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Abstract 

Pyroptosis is a novel pro-inflammatory cell programmed death dependent on Gasdermin (GSMD) 
family-mediated membrane pore formation and subsequent cell lysis, accompanied by the release of 
inflammatory factors and expanding inflammation in multiple tissues. All of these processes have 
impacts on a variety of metabolic disorders. Dysregulation of lipid metabolism is one of the most 
prominent metabolic alterations in many diseases, including the liver, cardiovascular system, and 
autoimmune diseases. Lipid metabolism produces many bioactive lipid molecules, which are 
important triggers and endogenous regulators of pyroptosis. Bioactive lipid molecules promote 
pyroptosis through intrinsic pathways involving reactive oxygen species (ROS) production, 
endoplasmic reticulum (ER) stress, mitochondrial dysfunction, lysosomal disruption, and the 
expression of related molecules. Pyroptosis can also be regulated during the processes of lipid 
metabolism, including lipid uptake and transport, de novo synthesis, lipid storage, and lipid 
peroxidation. Taken together, understanding the correlation between lipid molecules such as 
cholesterol and fatty acids and pyroptosis during metabolic processes can help to gain insight into 
the pathogenesis of many diseases and develop effective strategies from the perspective of 
pyroptosis. 
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Introduction 
Pyroptosis is involved in essential innate 

immunomodulatory mechanism and originally 
defined as caspase-1-dependent programmed cell 
death (PCD) by Cookson BT and Brennan MA in 2001 
[1]. Pyroptosis occurs primarily in monocytes, 
macrophages, and dendritic cells, but can also be 
detected in other cell types, such as endothelial cells, 
cardiomyocytes, and hepatocytes [2-4]. Pyroptosis is 
driven by inflammatory caspase‐1, caspase‐4, caspase‐
5 and caspase‐11, and executed by the gasdermin 
(GSDM) family. GSDMs induce membrane rupture 
and the release of intracellular contents, such as 
interleukin-1β (IL-1β), IL-18, high mobility group box 

1 (HMGB1) and Adenosine triphosphate (ATP), 
which trigger local or systemic inflammatory 
responses [5]. Studies demonstrate that pyroptosis has 
a dual effect on organisms. Mild-to-moderate 
pyroptosis can accelerate the immune response by 
recruiting more immune cells to clear endogenous or 
exogenous danger signals (e.g., oxidative stress, 
hyperglycemia, inflammation), effectively prevent 
excessive proliferation of cells, and maintain the 
normal development and homeostasis of organisms 
[6, 7]. However, exaggerated pyroptosis leads to an 
overwhelming inflammatory response [8], to some 
extent resulting in tissue damage [7], thereby 
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exacerbating disease progression and outcomes, such 
as cardiovascular diseases, liver diseases, and nervous 
system diseases [9-11].  

Lipids are one of the major nutrients in humans 
and are pivotal for maintaining cellular structure as 
well as providing energy and mediating signaling 
transduction. Lipid biosynthesis and catabolism 
produce a variety of biological mediators, which are 
biologically active lipid molecules (also known as 
signaling molecules or second messengers) that 
regulate versatile signaling pathways. Previous 
studies by our group have identified an association 
between inflammation and lipid accumulation, as 
well as lipid-triggered inflammatory reactions [12, 
13]. In addition, pyroptosis is a form of inflammatory 
cell death. Recent studies have revealed that lipid 
metabolism may induce pyroptosis during the 
process of diseases, suggesting a close relationship 
between lipid metabolism and pyroptosis. However, 
the molecular mechanism between lipid and 
pyroptosis remains largely unclear. 

The Mechanism and Features of Pyroptosis 
Generally, gasdermin family members are core 

among the pyroptosis pathway, which can be cleaved 
and activated by inflammatory caspase. There are six 
members of gasdermin family in human, including 
GSDMA, GSDMB, GSDMC, GSDMD, GSDME and 
DFNB59. Except for DFNB59, other gasdermins 
consist of a pore-forming N-terminal (NT) domain 
and a C-terminal (CT) regulatory domain, and the NT 
of gasdermins induce pyroptosis. Among these 
proteins, GSDMD is extensively studied in pyroptosis 
and has been identified as the executioner of 
pyroptosis [14-16]. 

Pyroptosis can be divided into the canonical 
inflammasome pathway and the noncanonical 
inflammasome pathway. Canonical pyroptotic death 
is mediated by inflammasome assembly [5]. When the 
host is resistant to microbial infection, multimolecular 
complexes called inflammasomes will be activated. In 
addition, inflammasomes are also associated with 
non-microbial diseases. Accumulating evidence 
shows that intracellular risks and environmental 
stimuli, such as cholesterol crystals (CHCs), oxidized 
LDL (ox-LDL), uric acid crystals, saturated fatty acids 
(SFA), DNA, mitochondrial ROS and 
lysophosphatidylcholine (LPC), can lead to the 
assembly of inflammasome [17]. Most inflammasomes 
are composed of three components: cytosolic pattern 
recognition receptors (PRRs, also known as 
inflammasome sensors), the adaptor ASC 
(apoptosis-associated spec-like protein containing a 
CARD), and the cysteine protease caspase-1. So far, 
five PRRs (NLRP1, NLRP3, NLRC4, Pyrin, and AIM2) 

have been identified as inflammasome-formation [18, 
19]. Given its potential role in several human diseases, 
the NLRP3 inflammasome has been the object of 
extensive research among these inflammasomes, 
which converts pro-caspase-1 into caspase-1. 
Activated caspase-1 cleaves the full-length GSDMD 
into GSDMD-N and GSDMD-C. GSDMD-N 
oligomerizes and boosts cell membrane pore 
formation by binding to membranes and destroying 
the stability of the membranes [15]. Moreover, 
caspase-1 processes the pro-inflammatory cytokines, 
including pro-IL-1β and pro-IL-18 to be IL-1β and 
IL-18, accompanied with the release of other cell 
contents (such as lactate de-hydrogenase (LDH) and 
HMGB1) through the cell membrane pore, resulting in 
cell swelling and pyroptosis [6, 20]. 

In the non-canonical pyroptosis pathway, Shao 
et al. found that bacterial lipopolysaccharide (LPS) (or 
host-derived oxidized phospholipids) entered the 
cytoplasm through Toll-like receptors 4(TLR4) 
/MD2/CD14 signal pathway and bacterial outer 
membrane vesicles, and then directly activated 
caspase-4/5/11 [21, 22]. The activation of caspase-11 
or caspase-4/5 does not require the PRR-mediated 
inflammasome. Activated caspase-4/5/11 can cleave 
GSDMD to GSDMD-N directly, but they are not 
accompanied by the cleavage of inflammatory factors 
pro-IL-1β and pro-IL-18 [15, 23]. However, they are 
able to mediate the maturation and secretion of IL-1β/ 
IL-18 through the NLRP3/caspase-1 pathway in some 
cells such as macrophages, leading to the 
inflammatory response [24]. This also suggests that 
other members of caspase are involved in the 
inflammatory process by promoting caspase-1 
activation [25]. Therefore, the canonical and 
non-canonical pathways of pyroptosis are different in 
their induced signaling and initiation process, but 
eventually form pores on the plasma membrane (PM) 
by GSDMD and trigger pyroptosis through the 
inflammatory caspase. 

In addition to the above two pathways, a 
caspase-3 dependent pathway has been revealed 
recently. In the case of administration of 
chemotherapeutic agents (e.g., DNA binding / 
modified compounds such as doxorubicin, cisplatin 
or topoisomerase inhibitors: etoposide, CPT-11, etc.), 
caspase-3 is activated to induce cleavage of GSDME, 
resulting in significant pyroptosis. 

