression 
matrix was converted into a Pearson correlation 
coefficient matrix. The adjacency matrix was 
constructed based on the optimal power value (power 
= 6, Scale Free Topology R2 =0.89) for the Pearson 
correlation coefficient matrix. A topology overlap 
matrix (TOM) was constructed to perform 
hierarchical clustering with at least 50 genes per 
module (minClusterSize =50). The cutreeDynamic 
function was used to automatically cut the clustered 
modules and merge similar modules (abline = 0.25). 
The turquoise module contained 569 genes. The green 
module carried 267 genes and the blue module 
included 1010 genes. The genes of modules were 
extracted for GO (q =0.05) and KEGG (p =0.05) 
functional enrichment analysis. The R packages 
involved in these analyses were: clusterProfiler, 
org.Hs.eg.db, enrichplot, and ggplot2. Genes from the 
turquoise module (n=569), green module (n=267) and 
blue module (n=1010) were respectively submitted to 
the STRING database (http://www.string-db.org/). 
Parameter settings were as follows: network type (full 
STRING network), meaning of network edges 
(confidence), and minimum required interaction score 
(high confidence (0.700). Protein interaction data 
obtained from the STRING database were entered 
into the Cytoscape software. The cytoHubba plugin 
was used to screen core genes in the PPI network. 

Prognostic gene screening 
The blue module (n=1010) obtained from 38 

PanCK-expressing regions was screened for 16 
prognosis-related genes by univariate Cox analysis. 
The optimal cutoff value of each of these genes was 
determined according to the surv_cutpoint and 
surv_categorize functions. The expression of each 
gene was grouped according to the optimal cutoff 
value, followed by survival analysis with the log-rank 
test. The turquoise module (n=569) of 38 
CD45-expressing regions was screened for four 
prognosis-related genes by univariate Cox analysis. 
The optimal cutoff value for each of these four genes 
was determined according to the surv_cutpoint and 
surv_categorize functions. The expression of each 
gene was categorized according to the optimal cutoff 
value, followed by survival analysis with the log-rank 
test. The R packages involved in the above process 
were survival and survminer. 

Immune infiltration analysis 
The relative content of 22 immune cells was 

calculated for each of the 92 ROIs (40 
PanCK-expressing, 39 CD45-expressing, and 13 Endo) 
using the CIBERSORT algorithm. Immune cells were 
visualized in 90 ROIs (39 PanCK-expressing, 38 
CD45-expressing, and 13 Endo) at P < 0.05. 
Differences in immune cell levels among the three 
regions (39 PanCK-expressing, 38 CD45-expressing, 
and 13 Endo) were identified using the Kruskal-Wallis 
test with the reshape2 and ggpubr packages. A set of 
genes related to immune function was obtained based 
on previous studies [10]. Single-sample Gene Set 
Enrichment Analysis (GSEA) was performed using 
the packages GSVA, limma, and GSEABase based on 
the immune function-related gene set to obtain the 
corresponding immune function scores for each ROI 
(92 ROIs in total). The scores among the three regions 
were visualized via the Wilcoxon test using the 
limma, ggplot2, and ggpubr packages. A correlation 
analysis of the immune cell contents of 
PanCK-expressing and CD45-expressing regions was 
performed separately using the corrplot package with 
the Spearman method. The cutoff values of 22 
immune cell contents in PanCK-expressing regions 
were obtained using the surv_cutpoint and 
surv_categorize functions, and then grouped 
according to the cutoff values. Survival analysis of 
immune cells in PanCK-expressing regions was 
performed using the limma, survival, and survminer 
packages with the log-rank test (P <0.05). Similarly, 
the immune function scores were grouped according 
to cutoff values and the survival analyses of immune 
function scores in PanCK- and CD45-expressing 
regions were performed using the limma, survival, 
and survminer packages with the log-rank test (P 
<0.05).  
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HLA expression and immune checkpoint 
analysis 

Differential expression of HLA genes in the three 
regions (92 ROIs) was determined using the limma, 
reshape2, ggplot2, and ggpubr packages via 
Kruskal-Wallis test. Differential expression of 
immune checkpoint-related genes in the three regions 
was explored using limma, ggplot2 and ggpubr 
packages via Wilcoxon test. Correlation analysis 
between immune checkpoint gene expression and 
immune cell levels was performed in PanCK- and 
CD45-expressing regions using the limma, reshape2, 
tidyverse, and ggplot2 packages with Spearman 
correlation coefficients. This analysis was visualized. 

