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Abstract 

Cholesterol levels are an initiating risk factor for atherosclerosis. Many genes play a central role in 
cholesterol synthesis, including HMGCR, SQLE, HMGCS1, FDFT1, LSS, MVK, PMK, MVD, FDPS, CYP51, 
TM7SF2, LBR, MSMO1, NSDHL, HSD17B7, DHCR24, EBP, SC5D, DHCR7, IDI1/2. Especially, HMGCR, 
SQLE, FDFT1, LSS, FDPS, CYP51, and EBP are promising therapeutic targets for drug development due 
to many drugs have been approved and entered into clinical research by targeting these genes. However, 
new targets and drugs still need to be discovered. Interestingly, many small nucleic acid drugs and vaccines 
were approved for the market, including Inclisiran, Patisiran, Inotersen, Givosiran, Lumasiran, 
Nusinersen, Volanesorsen, Eteplirsen, Golodirsen, Viltolarsen, Casimersen, Elasomeran, Tozinameran. 
However, these agents are all linear RNA agents. Circular RNAs (circRNAs) may have longer half-lives, 
higher stability, lower immunogenicity, lower production costs, and higher delivery efficiency than these 
agents due to their covalently closed structures. CircRNA agents are developed by several companies, 
including Orna Therapeutics, Laronde, and CirCode, Therorna. Many studies have shown that circRNAs 
regulate cholesterol synthesis by regulating HMGCR, SQLE, HMGCS1, ACS, YWHAG, PTEN, DHCR24, 
SREBP-2, and PMK expression. MiRNAs are essential for circRNA-mediated cholesterol biosynthesis. 
Notable, the phase II trial for inhibiting miR-122 with nucleic acid drugs has been completed. Suppressing 
HMGCR, SQLE, and miR-122 with circRNA_ABCA1, circ-PRKCH, circEZH2, circRNA-SCAP, and 
circFOXO3 are the promising therapeutic target for drug development, specifically the circFOXO3. This 
review focuses on the role and mechanism of the circRNA/miRNA axis in cholesterol synthesis in the 
hope of providing knowledge to identify new targets. 
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Introduction 
Cholesterol is an important component of verte-

brate organisms' membrane and plasma lipoproteins 
and regulates membrane fluidity and permeability. 
Cholesterol is also a precursor of steroid hormones, 
bile acids, and vitamin D. However, plasma choles-
terol levels have been firmly the initiating factor of 
atherosclerosis, cardiovascular disease (ASCVD), and 

cancer, which are the leading causes of disease and 
death worldwide. Therefore, controlling cholesterol 
levels is essential for preventing and treating 
atherosclerosis [1-3]. The human body gets 300-500 
mg of cholesterol from the diet every day and 
produces about 700-900 mg of cholesterol from 
scratch [4]. Approximately 50% of endogenous 
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cholesterol is synthesized in the liver. HMG-CoA 
reductase (HMGCR) is the rate-limiting enzyme in 
cholesterol synthesis. Statins, which are the HMGCR 
inhibitors, have been widely used for the treatment of 
ASCVD. Statins also increase survival rates for cancer 
patients. However, the efficacy of statins was limited 
by compensatory increases in HMGCR protein. 
Statins also induced myopathy and hepatotoxicity [5, 
6]. Therefore, more research is required to identify 
new therapeutic targets and agents. Indeed, many 
genes play a key role in cholesterol synthesis, includ-
ing HMG-CoA synthetase 1 (HMGCS1), mevalonate 
kinase (MVK), phosphomevalonate kinase (PMK), 
and mevalonate diphosphate decarboxylase (MVD, 
also named MDD), Farnesyl diphosphate farnesyl 
transferase 1 (FDFT1), squalene epoxidase (SQLE, also 
known as squalene monooxygenase (SM)), lanosterol 
synthase (LSS, also known as oxidosqualene cyclase 
(OSC)), farnesyl diphosphate synthase (FDPS, also 
named farnesyl pyrophosphate synthase (FPPS)), 
sterol 14alpha-demethylase (CYP51, also named 
cytochrome P450 family 51 subfamily A member 1 
(CYP51A1)), transmembrane 7 superfamily member 2 
(TM7SF2), lamin B receptor (LBR), methylsterol 
monooxygenase 1 (MSMO1), NAD(P) dependent 
steroid dehydrogenase-like (NSDHL), hydroxysteroid 
17-beta dehydrogenase 7 (HSD17B7), 24-dehydrocho-
lesterol reductase reductase (DHCR24, also known as 
seladin-1), cholestenol delta-isomerase (EBP), delta7- 
sterol 5-desaturase (SC5D), 7-Dehydrocholesterol 
reductase (DHCR7), isopentenyl diphosphate 
isomerase 1 and 2 (IDI1/2) [5, 7, 8]. However, more 
studies are still needed to identify the medicinal 
properties of these targets. 