The morphology of cells changes obviously 
during pyroptosis. Swelling of cell membrane before 
rupture can be observed under scanning electron 
microscopy, and many bubble-like protrusions 
appear on the surface of cell membrane. Pyroptosis 
can be identified with dyes of lower molecular 
weights, such as 7-amino actinomycin (7-AAD), 
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propidine iodide (PI), and ethidium bromide (EtBr) 
[26]. In addition, there is a very specific type of DNA 
damage at the early stage of pyroptosis, which is 
positive for dUTP nick end labeling (TUNEL) 
staining. Recently, it has been found that in some 
cases, activated GSDMD does not always occur 
membrane rupture and pyroptosis. Macrophages, 
dendritic cells, and neutrophils are able to survive in 
the cleavage of GSDMD cleavage activated by 
inflammasomes, which are defined as cell 
hyperactivation [27], and it can be distinguished by 
detecting lactate dehydrogenase in cell culture 
supernatant. The release of cytokines can locally 
induce large-scale inflammatory response at the site 
of infection, causing cell death. Dead cells no longer 
participate in any immunomodulatory activities. If 
pyroptosis is balanced by the excessive activation of 
the cells described above, then the scorched cells will 
continue to secrete inflammatory factors and 
constantly affect immunomodulatory events. 
However, the detailed mechanism determining when 
GSDMD cleavage triggers scorching or 
hyperactivation is still unclear. 

Multiple Lipid Classes: Different Effects in 
Pyroptosis  

Lipids such as cholesterol, together with 
Glycolipids and phospholipids, not only function as a 
major component of biological membranes, but also 
serve as the supply and storage of energy [28]. Fatty 
acids (FAs) are the fundamental components of 
complex lipids such as phospholipids and glycolipids, 
which can be esterified with glycerol to form 
triglycerides and stored in lipid droplets. Under 
energy stress conditions, they can be oxidized and 
hydrolyzed by FA to produce ATP. In addition, lipids 
also play significant roles as signaling molecules. 
Cholesterol and oxysterol can activate downstream 
gene expression through sterol regulatory 
element-binding protein (SREBP). Phospholipases 
(PLC, PLD, and PLA) can catalyze the formation of 
bioactive second messenger molecules including 
diacylglycerol, lysophosphatidic acid, and 
arachidonic acid (AA) [29, 30]. These different species 
of lipid molecules play key roles in regulating the 
fundamental processes of life, from energy storage to 
cell membranes formation to signal transduction 
Herein, we discuss these molecules and their 
derivatives that are produced in lipid metabolism and 
are associated with pyroptosis. 

Cholesterol Derivatives and Pyroptosis 
Intracellular cholesterol is maintained through 

de novo synthesis and exogenous uptake. Exogenous 
cholesterol follows an intricate pathway and then 

converts into free cholesterol in cells. However, excess 
free cholesterol may be toxic, which can cause 
pyroptosis both in vivo and in vitro. Specifically, 
overloading free cholesterol induces the expression of 
sphingomyelin synthase 1 (SMS1) in hepatocytes, and 
the diacylglycerol (DAG) produced by SMS1 activates 
protein kinase Cδ (PKCδ) and NLR family CARD 
domain-containing protein 4 (NLRC4) inflammasome 
to induce pyroptosis, thus triggering the development 
of non-alcoholic steatohepatitis (NASH) [30]. Elevated 
free cholesterol can also activate endoplasmic 
reticulum (ER) stress by stimulating mSREBP1 in 
intervertebral disc degeneration, thereby inducing 
pyroptosis in nucleus pulposus cells [31].  

Free cholesterol is transported from late 
lysosomes to other subcellular organelles, such as PM 
and ER [32]. When cellular cholesterol trafficking is 
blocked, the cholesterol in PM decreases, resulting in 
the inhibition of NLRP3 assembly and the reduction 
of caspase-1, IL-1β and IL-18, eventually suppressing 
pyroptosis [33]. However, another study has shown 
that when the cholesterol content in PM reached 30%, 
the binding, oligomeric assembly, and pore formation 
of GSDMD-N could be reduced [34]. Generally, 
pyroptosis requires the N-terminal of the GSDMs to 
form pores in PM. These studies suggest that the 
content of PM cholesterol may directly affect 
pyroptosis through inflammasomes or combination 
with GSDMD. The relationship between PM 
cholesterol and pyroptosis is worth further 
exploration in the future. In the ER, cholesterol can be 
esterified. But the supersaturation of unesterified 
cholesterol in cells may cause precipitation of 
cholesterol crystals (CHCs) in the vascular wall, 
which is coincide with the earliest recruitment of 
inflammatory cells [35, 36]. Hypercholesterolemia 
promotes the formation of CHCs and causes coronary 
endothelial cell damage in vivo and in vitro through 
NLRP3 activation. However, pretreatment with 
caspase-1 or HMGB1 inhibitors could significantly 
reverse endothelial-dependent vasodilation injury 
[37]. A study has shown that the optimum dose of 
CHCs to induce pyroptosis was 0.5 mg/ml in human 
umbilical vein endothelial cells (HUVECs) [38]. One 
of the critical mechanisms of CHCs-stimulated 
pyroptosis is lysosomal rupture. CHCs cause 
lysosomal damage, allowing lysosomal contents such 
as cathepsin B (CTSB) to penetrate into the cytoplasm 
and activate the NLRP3 inflammasome [39]. On the 
other hand, CHCs in areas of plaque necrosis can 
stimulate the overproduction of mitochondrial 
reactive oxygen species (mtROS), thereby inducing 
the activation of NLRP3 inflammasome and caspase-1 
[2, 36, 38]. ROS have been considered to play an 
important role in NLRP3 inflammasome activation 
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and pyroptosis [40]. Colchicine can suppress the 
uptake of CHCs by endothelial cells, and attenuate the 
occurrence of NLRP3 inflammasome and pyroptosis 
by inhibiting mtROS production and oxidative stress 
through the AMP-dependent kinase (AMPK) / 
Sirtuin1 pathway [38]. The detailed mechanism of 
CHCs-induced pyroptosis remains unclear. In sum, 
these findings suggest a critical role for CHCs in the 
activation of pyroptosis. 

Cholesterol can also be converted to oxysterols 
by chemical oxidation, such as 24(S)- 
hydroxycholesterol (24(S)-OHC), 27-OHC, 7β-OHC, 
and 25-OHC [41]. Oxysterols can cause many types of 
cell death, such as apoptosis, autophagy, and necrosis 
[42]. Recent studies have shown that oxysterol can 
also induce pyroptosis [43]. 25-OHC promotes P2X7 
receptor-dependent pyroptosis in skin cells, leading to 
the emergence of skin degenerative diseases [43]. 
P2X7 receptor (P2X7) is a ligand-gated ion channel 
activated by extracellular ATP, which can assemble 
NLRP3 inflammasome [44]. Another study also 
showed that ATP released by Pannexin-1, a 
non-selective and large-pore channels, activated P2X7 
to allow small cations including K+ and Na+ to cross 
the PM and mediate pyroptosis [45]. However, It has 
been found that in murine macrophages, 25-OHC can 
reduce the cellular content of sterols, IL-1β 
transcription and extensive inhibition of the 
inflammasome activation by antagonizing SREBP 
processing, thereby achieving an anti-inflammatory 
effect [46], which may trigger a potential inhibition of 
pyroptosis. In addition, excessive intracellular 
accumulation of 27-OHC induces lysosome 
dysfunction in co-cultured SH-SY5Y cells and C6 cells, 
and changes the levels of lysosome protein. CTSB is 
leaked through lysosomal membrane 
permeabilization (LMP) into the cytosol and induces 
NLRP3-dependent neuronal pyroptosis, causing 
neurodegenerative diseases such as Alzheimer’s 
disease [47]. 