Analysis of metabolism-related genes  
We obtained 944 genes related to metabolism 

based on the literature [11]. The file 
"c2.cp.kegg.v7.5.1.symbols.gmt" was obtained from 
the Gene Set Enrichment Analysis (GSEA) website 
(http://www.gsea-msigdb.org/gsea/downloads.jsp)
. GSVA of metabolism-related genes was performed 
in 92 ROIs using the packages GSEABase, GSVA, 
limma, and pheatmap. Parameters were set to P < 0.05 
and only 20 pathways were shown. A total of 134 
genes were obtained by intersecting 944 metabolic 
genes with 2940 differential genes (PanCK- vs 
CD45-expressing regions) and plotting the Venn 
diagram based on the Bioinformatics (http:// 
bioinformatics.psb.ugent.be/webtools/Venn/) web-
site. Univariate Cox analysis (P < 0.05) of 134 genes 
was performed in 38 (PanCK-expressing) ROIs to 
screen for prognosis-related metabolic genes, survival 
analysis, and ROC curve plotting. A total of 171 genes 
were obtained by intersecting 944 metabolic genes 
with 2514 differential genes (PanCK-expressing vs 
Endo regions). Univariate cox analysis, survival 
analysis, and ROC curve plotting of 171 genes were 
performed in 38 (PanCK-expressing) ROIs. The R 
packages involved in univariate cox analysis, survival 
analysis, and ROC curve plotting were survivor, 
survminer, and timeROC. 

Multiplex immunofluorescence staining 
TMA section was deparaffinized to retrieve the 

antigen and block endogenous peroxidase, according 
to manufacturer's instructions. Tissue sections were 
blocked with 3% BSA in TBST for 30 min, and then 
incubated with the antibody for CD45 (ZSGB-BIO, 
Cat#ZM-0183) for 30 min. The antibody was detected 
using the corresponding secondary antibody tagged 
with HRP, before visualization using CY3-TSA. 
Subsequently, antigen was retrieved again to prepare 
the slides for the next antibody. All samples were 
stained sequentially with CK (ZSGB-BIO, 

Cat#ZM0069) visualized with FITC-TSA, MDH1 
(Proteintech, Cat#15904-1-AP) visualized with Opal 
647 TSA, and SLC8A1 (Abcam, Cat# ab2869) 
visualized with Opal 594 TSA. Slides were 
counterstained with DAPI for nuclei visualization for 
10 min and coverslipped using the antifade mountant. 
All markers stained with multiplex immuno-
fluorescence were reviewed by a pathologist.  

Single cell analysis 
Single-cell transcriptome data (GSE162025) from 

10 NPC tissues with 82,622 cells was analyzed using 
Seurat to deal with the expression matrix. By setting 
filtering parameters, we filtered out cells with 
mitochondrial gene ratio>10% to exclude cells in 
abnormal state, and filtered out cells with gene 
number<500 or >3000 to exclude data with poor 
sequencing quality and non-single cells, and finally 
obtained 75710 cells. We used the Harmony package 
for data integration and batch removal. We performed 
unsupervised clustering using the default parameters 
in the Seurat package and then annotated these cell 
populations. We used the FindAllMarkers function in 
the Seurat package to calculate the differential genes 
between cell populations (log2FC=0.25 and P<0.05). 
The obtained differential genes were sorted to get the 
top ten highly expressed genes with significant 
differences for each cell population, and the 
expression matrix of these genes was obtained using 
the FetchData function, and plotted using the corrplot 
package. 

Image analysis 
All immunofluorescence slides were scanned 

using the Pannoramic Digital Slide Scanner 
(3DHistech) and images visualized in CaseViewer2.4 
(3DHistech). TMA core images were analyzed in 
HALO (Indica Labs). Area Quantification FL V2.1 
module in Halo V3.0.311.314 analysis software was 
used to quantify the positive area and colocalization- 
positive area of the target region, respectively. 
Extreme values (<10th percentile; > 90th percentile) 
were excluded to minimize data variability. 