Circular RNAs (circRNAs) are covalently closed- 
loop single-stranded RNA. CircRNAs have no 5’-3’ 
polarities and a polyadenylated tail, making them 
much more stable and resistant to RNase R degrada-
tion than linear RNA. CircRNAs regulate gene 
expression by serving as the miRNA sponges, protein 
scaffolds and sponges, encoding proteins, and 
regulating splicing and transcription [9-11]. So far, 
many small nucleic acid drugs and vaccines were 
approved for market, including Inclisiran (Proprotein 
convertase subtilisin/kexin-9 (PCSK9) siRNA), 
Patisiran (transthyretin (TTR) siRNA), Inotersen (TTR 
antisense oligonucleotide (ASO)), Givosiran (amino-
levulinate synthase 1 (ALAS1) siRNA), Lumasiran 
(hydroxyacid oxidase 1 (HAO1) siRNA), Nusinersen 
(exon 7 of survival motor neuron 2 (SMN2) ASO), 
Volanesorsen (Apolipoprotein C3 (APOC3) ASO), 
Eteplirsen (exon 51 of Duchenne muscular dystrophy 
(DMD) ASO), Golodirsen (exon 53 of DMD ASO), 
Viltolarsen (exon 53 of DMD ASO), Casimersen (exon 
7 of DMD ASO), Elasomeran (COVID19 Spike 

glycoprotein mRNA vaccine, also named mRNA- 
1273), Tozinameran (COVID19 Spike glycoprotein 
mRNA vaccine, also named BNT162b) [12-23]. There 
are also multiple nucleic acid agents in preclinical or 
clinical studies. However, most of these agents are 
linear RNA drugs. Compared to linear RNA agents, 
circRNAs may have prolonged half-lives, high 
stability, low immunogenicity, low production cost, 
and high delivery efficiency due to the covalently 
closed structures. CircRNA agents are being 
developed by several companies, such as Orna Thera-
peutics, Laronde, CirCode, and Therorna [24, 25]. 
Interestingly, circRNAs also regulated cholesterol 
synthesis by serving as miRNA sponges [26, 27]. The 
formation, classification, and function of circRNAs 
and miRNAs, please see reviews by other groups [28, 
29]. Therefore, we focused on the role and mechanism 
of the circRNA/miRNA axis in regulating cholesterol 
synthesis to affect atherosclerosis and provided some 
potential targets for the diagnosis and treatment of 
atherosclerosis.  

The mechanism of cholesterol synthesis 
Cholesterol is biosynthesized in three main 

steps. Firstly, the synthesis of isoprene pyrophosphate 
(IPP). Acetyl-coenzyme A (CoA) is catalyzed to 
acetyl-CoA by thiolases and then catalyzed to form 
3-hydroxy-3-methylglutaryl CoA (HMG-CoA) by 
HMGCS1. HMGCR catalyzes HMG-CoA to form 
mevalonate (MVA). Mevalonate was phosphorylated 
and decarboxylated to produce IPP by three 
sequential ATP-dependent Enzymes, including MVK, 
PMK, and MVD. Secondly, the synthesis of squalene. 
IPP is catalyzed to form farnesyl pyrophosphate (FPP) 
and then catalyzed to form squalene by FDFT1. 
Thirdly, the synthesis of cholesterol. Squalene is 
catalyzed to form 2,3-epoxy squalene by SQLE and 
then to form lanosterol by LSS. Lanosterol is catalyzed 
to form desmosterol and cholesterol after methyl 
transfer, oxidation, and decarboxylation reaction and 
then catalyzed to form cholesterol [7, 30, 31]. 
According to KEGG, many genes are involved in 
cholesterol synthesis, such as FDPS, CYP51, TM7SF2, 
LBR, MSMO1, NSDHL, HSD17B7, DHCR24, EBP, 
SC5D, DHCR7, IDI1/2 [8]. Specifically, FDPS cata-
lyzes the conversion of isopentenyl diphosphate into 
farnesyl pyrophosphate. CYP51 is a housekeeping 
gene of the cytochrome P450 that catalyzes the 
conversion of lanosterol into 4,4-dimethyl-5-alpha- 
cholesta-8,14,24-trien-3-beta-ol (FF-MAS). TM7SF2 
encodes beta-hydroxysterol Delta (14)-reductase 
(C14SR, DHCR14) that catalyzes the conversion of 
FF-MAS into 14-demethyllanosterol (T-MAS). LBR 
and DHCR14 uniquely share the same delta-14 
reductase activity in cholesterol biosynthesis. MSMO1 
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is an intermediate enzyme of cholesterol biosynthesis. 
NSDHL is a 3beta-hydroxysterol dehydrogenase that 
catalyzes the conversion of 4-alpha-carboxy-5- 
alpha-cholesta-8,24-dien-3-beta-ol into zymosterone. 
HSD17B7 catalyzes the conversion of zymosterone to 
zymosterol. DHCR24 catalyzes the conversion of 
desmosterol to cholesterol. EBP catalyzes the conver-
sion of zymostenol into lathosterol. SC5D catalyzes 
the conversion of lathosterol into 7-dehydrocholes-
terol. DHCR7 catalyzes the conversion of 7-dehydro-
cholesterol to form cholesterol and is the final step in 
cholesterol synthesis. IDI1/2 is the cytoplasmic 
enzyme involved in cholesterol synthesis [8, 32-35]. 
Taken together, many genes play a central role in 
cholesterol synthesis, including HMGCR, SQLE, 
HMGCS1, FDFT1, LSS, MVK, PMK, MVD, FDPS, 
CYP51, TM7SF2, LBR, MSMO1, NSDHL, HSD17B7, 
DHCR24, EBP, SC5D, DHCR7, IDI1/2 (Fig. 1). 