Fatty Acids and Pyroptosis 
Fatty acids (FAs) are the hydrocarbon 

components of most lipids, usually with an even 
number of carbon atoms, ranging from 2-26. 
According to whether the hydrocarbon chain is 
saturated, fatty acids can be divided into saturated 
(SFA), monounsaturated (MUFA), and 
polyunsaturated fatty acids (PUFA). PUFAs are 
divided into two categories: omega-3 (ω-3) PUFAs 
and ω-6 PUFAs. FAs can also be divided into three 
types according to their amino acid chain lengths: 
short-, medium-, and long-chain FAs (SCFAs, 
MCFAs, and LCFAs, respectively [48]. 

Different FA types have distinct effects, even 

opposite influences. For obesity-related osteoarthritis, 
diet rich in SFA, MUFA, and n-6 PUFA can activate 
the TLR4/NF-κB signaling pathway in articular 
cartilage, which in turn upregulates the NLRP3 
inflammasome, thereby inducing pyroptosis [49]. 
Excessive free fatty acids (FFAs) induce tissue injury 
by activating pyroptosis, which is usually used to 
establish the cell model of NASH [50-53]. Palmitic 
acid (PA) is the most dominant SFA in diet and is the 
main FFAs in plasma [54]. Pyroptosis is the primary 
type of PA-induced cell death, which is related to 
activation of various protein kinases, ER stress, and 
recruitment of macrophages [55, 56]. The combination 
of these factors leads to inflammasome-related cell 
death. PA induces NLRP3 mediated pyroptosis in 
HepG2 cells via ER stress [54]. PA-induced 
lipotoxicity also causes mitochondrial damage and 
the release of mtDNA into the cytosol, thus triggering 
the cyclic GMP-AMP synthase (cGAS) - stimulator of 
interferon genes (STING) signaling pathway, which 
switches on the initiation of NLRP3 inflammasome- 
dependent pyroptosis in cardiomyocytes, promoting 
myocardial hypertrophy [57]. In addition, higher 
levels of PA promote the polarization of macrophage 
M1, and upregulate the expression of cathepsin S 
(CTSS) through the transcription factor interferon 
regulatory factor 5 (IRF5). CTSS is transported in the 
exosomes, which can upregulate caspase-1 and 
trypsinogen in acinar cells, thus promoting pyroptosis 
and pancreatic tissue damage [58, 59]. Besides, PA can 
enhance the endocytosis of LPS produced by 
gram-negative bacteria in the intestines of mice into 
intestinal neurons in a lipid raft-dependent manner, 
thus promoting LPS cleaving caspase-11 to regulate 
pyroptosis through non-classical pathway, eventually 
leading to the loss of enteric neuronal and enteric 
motility disorder [60]. In sum, SFAs, especially PAs, 
can activate inflammasome-dependent pyroptosis in 
different ways. 

In addition, many FAs can inhibit pyroptosis, 
thereby alleviating tissue damage. The diet rich in n-3 
PUFA has anti-inflammatory and anti-pyroptosis 
effects. Docosahexaenoic acid (DHA), as a 
representative of ω-3 PUFA, is a potent inhibitor of 
both caspase-1 activation and IL-1β secretion [61, 62]. 
DHA at a physiologically relevant concentration (less 
than 50 µM) is capable of attenuating pyroptosis [63, 
64]. DHA suppresses TLR4/NF-κB and NLRP3/ 
caspase-1/GSDMD signaling pathways, thereby 
attenuating osteoarthritis [49]. Further studies have 
shown that the anti-pyroptosis effect of DHA is to 
inhibit the assembly of NLRP3 inflammasome by 
promoting the interaction between G protein-coupled 
receptor (GPR) 120 and NLRP3. GPR120 is a PUFA 
receptor that mediates anti-inflammatory effects via 
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PM internalization into the cytoplasm [29]. The 
activation of GPRs causes the binding of β-arrestin2 to 
GPRs, and subsequent internalization of β-arrestin2, 
which then attaches to NLRP3 and prevents the 
assembly and activation of NLRP3 inflammasome 
[65-67]. Meanwhile, DHA inhibits hypoxia/ 
restoration (H/R)-induced injury by suppressing 
pyroptosis of hepatocytes induced by liver I/R injury 
in vivo and in vitro through the phosphatidylinositol- 
3-kinase /protein kinase B (PI3K/Akt) pathway [68]. 
DHA can also exert an anti-inflammatory activity in 
the treatment of acute keratitis by alleviating the 
non-canonical pyroptosis [69]. However, more than 50 
μM of DHA can play a pro-inflammatory role. DHA 
(200 µM) at a higher concentration (within the 
physiological dose range) induces Bv-2 cell pyroptosis 
through 12-lipoxygenase (12-LOX). In detail, 12-LOX 
can produce one or more metabolism and activate a 
pro-inflammatory cell death program [63, 70]. 
Similarly, all-trans retinoic acid (ATRA) secreted by 
hepatic stellate cells (HSC) can bind to retinoic acid 
receptors in KCs and activate the transcription 
activity of NLRP3. In addition, ATRA can also block 
autophagy, lead to excessive accumulation of ROS, 
and then activate NLRP3 inflammasome, thus 
inducing the pyroptosis of macrophages [71]. In 
addition, a study has shown that DHA can cause 
pyroptosis of triple-negative breast cancer cells 
MDA-MB-231 [72]. Treatment with 200μM of DHA in 
breast cancer cells can lead to NF-κB translocation, 
caspase-1 and GSDMD activation, IL-1β secretion, 
HMGB1 translocation, pore membrane formation, 
and loss of membrane [72]. It is noteworthy that DHA 
has no significant effect on human non-cancerous 
mammary epithelial cells MCF-10A or PBMCs, 
indicating that this fatty acid has cytotoxicity only on 
cancer cells [72]. Therefore, ω-3 supplementation 
during therapy of breast cancer patients can be used 
as a new therapeutic strategy. 

In addition to DHA, the metabolite short chain 
fatty acids (SCFAs) of gut microbiota including 
propionate (C3) and butyrate (C4) have been reported 
to be beneficial for pyroptosis and treatment of wear 
particle-induced osteolysis, in which C4 instead of C3 
requires the GRP109a receptor in this process [73]. 
10-hydroxy-2-decenoic acid (10-HAD), the major fatty 
acid in royal jelly, can inhibit pyroptosis and treat 
ulcerative colitis [74]. NLRP3 mediated pyroptosis 
induced by PA can be antagonized by oleic acid (OA), 
one of MUFAs [54]. Chondrocytes treated with 
MUFAs showed the down-regulation of TLR4/NF-κB 
and NLRP3/caspase-1/GSDMD signaling pathways, 
while a MUFA-enriched high-fat diet stimulates the 
expression of TLR4/NF-κB and NLRP3 
inflammasome proteins. The contradictory results of 

MUFAs in vitro and in vivo may be due to the fact that 
the high-fat diet rich in MUFA contains not only 
MUFAs, but also other pro-inflammatory FAs, such as 
SFA and n-6 PUFA. These FAs can weaken or even 
reverse the effects of MUFAs, resulting in the 
contradiction between the experimental results in vitro 
and in vivo [49]. 