Results 
Differential expression and enrichment 
analysis  

The study protocol is shown in Figure 1. We 
included 41 patients with NPC using fluorescent 
anti-PanCK (an epithelial marker) and anti-CD45 (an 
immune marker) antibodies to label the ROIs. We 
distinguished normal epithelial cells from tumor cells 
based on pathologic morphology in the PanCK- 
expressing ROIs. Finally, a total of 40 tumor cell 
(PanCK-expressing) ROIs, 39 immune cell (CD45- 
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expressing) and 13 normal epithelial cell (Endo) ROIs 
were labeled (Fig. 2A and Supplementary Table 1). 
The data from the validation cohort used for 
multiplex immunofluorescence are described in 
Supplementary Table 2. The results of principal 
component analysis are shown in Figure 2B, Figure s1. 
As shown in Figure 2C, differential gene expression 
across regions was counted from 18675 genes: 2940 
(PanCK- vs CD45-expressing regions), 3660 (Endo vs 
CD45-expressing regions), and 2514 (PanCK- 
expressing vs Endo regions). These were determined 
by differential analysis with a fold change > 1.5 and 
p-values <0.05 (Fig. 2C, Fig. s1B and Fig.s1G). We 
performed GO and KEGG enrichment analysis of 
these differential genes. A total of 2940 differentially 
expressed genes (DEGs) between PanCK- vs CD45- 
expressing regions included those coding for products 
mainly localized to the basement membrane, cell−cell 
adherens junctions, and cell−cell junctions. These 
performed various functions including cell adhesion 
mediator activity, cell-adhesion molecule binding, 
and collagen-binding. They regulated pathways 
including cell adhesion molecules, cytokine−cytokine 
receptor interaction, and leukocyte transendothelial 
migration. They participated in biological processes 
including leukocyte cell−cell adhesion, leukocyte 
migration, and leukocyte proliferation (Fig. 2D, E and 
F). A total of 3660 DEGs in Endo vs CD45-expressing 
regions coded products mainly localized to the apical 
portion of the cell, apical plasma membrane, and 
axoneme. These gene products are involved in 
actin-binding, cell adhesion mediator activity, and cell 
adhesion molecule binding. They regulate pathways 
including ECM−receptor interaction, focal adhesion, 
and chemokine signaling pathway. They participate 
in biological processes including cell−substrate 
adhesion, extracellular matrix organization, and 
hemostasis (Fig. s1C, D and E). A total of 2514 DEGs 
in PanCK-expressing vs. Endo regions included those 
coding for products mainly localized to the axoneme, 
apical part of cell, and apical plasma membrane. 
These perform functions including ATP−dependent 
microtubule motor activity, cell adhesion molecule 
binding and DNA replication origin binding. They 
regulate pathways of the cell cycle, p53 signaling, 
apoptosis, and DNA replication. They participated in 
biological processes including cilium assembly, 
altered DNA conformation, and axoneme assembly 
(Fig. s1H, I and G). 

Analysis of regional core genes using WGCNA 
and PPI networks 

A total of 2940 DEGs between matched 38 
PanCK- and 38 CD45-expressing regions were subjec-
ted to WGCNA. After merging dynamic modules by 

hierarchical clustering, a total of 6 modules were 
obtained. The blue module genes were significantly 
positively correlated with PanCK expression (r=0.91 
and P=7e-30), while the turquoise module was 
significantly positively correlated with CD45 
expression (r=0.73 and P= 8e−14) (Fig. 3A). A total of 
1010 genes in the blue module coded for products 
mainly localized in cell−cell junctions, cell−substrate 
junctions, and focal adhesions. These genes play a role 
in molecular functions such as adhesion binding, cell 
adhesion mediator activity, and virus receptor 
activity. They are involved in biological processes 
such as epidermis development, cell junction 
assembly, and skin development (Fig. s2A). A total of 
569 genes in the turquoise module mainly coded for 
products localized external to the plasma membranes, 
immunological synapses, and secretory granule 
membrane. These genes mediate C−C chemokine 
binding, GTPase regulator activity, and immune 
receptor activity. They are involved in biological 
processes such as T cell activation, lymphocyte 
proliferation, and lymphocyte differentiation (Fig. 
s2A). The genes of the blue module are mainly 
enriched in pathways involved in arrhythmogenic 
right ventricular cardiomyopathy, cellular adhesion, 
and ECM-receptor interaction. The genes of the 
turquoise module were mainly enriched in pathways 
such as chemokine signaling, natural killer cell- 
mediated cytotoxicity, and T cell receptor signaling 
(Fig. s2B). The blue modular genes including CDK1, 
CCNB1, MCM2, TOP2A, CDC6, DTL, TPX2, UBE2C, 
KIF2C, RFC4, TYMS, MCM4, NUSAP1, MCM7, 
CENPF, FOXM1, RRM1, PCNA, MRPL13 and MRPL12 
as the core genes were used to construct the PPI 
network. Turquoise modular genes including CD4, 
CD8A, CD3E, CD247, ZAP70, LCK, CD3G, CD3D, FYN, 
VAV1, LCP2, CD28, ITK, PTPRC, LAT, CD2, CD80, 
PRKCQ, IL2RB and CTLA4 as the core genes were used 
to construct the PPI network (Fig. s2C). Enriched 
genes in the green module related to immune-related 
functions were not obvious (Fig. s2A, B and C). 