The potential of cholesterol synthesis 
genes in drug development 

As described above, the cholesterol synthesis 
pathway involves multiple genes. Especially, 
HMGCR and SQLE are the rate-limiting enzymes in 
cholesterol synthesis. Statins have been widely used 
for the treatment of ASCVD by suppressing HMGCR 
[36-38]. Many studies have shown that statins increase 
survival rates for cancer patients, including prostate 
cancer (PCa), lung cancer, gastric cancer (GC), renal 

cell carcinoma (RCC), breast cancer, colorectal cancer, 
ovarian cancer, pancreatic cancer, esophageal cancer, 
endometrial cancer, suggesting that HMGCR is a 
broad-spectrum anticancer and cardiovascular 
disease target [39, 40]. Many drugs have entered the 
stage of market or clinical trials by targeting other 
cholesterol synthesis genes, such as SQLE, FDFT1, 
LSS, FDPS, CYP51, and EBP (Table 1). The SQLE 
inhibitors include terbinafine [41, 42], liranaftate [43], 
naftifine [44], Butenafine Hydrochloride [44], 
Amorolfine Hydrochloride [45, 46]. The FDFT1 
inhibitors include BPH-652 (also named BMS-188745), 
S-BPH-652 (also named BMS-188494 or SQ-32709) 
[47-50], Lapaquistat acetate (also named TAK-475) 
[51, 52]. The LSS inhibitors include Oxiconazole 
Nitrate (also named Ro 13-8996) [53, 54] and BIBB-515 
(also named BIBB 515 BS) [55]. The FDPS inhibitors 
include alendronate [56], incadronate (INC, also 
named cimadronate or YM-175) [56, 57], ibandronate 
[56, 58, 59], minodronate [56], risedronate [56], 
pamidronate [56], zoledronate [56]. The CYP51 
inhibitors include albaconazole (also named stiefel or 
UR-9825) [60, 61], arasertaconazole nitrate [62, 63], 
Bifonazole (also named B3LYP) [64-67], butoconazole 
(BTZ) [68, 69], clotrimazole [70], dapaconazole [71, 
72], eberconazole (EBZ) [73], econazole (also named 
EcoNai™, SEPA, Spectazole, Ecostatin, or Pevaryl) 
[74, 75], efinaconazole (also named KP-103 or Jublia) 
[41, 76, 77], fluconazole [78], flutrimazole [79, 80], 

 

 
Figure 1. The genes and products of cholesterol biosynthesis pathway. 
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fosravuconazole (F-RVCZ, the prodrug of ravuco-
nazole (also named E1224)) [81-86], genaconazole 
(also named SCH 39304, a racemic mixture that 
contains 50% of the SCH 42427 and 50% of SCH 42426 
enantiomers) [87, 88], HCP002 (a phosphate-modified 
derivative of voriconazole) [89], IDP113 [90], 
isavuconazole (ISA, the prodrug of isavuconazole 
(BAL 4815)) [91, 92], ketoconazole (KTC) [93-95], 
levoketoconazole [95, 96], itraconazole [97], 
luliconazole [85, 98], miconazole [99], opelconazole 

(also named PC945) [100, 101], oteseconazole (also 
named VT-1161) [102], posaconazole [84, 103], 
pramiconazole (also named R126638) [104-107], 
quilseconazole (also named VT-1129) [108, 109], 
SSY726 [110, 111], voriconazole (VRC) [112, 113], 
VT-1598 [114, 115]. The EBP inhibitors include 
DSP-0390 (also named RB55ZW48XG) [116-118]. 
Thus, EBP, FDFT1, FDPS, HMGCR, LSS, and SQLE 
are promising targets for drug development.  