Phospholipids and its Oxidative Derivatives and 
Pyroptosis 

Phospholipids (PLs) are amphiphilic lipids that 
exist in the cell membranes of all plants and animals. 
They are arranged in lipid bilayers and include two 
major categories, glycerophospholipids, and 
sphingolipids. The PLs in most cell membranes are 
glycerophospholipids, which are composed of FA 
esterified into the glycerol back bone, phosphate 
groups, and hydrophilic residues (such as choline). 
Glycerophospholipids can be further divided into 
phosphatidylinositol (PI), cardiolipin (CL), 
phosphatidylserine (PS), phosphatidylcholine (PC), 
and phosphatidylethanolamine (PE) according to the 
substituents. The GSDMD-N possess lipid-binding 
and regulatory activities. GSDMD-N has the strongest 
binding with CL (a kind of mitochondrial and 
bacterial lipid) and phosphatidylinositol phosphates 
(PIPs), the phosphorylated products of PI [75, 76]. 
This powerful combination enables GSDMD-N to 
locate the inner leaflet of the PM, form 
membrane-disrupting pores, and execute pyroptosis. 
And the same combination also exists on regulatorof 
cell death-1(RCD-1), a remote homolog of the 
N-terminal domain of gasdermin [77]. 
phosphatidylinositol (4,5) bisphosphate (PIP2) and its 
synthetic precursor phosphatidylinositol-4-phosphate 
(PI4P) are the two main PIPs in PM. Decreasing their 
concentration can reduce the binding and 
oligomerization of GSDMD-N [16, 78]. The 
accumulation of PI4P can potentiate the activation of 
NLRP3 inflammasome. In detail, NLRP3 is recruited 
into the dispersed trans-Golgi network (dTGN) 
through ionic bonding between its conserved 
polybasic region and negatively charged PI4P, and 
then interacts with ASC to activate the downstream 
signal cascade [79, 80]. It has been shown that the 
dTGN is of endosomal origin. The endosomal 
accumulation of PI4P further impairs the trafficking of 
endosome to TGN [81]. 

Although the combination of GSDMD-N and PS 
is weak [75], GSDMD-N can also form oligomeric 
pores by binding with PS [82]. Another study has 
shown that oligomeric pores mediated calcium influx, 
which induced PS transfer from inner leaflets to outer 
leaflets through transmembrane protein 16F, a 
calcium-dependent phospholipid scramblase [83]. The 
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asymmetric distribution of glycerophospholipids 
across the inner and outer leaflets of the PM is crucial 
for cellular integrity and signal transduction [84]. 
Actually, GSDMD-N does not bind directly with PE 
or PC (the major lipids on both plasma membrane 
leaflets) [75]. However, polyene PC, a clinical practice 
commonly used in the treatment of fatty liver, can 
reduce the expressions of GSDMD-N and other 
pyroptosis-related proteins [85]. PC can be 
decomposed to lysophosphatidylcholine (LPC) under 
the catalysis of phospholipase A2 (PLA2). It is 
reported that LPC, can induce pyroptosis in human 
monocytes and human endothelial cells. LPC can also 
induce foam cell formation through LD biogenesis, 
which depends on the activation of NLRP3/caspase-1 
[86]. Taken together, alteration of the phospholipid 
composition or distribution in the membrane directly 
affects the combination of GSDMD-N and lipids, 
which may be a potential strategy for inhibiting 
pyroptosis. 

1-palmitoyl-2-arachidonoyl-snglycero-3-phosph
orylcholine (PAPC) is a class of natural 
phospholipids. Under the condition of inflammation 
or oxidative stress, the side chains of polyunsaturated 
fatty acids in phospholipids are oxidized and 
modified to produce oxidized PAPC (oxPAPC). 
OxPAPC is usually present in dead cells, with 
concentrations of 10-100 μM at the site of injury [87]. 
Similar to CHCs, OxPAPC is found in the early stage 
of atherosclerosis in mice and accumulated in the 
blood vessels of foam cells [36, 86], indicating that 
they contribute to inflammation in the early stage. 
However, unlike CHCs, oxPAPC exhibits 
anti-inflammatory effects and inhibits pyroptosis 
during gram-negative bacterial sepsis [88]. This is due 
to the competitive combination of oxPAPC and LPS. 
LPS activates TLR4, triggers transcription on the cell 
surface, and activates caspase-4/11 in the cytosolic, 
resulting in pyroptosis [60]. OxPAPC not only 
antagonizes TLR4, but also directly binds to caspase-4 
and caspase-11, and competes with LPS, thereby 
inhibiting LPS-induced pyroptosis [88]. Interestingly, 
compared with LPS, the combination of the above 
oxPAPC will not promote pyroptosis due to the 
unique positively charged amino acid residues [87]. 
Moreover, oxPAPC induces an enhanced activation 
state of dendritic cells, called “hyperactive”, and then 
induces potent adaptive immune responses [87]. 
Therefore, oxPAPC and its derivatives may provide a 
basis for therapies that target pyroptosis in 
gram-negative bacterial sepsis.  

Low-Density Lipoprotein and its Oxidative 
Derivatives and Pyroptosis 

Low-density lipoprotein (LDL) is a complex 

particle containing protein and lipids, and its 
outermost layer is surrounded by a lipid core and 
monomeric protein ApoB-100. LDL can induce 
inflammasome activation [89], but there are no reports 
related to pyroptosis LDL contains polyunsaturated 
fatty acids. When the antioxidant activity of LDL is 
impaired, ROS and reactive nitrogen species result in 
lipid oxidation to produce oxidized LDL (ox-LDL) 
[90]. Ox-LDL is the main factor to promote foam cell 
formation and atherosclerosis, which may be one of 
the reasons why ox-LDL is used as an inducer in 
almost all studies on pyroptosis in atherosclerosis 
[91].  

Ox-LDL can trigger pyroptosis directly or 
indirectly. On the one hand, ox-LDL can be directly 
recognized by TLR4, which can activate a series of 
downstream signals, such as NF-κB p65 
phosphorylation, to promote transcription of 
pro-IL-1β and pro-caspase-1 [92, 93]. In addition, 
ox-LDL activated pyroptosis in primary human aortic 
EC through non-canonical NF-κB pathway that 
upregulated the transcription factor IRF-1 through 
RelB/p52. IRF-1 interacted with the GSDMD 
promoter at -526/-515 and the caspase-1 promoter at 
-11/10 to promote the expression and caspase-1- 
mediated activation of GSDMD [94]. In addition, 
ox-LDL can also assist NLRP3 inflammasome 
assembly in various indirect ways. Ox-LDL can 
induce mitochondrial dysfunction and ROS release 
through multiple pathways, resulting in subsequent 
pyroptosis. Specifically, ox-LDL can down-regulate 
tet methylcytosine dioxygenase 2 (TET2) [95], thus 
reducing mitochondrial dysfunction [96]. Zhaolin et 
al. showed that ox-LDL might induce EC pyroptosis 
and promote the development of atherosclerosis by 
regulating miR-125a-5p/ TET2 pathway [95]. TET2 
can inhibit the methylation of ubiquinol-cytochrome c 
reductase core protein 1 (UQCRC1), a subunit of 
mitochondrial complex III. Deletion of UQCRC1 can 
lead to excessive ROS production [97]. Similarly, 
fibroblast growth factor 21 also inhibits ox-LDL- 
induced pyroptosis through the TET2-UQCRC1-ROS 
pathway [98]. The proprotein convertase subtilisin/ 
kexin type 9 (PCSK9) is an important protein involved 
in lipid metabolism and AS. Ox-LDL induces the 
pyroptosis of HUVECs in a concentration-dependent 
manner through PCSK9/UQCRC1/ROS pathway. 
PCSK9 can downregulate UQCRC1 expression and 
mediate ox-LDL-induced pyroptosis of HUVECs [99]. 
Furthermore, UQCRC1 can be directly down- 
regulated by ox-LDL, and the silence of UQCRC1 
aggravates HUVEC pyroptosis and the damage of 
mitochondrial function. TET2 is also an inhibitor of 
succinate dehydrogenase B (SDHB) and its deletion 
leads to the up-regulation of SDHB expression and 
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activity by reducing the recruitment of histone 
deacetylase 2 [100]. Overexpression of SDHB in 
HUVECs impairs mitochondrial function, increases 
ROS level, and enhances pyroptosis, while knockout 
of SDHB can resist HUVEC pyroptosis [101]. These 
studies indicate that ox-LDL can induce oxidative 
stress and mitochondrial disorder through a variety of 
ways, thus leading to the production of ROS [95]. 
Undoubtedly, the elevated ROS also disrupts 
mitochondrial functions [99]. Through this interaction 
and regulation, the participation of ROS is considered 
as the driving force of pyroptosis [102]. ROS not only 
serves as an efficient trigger of the NLRP3 
inflammasome, but also directly promotes GSDMD 
cleavage in pyroptosis, and up-regulates the oxidative 
modification of cysteine in GSDMD [102]. Therefore, 
ROS is a triggering factor that activates NLRP3 
inflammasomes agent and "effector" molecule [103]. 