Analysis of prognostic gene 
A total of 1010 genes in the blue module 

involving PanCK-expressing regions were screened 
for 16 prognosis-related genes via univariate Cox 
analysis (P <0.05). In PanCK-expressing regions, the 
genes CD27, CEP85L, DOK3, MAST4, SEC24A and 
UPK3B appeared to serve as protection factors. 
Conversely, the genes BZW2, DLL4, GTPBP4, LSM4, 
MBD3, PAICS, PALM2AKAP2, PAQR4, RUVBL1 and 
TGS1 represent risk factors; the higher the expression 
of these genes, the higher the risk of death in patients 
with NPC (Fig. 3B). Survival analysis showed that the 
higher expression of CD27 (P =0.001), CEP85L (P < 
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0.001), DOK3 (P <0.001), MAST4 (P<0.001), SEC24A (P 
<0.001), and UPK3B (P <0.001) in PanCK-expressing 
regions of NPC patients correlated with better 
prognosis. In contrast, the expression of BZW2 (P 
<0.001), DLL4 (P <0.001), GTPBP4 (P <0.001), LSM4 (P 
<0.001), MBD3 (P <0.001), PAICS (P <0.001), 
PALM2AKAP2 (P =0.001), PAQR4 (P <0.001), RUVBL1 
(P =0.006) and TGS1 (P =0.124), correlated positively 
with worse prognosis in patients with NPC (Fig. 3C 
and Fig. s3). A total of 569 genes in the turquoise 
module involving CD45-expressing regions were 
screened for 4 prognosis-related genes via univariate 
Cox analysis (P <0.05). Higher expression of 
CALHM2, CCL21, FCGR2C, and SLC8A1 was 
positively associated with poor survival in patients 
with NPC (Fig. 3B). Survival analysis showed that 

higher expression of CALHM2 (P <0.001), CCL21 (P 
=0.012), FCGR2C (P <0.001), and SLC8A1 (P =0.003) 
was associated with poorer prognosis in patients with 
NPC (Fig. 3D). Due to the limitations of multi-color 
immunofluorescence techniques, we performed 
immunostaining including panCK, CD45 and 
SLC8A1. We selected SLC8A1 with the most obvious 
prognostic effect in the CD45 enriched region for 
verification (Fig. 3E). Both RNA level and protein 
level in CD45-expressing regions SLC8A1 was higher 
than that in PanCK-expressing regions (Fig. 3F). In 
CD45-expressing regions, the higher the expression of 
SLC8A1 (P = 0.210), the worse was the prognosis of 
NPC. Although statistically not significant, the trend 
was consistent with the transcriptional level (Fig. 3D). 

 

 
Figure 1. Flow chart of the study.  
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Figure 2. Differential expression and enrichment analysis. (A) Selecting ROIs: PanCK-expressing, CD45-expressing and Endo regions. (B) Principal Component Analysis. 
(C) Differential Analysis (PanCK-expressing vs CD45-expressing regions), red: upregulated genes; green: downregulated genes. (D-E) GO enrichment analysis of differentially 
expressed genes (PanCK-expressing vs. CD45-expressing regions). (F) KEGG enrichment analysis of differentially expressed genes (PanCK vs CD45).  

 
 

Immune infiltration of tumor tissue 
The relative levels of 22 immune cells in 90 ROIs 

(39 PanCK-expressing, 38 CD45-expressing, and 13 
Endo) are shown in Figure 4A and Supplementary 
Figure s4A. The number of plasma cells, CD8+ T cells, 
follicular helper T cells, activated NK cells, mono-
cytes, M0 macrophages, M2 macrophages, resting 
mast cells, and activated mast cells differed among the 
three groups (P <0.05, 39 PanCK-expressing, 38 
CD45-expressing and 13 Endo). The relative levels of 
plasma cells were the highest in CD45-expressing 
regions, while the number of CD8+ T, follicular helper 
T cells, and activated NK cells were the highest in 
PanCK-expressing regions. M0 macrophages were the 
highest in PanCK-expressing regions, while M2 
macrophages were the highest in CD45-expressing 
regions (Fig. 4A). Differences in immune function of 
the three regions are displayed in Figure 4B and 
Supplementary Figure s4B. As shown in Figure 4C, 
the correlation of each type of immune cell differed 
between regions. In PanCK-expressing regions, 
follicular helper T cells were negatively correlated 
with resting NK cells (P <0.05) and positively 
correlated with activated NK cells (P <0.05). 
Conversely, in CD45-expressing regions, follicular 
helper T cells were positively correlated with resting 
NK cells (P <0.05) and negatively correlated with 
activated NK cells (P <0.05). In PanCK-expressing 
regions, Tregs were positively correlated with BTLA 
(P <0.01), resting mast cells with VTCN1 (P <0.001), 