 

Table 1. The drugs in the market and clinical trials targeting cholesterol synthesis genes. 

Name Structure Target Diseases Status Refs 
Atorvastatin 

 
PubChem CID: 60823 

HMGCR ASCVD Market [36-38] 

Fluvastatin 

 
PubChem CID: 446155 

HMGCR ASCVD Market [36-38] 

Lovastatin 

 
PubChem CID: 53232 

HMGCR ASCVD Market [36-38] 

Pravastatin 

 
PubChem CID: 54687 

HMGCR ASCVD Market [36-38] 

Rosuvastatin 

 
PubChem CID: 446157 

HMGCR ASCVD Market [36-38] 

Simvastatin 

 
PubChem CID: 54454 

HMGCR ASCVD Market [36-38] 

Terbinafine 

 
PubChem CID: 1549008. 

SQLE Onychomycosis and superficial 
dermatomycoses 

Market [41, 42] 

Liranaftate 
 

PubChem CID: 3936. 

SQLE Tinea Market [43] 

Naftifine 

 
PubChem CID: 47641. 

SQLE Tinea corporis, Tinea cruris, Tinea pedis Market [44] 
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Name Structure Target Diseases Status Refs 
Butenafine  

 
PubChem CID: 2484. 

SQLE Mycoses, onychomycosis, pityriasis 
versicolor, Tinea corporis, Tinea cruris, 
Tinea pedis 

Market [44] 

Amorolfine  
 

PubChem CID: 54260. 

SQLE Onychomycosis and various local dermal 
mycoses 

Market [45, 46] 

BPH-652 
 

PubChem CID: 10004539. 

FDFT1 Cholesterol-lowering agent early clinical trials 
(Completed) 

[47-49] 

S-BPH-652 

 
PubChem CID: 154098. 

FDFT1 Hyperlipidaemia Phase 2 
(Discontinued) 

[48-50] 

Lapaquistat 
Acetate 

 
PubChem CID: 9874248. 

FDFT1 Hypercholesterolemia Phase 3 (Completed) [51, 52] 

Oxiconazole 
Nitrate  

 
PubChem CID: 9556529. 

LSS  Tinea pedis, tinea cruris, and tinea 
corporis 

Market [53, 54] 

BIBB-515 
 

PubChem CID: 501398. 

LSS  Hyperlipidemia Phase 1 (Completed) NCT02266498 
(ClinicalTrials.gov), 
NCT02266485, [55]  

Alendronate 

 
PubChem CID:2088. 

FDPS Corticosteroid-induced osteoporosis; 
Fracture; Male osteoporosis; Malignant 
hypercalcaemia; Osteitis deformans; 
Osteoporosis; Postmenopausal 
osteoporosis 

Market [56] 

 
Incadronate 

 
PubChem CID: 3013050. 

FDPS Malignant hypercalcaemia Market [56, 57] 

Ibandronate 

 
PubChem CID: 6918123. 

FDPS Cancer metastases; Malignant 
hypercalcaemia; Osteoporosis; 
Postmenopausal osteoporosis 

Market [56, 58, 59] 

Minodronate 

 
PubChem CID: 130956. 

FDPS Osteoporosis Market [56] 

Risedronate  

 
PubChem CID: 5245. 

FDPS Corticosteroid-induced osteoporosis; Male 
osteoporosis; Osteitis deformans; 
Osteoporosis; Postmenopausal 
osteoporosis 

Market [56] 

Pamidronate 

 
PubChem CID: 4674. 

FDPS Osteoporosis Market [56] 

Zoledronate  

 
PubChem CID: 68740. 

FDPS Bone metastases; Corticosteroid-induced 
osteoporosis; Fracture; Male osteoporosis; 
Malignant hypercalcaemia; 
Mesothelioma; Multiple myeloma; 
Osteitis deformans; Postmenopausal 
osteoporosis 

Market [56] 

Albaconazole  

 
PubChem CID: 208952. 