Ca2+ influx is the upstream regulator of NLRP3 
inflammasome activation. Studies have shown that 
ox-LDL induces the closure of macrophage K+ 
channels to open Ca2+ channels [104], and upregulates 
the expression of calcium-sensing receptor (CaSR) in 
rat aortic VSMCs in a time and dose-dependence 
manners to promote Ca2+ influx [105]. Sebastian Rühl 
et al. found that the influx of Ca2+ through GSDMD 
pores was served as a signal for cells to initiate 
membrane repair by recruiting the endosomal sorting 
complexes required by transport (ESCRT) machinery 
to damaged membrane areas, such as the PM. 
Inhibition of the ESCRT-III machinery strongly 
exacerbates the activation of canonical or 
noncanonical inflammasome-dependent pyroptosis as 
well as the release of IL-1β in both human and murine 
cells [106]. These studies suggest that ox-LDL may 
induce pyroptosis by promoting Ca2+ influx, and the 
rupture of membrane pores after pyroptosis is due to 
the Ca2+ influx activating ESCRT to repair cell 
membranes, and prevent the amplification of 
inflammation followed pyroptosis. 

Ox-LDL can also induce K+ efflux via the 
activation of big conductance Ca2+-activated K+ 
channels (BKCa). In addition, P2X7 generates 
channels to promote K+ efflux [107]. Definitely, K+ 

efflux is an essential upstream factor of caspase-1 
activation. High levels of extracellular K+ can block 
the inflammatory responses induced by ox-LDL in 
HUVECs [108], while low concentrations of 
intracellular K+ are sufficient to trigger NLRP3 
inflammasome [18]. Ox-LDL up-regulates mixed 
lineage kinase domain-like (MLKL) protein, which 
activates NLRP3-induced pyroptosis by stimulating 
intracellular K+ efflux. MLKL-induced caspase-1 

activation and IL-1β maturation can be abolished by 
NLRP3 specific inhibitor MCC950 [108]. 

Pyroptosis is a form of pro-inflammatory cell 
death. Conversely, autophagy is a cell survival 
mechanism, which allows cells to survive by adapting 
to stress. There two cell processes are important 
components of immune regulation. In particular, the 
activity of autophagosome plays a pivot role in 
regulating cell deaths, and blocking autophagy 
promotes the pyroptosis of ox-LDL-treated 
macrophages via the p62/Nrf2/ARE axis [109]. 
Mitochondrial receptor NIX inhibits ox-LDL-induced 
pyroptosis of human macrophage through autophagy 
and inhibition of caspase-1 activation [110]. 
Ox-LDL-treated ECs exhibit increased pyroptosis 
mediated by myeloid cells trigger receptors1 
(TREM-1) and decreased autophagy induced by Sirt6 
[111]. 

Synthetic Lipids and their Potential Application and 
Pyroptosis  

Lipid nanoparticles (LNP) are multicomponent 
lipid systems that typically contain phospholipids, 
cationic lipids, cholesterol, and polyethylene 
glycolated lipids. Cationic lipids are key components 
of LNP, which can be permanently charged or acquire 
their charge at an acid pH and are also known as 
ionizable lipids. Cationic lipids possess a significant 
ability to stimulate the innate immune system, and are 
generally considered a safe alternative to viral vectors 
[112]. The traditional type of lipid nanoparticles refers 
to liposomes. Several studies have demonstrated that 
the structure of lipids can affect these immune 
responses. Lipids with lysine head groups, 
ditetradecyl hydrophobic chains, and propyl or pentyl 
spacers, respectively, such as L3C14 and L5C14 
liposomes, are most effective in activating the NLRP3 
inflammasome [113]. A previous study has shown 
that the arginine-based liposomes, such as A3C14 
liposomes, can induce the most effective lysosomal 
disruption and NLRP3 inflammasome activation 
[114]. Varying the concentrations of different lipid 
components in lipid nanoparticle formulations, the 
most notable of which are ionizable, cationic lipids, 
and cholesterol, can change their impact on the 
activation of NLRP3 inflammasomes, mainly due to 
the delay of endosomal rupture/fusing [115]. In sum, 
the structural effect of cationic liposomes on the 
activation of NLRP3 inflammasome has provided 
insights into the application of lipid nanoparticles in 
improving immune response. The ability of cationic 
lipid nanoparticles can be exploited in gene therapy, 
anticancer or antiviral immunotherapies. 
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Table 1. In vitro and in vivo evidence of lipid and its metabolites regulate pyroptosis. 

Category of lipid In vivo In vitro Effect on pyroptosis mechanism Ref 
CHCs NLRP3-/-mice Mouse primary coronary arterial 

endothelial cells 
Promote mtROS↑/NLRP3↑ [40] 

Cholesterol HFHCD-fed mice hepatocyte Promote DAG↑/PKCδ↑/NLRC4↑ [30] 
HCD-fed rats NP cells Promote mSREBP1↑/ER stress↑ [31] 

27-OHC NA SH-SY5Y cells, C6 cells Promote LMP↑/CTSB↑/NLRP3↑/caspase-1↑ [47] 
25-OHC NA NHEK,HaCaT cells, Promote P2X7R↑/NLRP3↑/caspase-1↑ [43] 
PA obesity-associated osteoarthritis mice SW1353 chondrocytes promote TLR4↑/NF-κB↑ 

 NLRP3↑/caspase-1↑/GSDMD↑ 
[49] 

NAFLD rat HepG2 cells Promote ER stress↑/NLRP3↑ [54] 
hyperlipidemic pancreatitis mice Rat pancreatic acinar cells Promote IRF5↑/CTSS↑/caspase1↑/GSDMD↑ [59] 
caspase-11–knockout mice, Western 
diet–fed mice 

enteric neuronal cells  Promote caspase-11↑/GSDMD↑ [60] 

DCM mice Myocardial cells Promote cGAS↑/STING↑ [57] 
DHA Buffalo rat Kupffer cells Inhibit PI3K↑/Akt↑/caspase-1↑ [68] 

Acute keratitis rats Human corneal epithelial cells Inhibit Caspase-11↓/p30↓ [69] 
LPS-exposed mice Kuppfer cells Inhibit  GPR120↑/β-arrestin2↑/ NLRP3↓ [29] 
obesity-associated osteoarthritis mice SW1353 chondrocytes Inhibit  TLR4↓/NF-κB↓ 

NLRP3↓/caspase-1↓/GSDMD↓ 
[49] 

NA murine microglia cells Promote 
DHA (200µM) 

12-LOX↑ [63] 

NA MDA-MB-231 cells,4T1 cells Promote  
DHA (200µM) 

NF-κB translocation↑, 
caspase-1↑/GSDMD↑ 

[72] 