and activated dendritic cells with CD40 (P <0.001) and 
IDO1 (P <0.01). Conversely, negative correlations 
were found between CD4 memory activated T cells 
and BTLA (P <0.01), activated mast cells and CD244 (P 
<0.01), and CD40LG (P <0.01), macrophages M1 and 
LAIR1 (P <0.01) (Fig. 4D). In CD45-expressing regions, 
positive correlations were found between CD8+ T cells 
and LAG3 (P <0.001) and TNFSF14 (P <0.001), 
macrophages M1 and CTLA4 (P <0.001), and B 
memory cells and CD40 (P <0.001). Negative 
correlations were found between CD8+ T cells and 
BTNL2 (P <0.01), plasma cells with TNFSF14 (P 
<0.001), resting NK cells with IDO1 (P <0.01), 
macrophages M0 and TNFSF4 (P <0.01), resting 
dendritic cells and CD27 (P <0.01), and B memory 
cells and CD276 (P <0.01). We performed cluster 
annotation of 75710 cells from 10 NPC tissues and 
obtained a total of 18 cell populations (Fig. 4E). In the 
DSP dataset, B cells were positively correlated with 
plasma cell content and negatively correlated with 
most T cells and NK cells in NPC. This phenomenon 
was verified in the single-cell dataset (Fig. 4F). In 
PanCK-expressing regions, a worse prognosis of NPC 
was associated with higher levels of activated 
dendritic cells (p<0.001), CD4 memory resting T cells 
(p =0.022) and neutrophils (p =0.032). Conversely, 
higher levels of M0 macrophages correlated with a 
better prognosis of NPC (p = 0.038) (Fig. 5A). The 
survival analysis of immune function in PanCK- and 
CD45-expressing regions is shown in Figures 5B and 
5C. 
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Figure 3. Prognostic gene screening. (A) WGCNA. (B) Genes in blue and turquoise modules were used for univariate Cox analysis in PanCK- and CD45-expressing regions, 
respectively. (C) Genes in blue module were used for survival analysis in PanCK-expressing regions. (D) Genes in turquoise modules were used for survival analysis in 
CD45-expressing regions. (E) Microphotographs of representative examples of staining in the multiplex immunofluorescence from the same patient core for each marker. (F) 
Differential RNA (left) and protein (middle) expression of SLC8A1 in CK and CD45 regions. The patients with higher SLC8A1 protein level in CD45 regions tends to have worse 
survival (right). 

 

HLA and immune checkpoints 
The expression of HLA genes differed in the 

three regions (P <0.05) (Fig. 6A). The expression of 

immune checkpoint-related genes differed in the 
different regions. The expression of CD200 (P =0.04), 
CD40 (P =0.036) and ICOSLG (P =1.4e-05) was higher 
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in PanCK-expressing regions than in CD45. The 
expression of CD244 (P =0.0032), CD160 (P =0.0075), 
CD80 (P =8.5e-06), CD48 (P =1.3e-07), CD40LG (P 
=1.4e-06), CD28 (P =0.0034), CD27 (P =2.1e-09), BTLA 
(P =0.00033), ICOS (P =0.00075), HAVCR2 (P =0.0044), 
CTLA4 (P =2e-06), NRP1 (P =1.4e-09), LAIR1 (P 
=1e-05), LAG3 (P =0.0054), PDCD1LG2 (P =0.0016), 
TNFRSF8 (P =0.017), TNFRSF4 (P =0.021), TMIGD2 (P 
=0.019), TIGIT (P =8.2e-05), and TNFSF18 (P =0.0033) 
was higher in CD45-expressing regions than in 
PanCK-expressing regions. In Endo regions, the 
expression of CD200 (P =0.0013), CD70 (P =0.00057), 
CD44 (P =0.029), CD40 (P =0.0062), CD276 (P =0.0043), 
ICOSLG (P =1.1e-05), TNFRSF9 (P =0.0016), and 
TNFSF4 (P =0.0038) was lower than in PanCK- 
expressing regions, while the expression of NRP1 (P 

=0.046), IDO1 (P =0.0056), and VTCN1 (P =0.0025) was 
higher than in PanCK-expressing regions (Fig. s5 and 
Fig. 6B). 