CYP51 Onychomycosis Phase 2 (Completed) [60, 61] 
Candidiasis Vulvaginitis Phase 2 (Terminated) NCT00199264 

Arasertaconazole 
nitrate 

 
PubChem CID: 9806019 

CYP51 Vulvovaginal Candidiasis (VVC) Phase 3 (Planning) [62, 63] 
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Name Structure Target Diseases Status Refs 
Bifonazole  

 
PubChem CID: 2378. 

CYP51  Otomycosis, onychomycos, isseborrhoeic 
dermatitis of the scalp 

Market [64-67] 

Butoconazole  

 
PubChem CID: 47472. 

CYP51  Vulvovaginal candidiasis Market [68, 69] 
 

Clotrimazole 

 
PubChem CID: 2812. 

CYP51  Skin, oral and vaginal candida infections Market [70] 

Dapaconazole 

 
PubChem CID: 51001696. 

CYP51 Tinea Pedis Phase 3 (completed) NCT03320486, [71, 72] 

Eberconazole  

 
PubChem CID: 72051. 

CYP51 Cutaneous fungal infections Market [73] 

Econazole  

 
PubChem CID: 3198. 

CYP51 Fungal infections such as tinea pedis and 
cruris, pityriasis versicolor 

Market [74, 75] 

Efinaconazole  

 
PubChem CID: 489181. 

CYP51 Onychomycosis Market [41, 76, 77] 

Fluconazole 

 
PubChem CID: 3365. 

CYP51 Vulvovaginal candidiasis (RVVC)  Market [78] 
 

Flutrimazole 

 
PubChem CID: 3401. 

CYP51  Superficial skin fungal infections Market [79, 80] 

Fosravuconazole  
 

 
PubChem CID: 9807507. 

CYP51 Onychomycosis  Market [81-86] 
  

Genaconazole  

 
PubChem CID: 452261, 
456001. 

CYP51 Meningitis, Cryptococcal HIV Infections Phase 1 (Completed) NCT00000677, [87, 88]  
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Name Structure Target Diseases Status Refs 
HCP002  

 
PubChem CID: unknown. 

CYP51 Invasive fungal infections (IFI) Phase 1 (Recruiting) [89] 

IDP113 Unknown CYP51  Tinea capitis (Discontinued) Phase 2 (ongoing on 
30 Aug 2010) 

[90] 

Isavuconazole  

 
PubChem CID: 6918485. 

CYP51  Invasive aspergillosis (IA) and invasive 
mucormycosis (IM) 

Market [91, 92] 

Ketoconazole  

 
PubChem CID: 456201. 

CYP51  Systemic and superficial mycoses, 
cushing’s syndrome (CS) 

Market [93-95] 

Levoketoconazole  

 
PubChem CID: 47576. 

CYP51 CS Market [95, 96]  

Itraconazole 

 
PubChem CID: 55283. 

CYP51  Broad spectrum antifungal agent Market [97] 

Luliconazole 

 
PubChem CID: 3003141. 

CYP51  Onychomycosis Market [85, 98] 

Miconazole 

 
PubChem CID: 4189. 

CYP51  Superficial and cutaneous disease Market [99] 

Opelconazole  

 
PubChem CID: 121383526. 

CYP51  Pulmonary Aspergillosis Phase 3 (Recruiting) [100, 101] 

Oteseconazole  

 
PubChem CID: 77050711. 

CYP51  Recurrent Vulvovaginal Candidiasis Market [102] 

Posaconazole 

 
PubChem CID: 468595.  

CYP51  Broad-spectrum antifungal Market [84, 103] 

Pramiconazole  

 
PubChem CID: 3013050. 

CYP51 Pityriasis versicolor (PV) Phase 2 (Completed) [104-107] 

Quilseconazole  

 
PubChem CID: 91886002. 

CYP51  Systemic Cryptococcus infections Phase 1 (underway) [108, 109] 
 

SSY726 
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CYP51 Mycoses (Discontinued) Phase 2 [110, 111] 
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Name Structure Target Diseases Status Refs 
Voriconazole 

 
PubChem CID: 71616. 

CYP51  IFI Market [112, 113] 

VT-1598 

 
PubChem CID: 126715974. 

CYP51 Coccidioidomycosis Phase 1 (completed) NCT04208321, [114, 115] 

DSP-0390  
 

PubChem CID: 154975891. 