OA NAFLD rat HepG2 cells Inhibit ER stress↓/NLRP3↓ [54] 
Propionate、
butyrate 

C57BL/6J male mice BMDMs、THP-1、Osteoclast 
differentiation 

Inhibit NLRP3↓/Caspase-1↓/GSDMD-N↓ [73] 

10-HDA ulcerative colitis mice THP-1 Inhibit  NLRP3↓/Caspase-1↓/GSDMD-N↓ [74] 
PI(4,5)P2 Gsdmd–/– mice HEK293T、Hela、iBMDM Promote GSDMD-N↑ [75] 
PI4P Gsdmd–/– mice HEK293T、HeLa Promote GSDMD-N↑ [78] 
cardiolipin NA Hela cells、293T Promote GSDMD-N↑ [16] 
phosphatidylserine NA Asymmetric plasma membrane 

composition 
Promote GSDMD-N↑ [82] 

LPC NA THP-1、HUVEC Promote NLRP3↑/Caspase-1↑/GSDMD-N↑ [86] 
oxPAPC Casp1-/-, Casp11-/-, Tlr4-/-, Tlr3-/-, and 

Cd36-/- mice 
BM cells were flushed from femurs 
and tibias 

Inhibit TLR4↓/caspase4,11↑ [88] 

 

 
Figure 1. The timeline of pyroptosis 
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Lipid Metabolism: A New Indicator of 
Pyroptosis 

Key Enzymes in Lipid Synthesis: A Potential Aspects of 
Regulate Pyroptosis 

Nearly 30 enzymatic processes convert acetyl 
CoA into cholesterol, such as mevalonate pathway 
[116]. Inhibition of the mevalonate pathway leads to 
pyroptosis in Raw 264.7 monocyte cells [117]. 
3-hydroxy-3-methyl-glutaryl-coenzyme A reductase 
(HMGCR), as the key rate-limiting enzyme of the 
mevalonate pathway in cholesterol synthesis [118], is 
positively correlated with inflammation [119, 120] and 
interacts with NLRP3 [121]. HMGCR knockdown can 
reduce pyroptosis [121]. Notably, the use of statins (a 
class of HMGCR inhibitors) including simvastatin 
and atorvastatin can attenuate pyroptosis [31]. 
Mevalonate kinase (MK) is another important kinase 
in the mevalonate pathway, and its deficiency is 
associated with an auto-immune disease known as 
Mevalonate Kinase Deficiency (MKD). It has been 
shown that pyroptosis in MKD is a fundamental step 
to induce the inflammatory phenotype of MKD 
patients [122].  

Fatty acid synthase (FASN) is the key enzyme to 
govern the de novo synthesis of fatty acids, which can 
convert acetyl-CoA, malonyl-CoA, and NADPH into 
SFA [123, 124]. One study showed that the increase of 
FASN-mediated lipid synthesis of macrophages could 
enhance the caspase-1 activation mediated by NLRP3 
and IL-1β expression through Akt and P38 MAPK 
pathways [125]. Uncoupling protein-2 (UCP2) is a 
mitochondrial transport protein family located in the 
inner membrane of mitochondrial. It acts as a critical 
regulator of glucose-dependent de novo lipid 
synthesis in vivo and in vitro, and can up-regulate the 
expression of FASN in response to LPS and other 
stimuli [126]. Another study revealed that knockdown 
or overexpression of UCP2 in hepatocytes could 
suppress or up-regulate FFAs-mediated pyroptosis 
respectively, which is manifested by the expressions 
of pyroptotic gene and accelerated cell death [127]. 
This may be due to the activation of FASN mediates 
the increase of lipid synthesis, and ultimately 
promotes pyroptosis. SMS1 is an enzyme that 
generates sphingomyelin (SM) and DAG from de 
novo-synthesized ceramide [128]. A recent study has 
shown that the overexpression of SMS1 in hepatocytes 
induces hepatocyte pyroptosis through the 
DAG-PKCδ-NLRC4 axis [30]. 

Conversely, pyroptosis also seems to affect lipid 
metabolism. GSDMD plays a key role in the 
pathogenesis of steatohepatitis by regulating 
lipogenesis. It has been found that knockout of 
GSDMD can reduce the expression of the lipogenic 

gene (such as FAS, PPARγ, SCD-1, and SREBP-1), 
while increasing the expression of lipolytic genes such 
as PPARα, CPT-1, ACO, LCAD, Cyp4a10 and 
Cyp4a14, to alleviate steatosis [129-131]. In addition, 
caspase-4 can promote the synthesis and 
accumulation of fatty acids by up-regulating the 
expression of acetyl coenzyme A carboxylase, FASN, 
SREBP-1 and SREBP-2, and increasing the number of 
lipid droplets, and ultimately accelerate the progress 
of pancreatic cancer [132]. 

Lipid uptake is involved in Pyroptosis 
Cholesterol can be transported through LDL 

binding to LDL receptor (LDLR) and internalization 
[133]. A recent study has demonstrated that the 
expression of LDLR is down-regulated following 
acute cerebral ischemia, which exacerbated neuronal 
pyroptosis and inflammatory response by provoking 
the activation and recruitment of NLRP3 
inflammasome, leading to the enlargement of cerebral 
infarct volume and the aggravation of neurological 
function defect [134]. 

The known FA protein transporters in PM 
include cluster of differentiation 36 (CD36) and 
FA-binding proteins (FABPs). CD36 is a scavenger 
receptor that can induce macrophage pyroptosis by 
regulating ox-LDL uptake [135, 136]. In addition, the 
activation of inflammasome by Porphyromonas 
gingivalis (Pg) LPS in the oral cavity is mediated by 
CD36/scavenger receptor-B2 (SR-B2) and TLR2, and 
leads to systemic release of pro-atherosclerotic IL-1β, 
as well as induces macrophage pyroptosis. However, 
pyroptosis is reduced in the absence of CD36/SR-B2 
[137]. 

Lipid Storage: Hypertrophic Adipocytes induce Obese 
Adipocyte Pyroptosis 

In a state of caloric excess, white adipose tissue 
mainly stores the surplus energy in the form of 
triglycerides. The volume of adipose tissue can be 
increased, in one of two main ways: hypertrophy or 
hyperplasia [138]. The activation of NLRP3- 
dependent caspase-1 in hypertrophic adipocytes 
induces the pyroptosis of obese adipocytes, causing 
macrophage recruitment with metabolic 
consequences. These may be directly related to the 
large number of CHCs observed in transmission 
electron microscopy [139, 140]. It has been reported 
that Nrf1 plays a key role in energy homeostasis by 
regulating lipid metabolism. Adipocyte-specific 
knockout of Nrf1 [Nrf1(f)-KO] in mice disturbs the 
expressions of lipolytic genes in adipocytes, resulting 
in white adipocyte hypertrophy, followed by severe 
adipose inflammation and pyroptosis [141, 142]. 
Furthermore, overexpression of Nrf1 has been shown 
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to inhibit tubular epithelial cell pyroptosis [143]. 
Knockout of BMPR2 in adipocytes disrupts the 
phosphorylation of the lipid-droplet-coating protein 
(perilipin), and downregulates the lipolysis of white 
adipocytes, leading to subsequent caspase-1- 
dependent pyroptosis and inflammation [144]. In 
addition to energy storage, adipose tissue is an active 
endocrine organ that regulates lipid metabolism by 
secreting adipokines like adiponectin (APN) [145]. 
The secretion of APN in hypertrophic adipocytes is 
decreased [146, 147]. APN can suppress 
lipopolysaccharide-induced pyroptosis by inhibiting 
forkhead transcription factor O 4 (FoxO4) in human 
aortic epithelial cells [148]. In addition, leptin is also a 
hormone primarily derived from adipose tissue, and 
its plasma levels are correlated with fat storage [149]. 
Leptin can modulate lipid metabolism in hepatocytes, 
resulting in hepatic steatosis [150]. A study has shown 
that leptin exerts direct hepatocyte pyroptosis via ROS 
production/ER stress/autophagy induction/ 
cathepsin B maturation/NLRP3 inflammasomes axis, 
leading to potential liver injury [151]. Moreover, 
leptin can also trigger hepatocyte pyroptosis through 
CD8+ T lymphocytes. This effect relies on the 
Granzyme B released by CD8+ T lymphocytes [152]. 
Altogether, these results suggest that failing lipid 
metabolism renders adipocytes vulnerable to 
pyroptosis, and prevention of adipocyte hypertrophy 
may improve the disease associated with pyroptosis. 