Metabolism-related genes 
In PanCK-expressing regions, metabolic genes 

(Figure 7A) were mainly enriched in activities 
pertaining to glycoisomerization, the pentose 
phosphate pathway, glyoxylate and dicarboxylic acid 
metabolism, ribonucleic acid polymerase, pyrimidine 
metabolism, the citric acid cycle, and cysteine and 
methionine metabolism (P <0.05). In CD45-expressing 
regions, metabolic genes were mainly enriched in 
activities pertaining to lysosomes, nicotinate and 
nicotinamide metabolism, pantothenate and coen-
zyme biosynthesis, the vascular endothelial growth 

 

 
Figure 4. Immune infiltration. (A) Immune cell levels differed between the three groups. (B) Immune functions differed in three groups. (C) Correlation analysis of immune 
cells in PanCK- and CD45-expressing regions. (D) Correlation analysis of immune cells and immune checkpoints in PanCK- and CD45-expressing regions. (E) A UMAP plot of 
75710 cells were divided into 18 clusters. Each dot represents a single cell, colored according to patients (left) and cell clusters (right). (F) Correlation analysis of immune cells 
in NPC (GSE162025). 
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factor signaling pathway, vascular smooth muscle 
contraction, progesterone-mediated oocyte matura-
tion, and the calcium signaling pathway (P <0.05). As 
shown in Supplementary Figure s6A, metabolic 
pathways showed that in PanCK-expressing regions, 
metabolic genes were mainly enriched in primary 
immunodeficiency, Fcγ-mediated phagocytosis, 
regulation of actin cytoskeleton, pathways in cancer, 
the T cell receptor signaling pathway, P53 signaling, 
the one-carbon pool by folate pathway, DNA 
replication, purine metabolism, pyrimidine metabo-
lism, glyoxylate and dicarboxylate metabolism, and 
cysteine and methionine metabolism (P <0.05). In 
Endo regions, metabolic genes were mainly enriched 
in histidine metabolism, peroxisome, metabolism of 
xenobiotics by cytochrome p450, drug metabolism by 

cytochrome p450, sphingolipid metabolism, and both 
amino sugar and nucleotide sugar metabolism (P 
<0.05).  

A total of 134 genes were obtained by 
intersecting 944 metabolic genes with 2940 differential 
genes (PanCK-expressing vs CD45-expressing 
regions) (Fig. 7B). Univariate Cox regression analysis 
of 134 genes in PanCK-expressing regions revealed 11 
prognosis-related metabolic genes. The expression of 
COMT (P = 0.012), DUT (P =0.040), GMPS (P =0.043), 
MDH1 (P = 0.039), MDH2 (P = 0.020), NME1 (P 
=0.029), PAICS (P =0.011), POLR2I (P =0.039), PTGS2 
(P =0.034) and UCK2 (P =0.029) increased the risk of 
NPC, while PLCB2 (P = 0.048) was a protective factor 
(Fig. 7C). In PanCK-expressing regions, the higher the 
expression of COMT (P <0.001), GMPS (P <0.001), 

 

 
Figure 5. Survival analysis. (A) Effect of immune cell levels on survival in PanCK-expressing regions. (B) Effect of immune functions on survival in PanCK-expressing regions. 
(C) Effect of immune functions on survival in CD45-expressing regions. 
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MDH1 (P =0.001), MDH2 (P <0.001), NME1 (P <0.001), 
PAICS (P <0.001), POLR2I (P <0.001), and UCK2 (P 
=0.004), the worse was the prognosis of NPC. In 
contrast, a higher expression of PLCB2 (P <0.001) was 
associated with a better prognosis for survival in 
patients with in NPC (Fig. 7D). The ROC curves 
predicting 2-, 4-, and 5-year survival of patients with 
NPC are shown in Figure 7E. Among the differentially 
expressed metabolic genes in panCK and CD45 
regions, MDH1 which has the most obvious 
prognostic effect was selected for validation. The 
expression of MDH1 (AUC = 0.908, 0.936 and 0.932) 
predicted 2-, 4-, and 5-year survival rates in patients 
with NPC with a high degree of accuracy. MDH1 
expression is higher in PanCK than in CD45 (P < 
0.001). Multiplexed immunofluorescence analysis 
revealed higher levels of MDH1 protein in PanCK 
than in CD45 (P < 0.001), and the higher the MDH1 
protein level (P = 0.048), the worse was the prognosis 
of patients with NPC (Fig. 7F). 