EBP  Recurrent High-Grade Glioma Phase 1 (Recruiting) NCT05023551, [116-118] 

 

The potential role and mechanism of the 
circRNA/miRNA axis in cholesterol 
synthesis 
CircRNA/miR-140-3p/HMGCR and HMGCS1 
axis 

CircRNA_ABCA1  
CircRNA_ABCA1 (also named circRNA_36781) 

is located in the exonic of ABCA1. CircRNA_ABCA1 
expression was increased in aortic vessels of HFD- 
induced apoE-/- mice and H2O2-induced mouse 
aortic endothelial cells (MAECs) injury model, 
suggesting that circRNA_ABCA1 is a potential 
diagnostic biomarker for atherosclerosis. CircRNA_ 
ABCA1 could serve as miR-140-3p sponge increasing 
vascular endothelial injury and atherosclerosis by 
regulating the miR-140-3p/MAP2K6 axis [119]. 
MiR-140-3p also suppressed cholesterol biosynthesis 
by binding and suppressing the 3’UTR of HMGCR 
and HMGCS1 [120], suggesting that circRNA_ABCA1 
promoted cholesterol biosynthesis by regulating 
miR-140-3p/HMGCR and HMGCS1 axis. It is worth 
mentioning that ABCA1 promotes cholesterol efflux 
to apolipoprotein A-I (apoA-I) to suppress foam cell 
formation. Previous studies from our laboratory and 
others have shown that ABCA1 promoted cholesterol 
efflux to suppress foam cell formation and 
atherosclerosis development [121-125]. However, the 
role of circRNA_ABCA1 on ABCA1 expression and 
cholesterol efflux remains unclear. 

CircUGGT2 and circ-PRKCH 
CircRNA UDP-glucose glycoprotein glucosyl-

transferase 2 (circUGGT2, also named hsa_circ_ 
0008274) and circ-protein kinase C eta (circ-PRKCH, 
also named hsa_circ_0032131) are located in the 
exonic of UGGT2 and PRKCH (encodes PKCη). 
UGGT2 is the central hub of the endoplasmic 
reticulum mate network and regulates the PERK- 
ATF4-CHOP pathway and IL-8 expression [126]. 
PRKCH is a member of the PKC family and regulates 

RGS2, ABCA1, and CTLA-4 expression. Both UGGT2 
and PRKCH play an essential role in lipid metabolism 
and inflammatory response [127-129]. CircUGGT2 
and circ-circ-PRKCH could serve as the miR-140-3p 
sponge [130-132], suggesting that circUGGT2 and 
circ-PRKCH promoted cholesterol biosynthesis by 
regulating miR-140-3p/HMGCR and HMGCS1 axis. 
CircUGGT2 also increased cholesterol efflux by 
stimulating ABCG1, SR-B1, and miR-186-3p/ABCA1 
axis in THP-1 macrophage-derived foam cells [133], 
suggesting that circUGGT2 not only increased 
cholesterol synthesis but also cholesterol efflux. 
Notably, astaxanthin increased the expression of 
circUGGT2 and then increased cholesterol efflux by 
stimulating ABCA1, ABCG1, and SR-B1 expression in 
THP-1 macrophage-derived foam cells. Astaxanthin 
also suppressed foam cell formation and athero-
sclerosis development by enhancing ABCA1, ABCG1, 
and SR-B1 expression in apoE-/- mice [133, 134], 
suggesting that circUGGT2 may be an anti-athero-
sclerotic RNA in vivo. However, more studies are 
needed. 

CircRNA/miR-133b and miR-221-5p/SQLE axis 

CircRNA/miR-133b/SQLE axis 
Zeste homolog 2 (EZH2) could encode circRNAs, 

including circEZH2 (also named hsa_circ_0006357) 
and hsa_circ_0008324. Many studies have shown that 
EZH2 plays a crucial role in cholesterol synthesis and 
atherosclerosis development. EZH2 siRNA and 
inhibitors promoted cholesterol synthesis by enhan-
cing multiple genes expression, including HMGCS1, 
FDFT1, SQLE, LSS, CYP51A1, DHCR7, DHCR24, and 
HMGCR [135], suggesting that EZH2 suppressed 
cholesterol synthesis. However, EZH2 promoted 
atherosclerosis development in vivo. Specifically, 
myeloid EZH2 deficiency reduced atherosclerosis 
development by reducing neutrophil migration and 
macrophage foam cell inflammatory responses, such 
as nitric oxide (NO), IL-6, and IL-12 [136]. EZH2 
reduced ABCA1 expression by promoting triple 
methylation of lysine 27 (H3K27) in the ABCA1 
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promoter region and then reduced cholesterol efflux 
to promote foam cell formation and atherosclerosis 
development [137, 138]. EZH2 regulated miR-139-5p 
methylation and its target STAT1 expression through 
H3K27me3 and then promoted ox-LDL-induced 
HASMCs apoptosis, plaque formation, and inflam-
matory response in atherosclerosis mice [139]. EZH2 
promoted the expression of MMP2 and MMP9 and 
their-mediated migration of aortic smooth muscle 
cells (MASMCs) and atherosclerosis development by 
promoting the methylation of TIMP2 [140]. As 
mentioned above, EZH2 is a parental gene of 
circEZH2 [141, 142]. suggesting that circEZH2 may 
regulate cholesterol synthesis and atherosclerosis 
development by regulating EZH2 expression. 
However, more studies are needed.  