The Interaction between Lipid Transport and 
Pyroptosis  

Excess cholesterol in the ER drives the activation 
of the LXR transcription factors, which mediate 
cholesterol efflux by controlling the expression of the 
cholesterol export molecules ATP-binding cassette 
transporter 1 (ABCA1) and ATP-binding cassette 
subfamily G member 1 (ABCG1). ABCA1/G1- 
mediated cholesterol efflux is the initial step of 
reverse cholesterol transport (RCT). It is worth noting 
that ABCA1 also has certain anti-inflammatory 
effects. The lack of ABCA1/ABCG1 in cells leads to 
cholesterol accumulation and activation of NLRP3 
inflammasomes [153, 154]. A study has shown that 
ABCG1-knockout mice disturbed cholesterol 
metabolism and exacerbated pyroptosis after 
traumatic brain injury [155]. ABCA1 expression can 
reduce the binding of GSDMD-N to PM, thus 
preventing cell lysis. Furthermore, ABCA1 is the 
floppase of PIP2 that transfers PIP2 from the inner to 
the outer leaflet of the PM, thereby reducing the 
content of PIP2 on the leaflets inside the PM [156]. As 
the ligand of GSDMD-N fragments, PIP2 promotes 
cell rupture by transfection of GSDMD-N [75, 157], 
indicating that ABCA1 may indirectly inhibit 

GSDMD-induced membrane pore disruption and 
scorch death through PIP2. It is noteworthy that the 
pore formation caused by GSDMD can decrease the 
ability of cells to effectively transport cholesterol via 
the ABCA1-apoA1 pathway [157], which may 
increase cholesterol accumulation. Therefore, 
GSDMD-/- macrophages and mice can resist the 
reduction of RCT induced by pyroptosis.  

Fatty acid binding protein 4 (FABP4) is a carrier 
protein of fatty acids, which is mainly expressed in 
macrophages and adipocytes and can regulate lipid 
metabolism. The increase of intracellular MUFA level 
in macrophages with FABP4 deletion leads to 
up-regulation of UCP2 expression, inhibition of ROS 
production, reduction of ER stress, and NF-κB 
activation and cytokine release attenuated, eventually 
leading to the anti-inflammatory phenotype in both 
animal and cell models [158, 159]. The latest study 
further provides a mechanism, that is, the 
combination of FABP4 and MUFA can reduce the 
activation of silent mating type information 
regulation 2 homolog 1 (SIRT1) and the acetylation of 
p53. Pharmacological inhibition or genetic deletion of 
FABP4 in macrophages can deacetylate and inactivate 
p53 through SIRT1, which is the result of the loss of 
ASC expression. Lack of ASC prevents assembly of 
the NLRP3 inflammasome, GSDMD processing, and 
functional activation of pyroptosis [160]. Together, 
these studies support a possible role for adipose tissue 
in promoting pyroptosis. Further studies are 
warranted to reveal molecular links between lipid 
droplet formation and pyroptosis inhibition. 

Lipid Peroxidation: not the only Feature of 
Ferroptosis 

Lipid peroxidation refers to the process of lipid 
peroxide generation mediated by free radicals on the 
cell membranes and organelle membranes [161]. 
Glutathione peroxidase 4 (GPX4) is an antioxidant 
defense enzyme that can repair oxidative damage 
[162]. Kang et al. showed that the inactivation of GPX4 
gene increased lipid peroxidation-dependent caspase- 
11 activation, and aggravated GSDMD-mediated 
pyroptosis in macrophages as well as septic lethality 
in mice [163]. And other studies have also 
demonstrated the ability of GPX4 to inhibit pyroptosis 
[164, 165], which may be related to lipid peroxidation. 
5-Lipoxygenase (ALOX5) is an iron-containing and 
nonheme dioxygenase that catalyzes the peroxidation 
of PUFAs such as AA. Inhibition of lipid peroxidation 
by ALOX5 limits the activation of caspase-11 
inflammasome and pyroptosis in macrophages, which 
provides a potential strategy for the treatment of 
sepsis [166]. These results indicate that lipid 
peroxidation is closely related to pyroptosis. 
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Interestingly, only lipid peroxides produced by the 
oxidation of phospholipids can induce GSDMD- 
N-mediated pyroptosis in BMDMs, instead of lipid 
peroxides formed by cholesterol and glycolipids in 
PM [163]. Furthermore, lipid peroxidation of PM 
leads to phospholipase C (PLC) γ1 activation. PLCγ1, 
as an important second messenger, converts PIP2 to 
inositol 1,4,5-trisphosphate (IP3), resulting in the 
mobilization of ER calcium pool [167]. On the one 
hand, PLCγ1-regulated calcium signal controls 
GSDMD-mediated pyroptosis by promoting GSDMD- 
N translocation to the PM [163, 168]. On the other 
hand, the mobilization of intracellular calcium stores 
can also induce calcium flux and mtROS production, 
which triggers the activation of NLRP3 
inflammasome and caspase-1, leading to IL-1β release 
as well as GSDMD-mediated pyroptosis [169]. 

Fatty Acid Oxidation  
The main pathway of fatty acid catabolism is 

through fatty acid beta-oxidation (FAO), which is 

up-regulated under long-term fasting, exercise, or 
metabolic stress. Moon et al. have demonstrated that 
FAO promotes the activation of NLRP3 
inflammasome through NADPH oxidase 4 (NOX4). 
Mechanistically, NOX4 acts as a source of cellular 
superoxide anion, which enhances the expression of 
carnitine palmitoyltransferase 1A (CPT1A) to 
promote the activation of NLRP3 inflammasome, and 
CPT1A is a key enzyme in the FAO pathway [170]. 
Another study showed that NOX promoted the 
production of mtROS or self-derived ROS, and 
activated NLRP3 inflammasome. It was further found 
that NOX4 was positively correlated with the 
expressions of caspase-1 and GSDMD-N, and 
inhibition of NOX4 could prevent cardiomyocyte 
pyroptosis [171]. Since NOX4-derived mtROS is 
important for regulating the expression of the CPT1A 
[170], it is believed that NOX4-derived mtROS may 
stimulate NLRP3 by activating CPT1A-modulated 
FAO, thus leading to pyroptosis.  