A total of 171 genes were obtained by 
intersecting 944 metabolic genes with 2514 differential 
genes (PanCK-expressing vs Endo regions) (Fig. s6B). 
Univariate Cox regression analysis of 171 genes in 
PanCK-expressing regions and 13 prognosis-related 
metabolic genes revealed that the expression of 
ADCY3 (P = 0.027), ADCY9 (P =0.028), CYP2J2 (P = 
0.038), DNMT1 (P = 0.024), EPHX1 (P =0.022), 
MBOAT7 (P =0.018), POLD1 (P = 0.016) and UAP1 (P = 

0.041) correlated positively with survival risk in 
patients with NPC (Fig. S6C). Notably, DUT, NME1, 
UCK2, PAICS and PTGS2 were both screened out in 
two univariate Cox analyses. DUT, NME1, UCK2, 
PAICS and PTGS2 were differentially expressed 
between regions (PanCK-expressing vs. CD45- 
expressing regions and PanCK-expressing vs Endo 
regions), and were also metabolism-related genes. The 
expression of these genes correlated with a higher risk 
of death in patients with NPC.Higher expression of 
ADCY3 (P = 0.005), ADCY9 (P =0.008), CYP2J2 (P = 
0.001), DNMT1 (P <0.001), EPHX1 (P <0.001), 
MBOAT7 (P <0.001), POLD1 (P = 0.001) and UAP1 (P 
< 0.001) was associated with worse prognosis in 
patients with NPC (Fig. S6D). The ROC curves for 
these NPC prognostic genes are presented in 
Supplementary Figure s6E. 

Discussion 
Either bulk-RNA seq or microarray sequencing 

was used to explore biomarkers of NPC before 
GeoMx DSP technology emerged [12]. However, these 
sequencing techniques only generated the average 
gene expression of all the components found in tumor 
tissue. The screened markers did not identify the 
region or cell expressing marker. This greatly limited 
the exploration of the NPC microenvironment.  

 

 
Figure 6. HLA and immune checkpoints. (A) Differences in HLA-related genes of the three regions. (B) Differences in immune checkpoint-related genes between the three 
regions.  
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Figure 7. Metabolism-related genes. (A) GSVA enrichment analysis of PanCK- and CD45-expressing regions. (B) 944 metabolic genes, 2940 differentially expressed genes 
(PanCK- vs. CD45-expressing regions) and 134 intersecting genes. (C) Univariate Cox analysis of 134 intersecting genes in PanCK-expressing regions. (D) Survival analysis of 
prognostic metabolic genes in PanCK-expressing regions. (E) ROC curves: predicting survival rates of patients with NPC. (F) Differential RNA (left) and protein (middle) 
expression of MDH1 in Pan-CK and CD45 regions. The patients with higher MDH1 protein level in Pan-CK regions tends to have worse survival (right). 

 
Using DSP technology, we screened 20 

prognostic gene markers located in tumor cell- 
enriched regions (CEP85L, KRT5, MAST4, MYO1G, 
SLA, SMARCC2, UPK3B, ATF5, BEX3, BIK, CADM4, 
CDK2AP1, CLDN1, DLL4, IGFBP2, NFE2L3, PTGS2, 
SMC1A, SUSD4 and VRK2) and 4 prognostic markers 
in immune cell-enriched regions (CALHM2, CCL21, 
FCGR2C and SLC8A1). We also screened for 
metabolism-related genes that affect the prognosis of 
patients with NPC in tumor cell-enriched regions 

(COMT, DUT, GMPS, MDH1, MDH2, NME1, PAICS, 
PLCB2, POLR2I, PTGS2, UCK2, ADCY3, ADCY9, 
CYP2J2, DNMT1, EPHX1, MBOAT7, POLD1 and 
UAP1). 