It is worth noting that circEZH2 could serve as a 
sponge of miR-133b [142]. MiR-133b suppressed 
SQLE expression by targeting SQLE 3’UTR [143, 144], 
suggesting that circEZH2 promoted cholesterol 
synthesis by regulating the miR-133b/SQLE axis. In 
addition, circEZH2 promoted fatty acid uptake by 
regulating miR-378b/CD36 and the LPL axis. 
CircEZH2 also promoted fatty acid uptake by 
promoting Fatty acid desaturase 1 (FADS1) and 
stearoyl-CoA desaturase 1 (SCD1) expression [145]. 
Many studies have shown that CD36, LPL, FADS1, 
and SCD1 promoted atherosclerosis development by 
regulating lipid metabolism. CD36 promoted choles-
terol uptake, foam cell formation, and fatty acid 
uptake. LPL is responsible for the hydrolysis of 
triglycerides to glycerol and free fatty acids and is a 
critical factor in fatty acid uptake. FADS1 and SCD1 
mainly promoted unsaturated fatty acid synthesis. 
Therefore, circEZH2 promoted cholesterol synthesis 
and uptake to foam cell formation and atherosclerosis 
development by regulating the miR-133b/SQLE axis 
and miR-378b/CD36 axis. Indeed, many circRNAs 
could serve as a sponge of miR-133b, including 
circ_0005273 [146], circRAB3IP [147], circ_0007031 
[148], circ_0006459 [149], circ-HECTD1 [150], 
circ_0039569 [151], circ_BIRC6_001271 [152], suggest-
ing that these circRNAs promoted cholesterol 
synthesis by regulating miR-133b/SQLE axis. 
However, more studies are needed.  

CircRNAs/miR-221-5p/SQLE axis 
Sterol regulatory element binding protein 

(SREBP) cleavage activating protein (SCAP) could 
encode circRNAs, including circRNA-SCAP (also 
named circSCAP, hsa_circ_0001292), has_circRNA_ 
103352, hsa_circ_0065214, hsa_circ_0007291. These 
circRNAs are located in the exonic of SCAP. SCAP 
also regulated cholesterol synthesis. SCAP could bind 
to SREBPs and form SCAP–SREBP complex. When 

cholesterol in the endoplasmic reticulum (ER) is too 
low (below 5 %), SCAP binds to the Coat Protein 
complex II (COPII) protein and escorts the 
SCAP-SREBP complex from the ER to the Golgi. After 
several conformational changes, SREBP2 separates 
from the SCAP-SREBP2 complex and enters the 
nucleus. SREBPs promoted cholesterol synthesis 
genes by binding to HMGCR and SQLE [153]. As 
mentioned above, circRNA-SCAP is located in SCAP, 
suggesting that circRNA-SCAP may regulate choles-
terol synthesis by regulating SCAP expression and 
SCAP-SREBP2 complex.  

It is worth noting that circRNA-SCAP may be a 
potential biomarker of atherosclerotic plaque stability. 
Serum circRNA-SCAP and phosphodiesterase 3B 
(PDE3B) were upregulated in 25 patients with 
cerebral atherosclerosis, and ox-LDL-disposed THP-1 
foam cells, whereas miR-221-5p level was decreased. 
CircRNA-SCAP is a miR-221-5p sponge [154]. 
MiR-221-5p could decrease cholesterol content in the 
liver by targeting and suppressing SQLE [155], 
suggesting that circRNA-SCAP promoted cholesterol 
synthesis by regulating the miR-221-5p/SQLE axis. 
MiR-221-5p also suppressed PDE3B expression by 
targeting PDE3B 3’UTR. By regulating the miR-221- 
5p/PDE3B axis, circRNA-SCAP promoted lipid 
deposition (total cholesterol (TC) and triglycerides 
(TG)), apoptosis (increased pro-apoptotic molecule 
Bax and cleaved-caspase 3 (caspase 3) and decreased 
anti-apoptotic molecule Bcl-2), inflammation (IL-6, 
IL-1β, TNFα, and COX-2), and oxidative stress 
(increased pro-oxidation molecule ROS and malondi-
aldehyde (MDA) level and decreased anti-oxidation 
molecule superoxide dismutase (SOD) level) [154]. 
Thus, circRNA-SCAP promoted atherosclerosis 
development by regulating miR-221-5p/SQLE and 
PDE3B axis. In addition, circRNA-XPO4 also served 
as a miR-221-5p sponge [156], suggesting that 
circRNA-XPO4 promoted cholesterol synthesis by 
regulating the miR-221-5p/SQLE axis. However, 
more studies are needed.  