 

 
Figure 2. Regulation of lipid metabolism in pyroptosis. A Lipid synthesis and pyroptosis. Enzymes in cholesterol and fatty acid biosynthesis, including FASN and HMGCR 
can promote the occurrence and development of pyroptosis. In addition, the pyroptosis-related protein caspase-4 promote critical enzymes in fatty acid synthesis, including ACC 
and FASN. B Lipid uptake and transport with pyroptosis. LDLR and ABCA1 restrain NLRP3 inflammasome activation and prevent caspase-1 cleaving GSDMD to promote the 
release of the N-terminal domain, which executes pores formation and pyroptosis. The combination of FABP4 and MUFA can reduce activation of SIRT1 and acetylation of p53, 
promoting NLRP3-dependent pyroptosis. C Lipid storage and pyroptosis. Hypertrophic adipocytes can induce NLRP3-dependent caspase-1 activation and pyroptosis, and obese 
adipocytes also regulate the secretion of APN and leptin. APN and leptin promote pyroptosis via FoxO4 or ROS production/ER stress/autophagy induction/cathepsin B 
maturation axis respectively. D Lipid peroxidation and pyroptosis. GPX4 and ALOX5 inhibit or promote lipid peroxidation respectively, leading to caspase-11-dependent 
pyroptosis. Lipid peroxidation triggers NLRP3 inflammasome and caspase-1 activation by inducing PLC γ1 activation. 
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Conclusion  
Pyroptosis is an inflammatory programmed 

death pathway. Numerous types of lipids, such as 
CHCs, ox-LDL, and SFAs, act as signal molecules to 
activate pyroptosis. Conversely, lipids such as UFAs 
can inhibit pyroptosis. In general, most of these lipids 
activate NLRP3-dependent pyroptosis by inducing 
mitochondrial dysfunction, ER stress, and lysosomal 
disruption, while other types of lipids directly activate 
GSDMD without relying on NLRP3. Pyroptosis is 
usually induced by LPS and ATP (or Nigericin) [172]. 
But accumulating studies used lipids (such as ox-LDL 
and PA) to establish pyroptosis model, especially in 
the studies of cardiovascular diseases and NAFLD. 
Lipid metabolism is regulated by complex 
intracellular signal network and constitutes an 
essential part of cell fate regulation. Meanwhile, 
enzymes or proteins related to lipid metabolism also 
affect pyroptosis. For example, the GSDMD-N 
fragments cleaved by caspase-1 trigger pyroptotic 
macrophages in a PLC1-dependent manner. 

Cholesterol in the endoplasmic reticulum is 
involved in the activation of NLRP3. Silencing NLRP3 
and ASC in macrophages, CHCs are unable to release 
IL-1β demonstrated its ability to activate NLRP3 
inflammasome. Cardiolipin is beneficial to the 
formation of NLRP3 inflammasome. SFAs, such as 
PA, stimulate TLRs and induce K+-dependent NLRP3 
inflammasomes. By contrast, UFAs prevent 
SFAs-induced NLRP3 activation. In addition to these 
endogenous host-derived lipids, synthetic lipids 
(cationic and ionizable lipids) also have been 
described to regulate the activation of inflammasome. 
All of these have been discussed in detail in the 
review by Pizzuto M et al [173]. It is easy to see the 
important role of lipids in the activation of NLRP3 
inflammasome. To date, there are still some issues to 
be solved. The extent of pyroptosis caused by 
activation of NLRP3 inflammasome is still unclear, 
and how inflammasomes develop into pyroptosis 
requires further exploration. The relationship 
between synthetic lipids and NLRP3 may have 
potential roles in synthetic lipids and pyroptosis. 
Lipids can activate the occurrence of pyroptosis, but 
there are few studies on whether the large-scale 
inflammatory response caused by pyroptosis will 
affect lipid metabolism in turn, and thus the level of 
blood lipids. It is well known that the inflammatory 
response can aggravate the imbalance of lipid 
metabolism, promotes the accumulation and uptake 
of lipids, as well as inhibit efflux. Therefore, the 
alterations and status of lipid metabolism-related 
proteins, such as ABCA1/G1, ABCG5/8, PCSK9, etc. 
in the process of cytokinesis, deserve in-depth 

investigations. In addition, as a form of programmed 
death, pyroptosis plays a protective role, especially in 
immune defense, but the inflammatory factors 
released by excessive pyroptosis can lead to a certain 
degree of tissue damage.  

It is exciting to note that inhibitors of the 
inflammasome-pyroptosis pathway have been 
identified. Several drugs targeting pyroptosis such as 
MCC950, VX-765, z-VAD-fmk, have been developed 
and validated in vitro cell culture studies and animal 
models of inflammation-related diseases in vivo, but 
prospective clinical trials are also required to 
potentially translate them into clinical practice. This is 
because the activation and action mechanism of 
pyroptosis is extremely intricate, and a consensus 
model has not been formed yet. Therefore, a large 
number of experiments, especially clinical trials, are 
still urgently required. Other potential drug 
candidates, such as autophagy inducers, antioxidants, 
and miRNA reagents, need further development. 
These studies will help to deepen the understanding 
of the pathogenesis of many diseases, and develop 
effective treatment strategies from the perspective of 
pyroptosis. 
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complex II; CPT1A: carnitine palmitoyltransferase 1A; 
CTSB: cathepsin B; CTSD: cathepsin D; DHA: 
Docosahexaenoic acid; ER: endoplasmic reticulum; 
EtBr: ethidium bromide; FABP4: Fatty acid binding 
protein 4; FABPs: FA-binding proteins; FAO: fatty 
acid beta-oxidation; FAs: Fatty acids; FASN: Fatty 
acid synthase; FoxO4: forkhead transcription factor O 
4; GPR: G protein-coupled receptor; GPX4: 
Glutathione peroxidase 4; GSDMA: gasdemin A; 
GSDMB: gasdemin B; GSDMC: gasdemin C; GSDMD: 
gasdemin D; GSDME: gasdemin E; GSMD: 
Gasdermin; H/R: hypoxia/restoration; HFHCD: 
high-fat and high-cholesterol diet; HMGB1: high 
mobility group box 1; HMGCR: 3-hydroxy-3- 
methylglutaryl coenzyme A reductase; IL-1β: 
interleukin-1β; IP3: inositol 1,4,5-trisphosphate; LDH: 
lactate de-hydrogenase; LDL: Low-density 
lipoprotein; LPC: lyso-PC; LPS: lipopolysaccharide; 
LXR: Liver X receptors; MAPK: mitogen activated 
protein kinase; MK: Mevalonate Kinase; MKD: 
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Mevalonate Kinase Deficiency; mtROS: mitochondrial 
reactive oxygen species; MUFA: monounsaturated; 
NASH: non-alcoholic steatohepatitis; NF-κB: nuclear 
factor kappa B; NOX4: NADPH oxidase 4; OA: oleic 
acid; ox-LDL: oxidized LDL; oxPAPC: oxidized 
PAPC; PA: palmitic acid; PAPC: 1-palmitoyl-2- 
arachidonoyl-snglycero-3-phosphorylcholine; PCD: 
programmed cell death; PCSK9: proprotein 
convertase subtilisin/kexin type 9; Perilipin: the 
lipid-droplet-coating protein; Pg: Porphyromonas 
gingivalis; PI: propidine iodide; PI3K/Akt: 
phosphatidylinositol-3-kinase/protein kinase B; PIP2: 
phosphatidylinositol(4,5)bisphosphate; PKCδ: protein 
kinaseCδ; PLC: phospholipase C; PLs: Phospholipids; 
PRRs: pattern recognition receptors; PUFA: 
polyunsaturated fatty acids; RCT: reverse cholesterol 
transport; ROS: reactive oxygen species; SDHB: 
succinate dehydrogenase B; SFA: saturated fatty 
acids; SIRT1: silent mating type information 
regulation 2 homolog 1; SR-B2: scavenger receptor-B2; 
SREBP: Sensor response element binding protein; 
TET2: Tet methylcytosine dioxygenase 2; TLR4: 
Toll-like receptor 4; TUNEL: dUTP nick end labeling; 
UCP2: Uncoupling proteins 2; UQCRC1: ubiquinol- 
cytochrome c reductase core protein 1; 7-AAD: 
7-amino actinomycin; 12-LOX: 12-lipoxygenase.   
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