The gene MDH1 regulates autophagy in 
pancreatic ductal adenocarcinoma (PDAC) associated 
with PDAC cell survival [13]. O-GlcNAcylation 
enhances MDH1 activity to promote proliferation of 
pancreatic ductal adenocarcinoma cells. MDH1 may 
be a prognostic marker of esophageal squamous cell 
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carcinoma [14]. The levels of MDH1 and MDH2 
enzymes in the cytoplasm and mitochondria of 
non-small-cell lung cancer (NSCLC) cells have been 
shown to be elevated compared with normal cells, 
and MDH1 enzyme activity was significantly higher 
than that of MDH2. However, only MDH1 expression 
was associated with poor prognosis in patients 
diagnosed with NSCLC [15, 16]. MDH1 is predicted to 
be a prognostic marker of lung squamous cell 
carcinoma (LUSC) based on multivariate Cox 
regression analysis [17]. In addition, the frequency of 
MDH1 mutations in LUSC is 5% in the cBioPortal 
database [17]. SLC8A1 downstream intergenic region 
ALK fusion was detected in patients with advanced 
lung adenocarcinoma [18]. SLC8A1 is associated with 
survival of breast cancer and colorectal neoplasia [19, 
20]. Few studies have reported the roles of MDH1 and 
SLC8A1 in NPC or explored the impact of their spatial 
distribution on the prognosis of tumor patients. 
Therefore, we explored the effect of the spatial 
location of MDH1 and SLC8A1 on the prognosis of 
patients with NPC. At the transcriptional level, 
MDH1 expression is higher in PanCK expressing 
regions than in CD45 expressing regions, and the 
higher its expression, the worse the prognosis of NPC. 
The expression of SLC8A1 is higher in CD45 
expressing regions than in PanCK expressing regions, 
and the higher its expression, the worse the prognosis. 
The protein levels of MDH1 are higher in PanCK 
expressing regions than in CD45 expressing regions, 
and the higher level worsened the prognosis. The 
protein level of SLC8A1 is higher in CD45 expressing 
regions than in PanCK expressing regions.  

The predominantly infiltrating lymphocytes in 
the NPC microenvironment are T (CD8+ T, CD4+ 
T-helper, naïve T-cells, cytotoxic T-cells, exhausted 
T-cells, and Tregs) and B cells [7, 21]. In previous 
transcriptome sequencing studies, both CD4+ and 
CD8+ T cell clusters in NPC were highly activated and 
depleted and co-expressed effector markers such as 
IL-2, GZMB, INFG, NKG7, GNLY, and GZMK. They 
also expressed depletion markers such as PDCD1, 
HAVCR2, LAG3, TIGIT, and CTLA4 [22, 23]. In our 
study, the levels of CD8+ T, follicular helper T cells, 
activated NK cells, and M0 macrophages were higher 
in tumor cell-enriched regions than in immune 
cell-enriched regions. In contrast, plasma cells and M2 
macrophages were more abundant in immune 
cell-enriched regions, suggesting that cellular 
immunity was predominantly exerted in tumor 
cell-enriched regions, while humoral immunity was 
mainly observed in the peritumor area. Interestingly, 
in tumor cell-enriched regions, follicular helper T cells 
were negatively correlated with resting NK cells and 
positively correlated with activated NK cells. In 

immune cell-enriched regions, the opposite was true, 
highlighting the need to use single-cell sequencing to 
further explore the interactions between these two cell 
types. In tumor cell-enriched regions, PDCD1 expres-
sion was negatively correlated with the levels of 
monocytes and CD4+ memory-activated T cells. The 
expression of LAG3 positively correlated with the 
levels of CD4+ memory-activated T cells and CD8 T 
cells. The expression of TIGIT positively correlated 
with monocyte levels and negatively correlated with 
follicular helper T cell levels. In immune cell-enriched 
regions, the PDCD1 expression negatively correlated 
with the number of eosinophils and CD4+ naïve T 
cells. The expression of HAVCR2 negatively 
correlated with the number of gamma/delta T cells 
and positively correlated with the levels of CD4+ 
memory resting T cells. The expression of LAG3 
positively correlated with the levels of CD4+ memory 
activated T cells, CD4+ memory resting T cells, M1 
macrophages, and CD8+ T cells, but negatively 
correlated with the number of plasma cells. The 
expression of TIGIT was positively related with the 
levels of Tregs, CD8+ T cells, and CD4+ memory 
resting T cells, while negatively correlated with the 
number of plasma cells. The expression of CTLA4 
positively correlated with the levels of CD8+ T cells, 
CD4+ memory resting T cells, activated NK cells, and 
M1 macrophages, while negatively correlated with 
the number of naive B cells. We therefore analyzed the 
relationship between these immune cells and deple-
tion markers in locations that were complementary to 
previous studies. However, the specific mechanisms 
of interactions between cells at various spatial 
locations need to be further explored. 

Limitations of this study include the small 
sample size, which restricts the correlation between 
the tumor immune characteristics, treatment, and 
outcomes. Even though our study is small the 
strength is the paired samples. Another limitation is 
that the biomarkers we screened have not yet been 
validated in functional experiments, and the roles of 
these biomarkers still need to be further elucidated 
through in vivo and in vitro experiments in the future. 

In conclusion, we used DSP technology to 
explore the heterogeneity of the NPC microenviron-
ment and its regional and metabolic prognostic 
markers and characterized the immune infiltration. 
The screened prognostic biomarkers may provide a 
theoretical basis for clinical diagnosis, targeted 
therapy, and new drug development. 
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