CircRNAs/miR-188-5p/HMGCS1 axis  
Circ_0001513 increased HMGCS1 expression by 

serving as a sponge of miR-188-5p [157], suggesting 
that circ_0001513 increased cholesterol synthesis by 
regulating the miR-188-5p/HMGCS1 axis. In addi-
tion, circ-PRMT5 [158] and hsa-circRNA-005843 [159] 
could also serve as a sponge of miR-188-5p, 
suggesting that these circRNAs increased cholesterol 
synthesis by regulating miR-188-5p/HMGCS1 axis. In 
addition, circ-PRMT5 also serves as a sponge for 
miR-203 [160] and miR-377 [161]. MiR-203 suppressed 
atherosclerotic plaque formation by binding and 
suppressing E26 oncogene homolog 2 (Ets2) 
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expression, which promotes intraplaque proinflam-
matory phenotype [162]. MiR-377 suppressed athero-
sclerosis development by regulating DNA Methyl-
transferase 1 (DNMT1)/LPL/GPIHBP1 axis 
(triglyceride metabolism) and spleen tyrosine kinase 
(Syk) expression in apoE-/- mice [163, 164]. Circ- 
PRMT5 may promote cholesterol synthesis, intra-
plaque proinflammatory phenotype, and triglyceride 
metabolism by regulating the miR-188-5p/HMGCS1 
axis, miR-203/Ets2 axis, miR-377/DNMT1/LPL/ 
GPIHBP1 axis, and miR-377/Syk axis. However, 
circ-PRMT5 could also serve as a sponge of miR-145 
[165]. MiR-145 reduced ABCA1 expression and 
cholesterol efflux to promote foam cell formation and 
atherosclerosis development by targeting the ABCA1 
3’UTR [125, 166]. Therefore, miR-145/ABCA1 axis 
may attenuate the pro-atherogenic effect of 
circ-PRMT5. More studies are needed to confirm the 
role of circ-PRMT5 on atherosclerosis in vivo.  

CircRNAs/miR-34a-5p/ACSL1 axis and 
miR-141-3p/YWHAG and PTEN axis 

HMGCS1 could endcode five circRNAs, 
including circ-HMGCS1 (also named circHMGCS1, 
hsa_circ_0072391), hsa_circ_0072387, circHMGCS1–
016 (also named hsa_circ_0008621), hsa_circ_0072389, 
hsa_circ_0072386. These circRNAs are located in the 
exon 4-6 of HMGCS1, and serve as a sponge of 
miR-338-5p [167]. However, the role of miR-338-5p in 
atherosclerosis has unclear. Interestingly, circ- 
HMGCS1 and hsa_circ_0072387 suppress lipid 
synthesis. CircHMGCS1-016 could increase CD73 and 
galectin (GAL-8) expression by serving as a sponge of 
miR-1236-3p [168]. CD73 has a weak anti-athero-
sclerosis effect in the early stages of the disease. 
However, as the disease progresses, CD73 promotes 
the accretion of atherosclerotic plaque by suppressing 
lipid catabolism [169]. GAL-8 promotes atheroscle-
rosis development by enhancing inflammation, 
platelet aggregation, and thromboxane generation 
[170]. Therefore, circHMGCS1-016 may promote 
atherosclerosis by regulating miR-1236-3p/CD73 and 
the GAL-8 axis. The role of hsa_circ_0072389, and 
hsa_circ_0072386 in lipid synthesis and atheroscle-
rosis has unclear. More studies are needed. 

CircRNAs/miR-34a-5p/ACSL1 axis 
Circ-HMGCS1 could serve as a sponge of 

miR-34a-5p [171], miR-581 [172], miR-892a [172], and 
miR-503-5p [173]. MiR-34a-5p suppressed long-chain 
acyl-CoA synthetase 1 (ACSL1) expression by 
targeting ACSL1 3’UTR, an essential enzyme for the 
synthesis of fatty acyl-CoA, triglycerides, phospho-
lipids, and cholesterol esters [174, 175]. However, 
ACSL1 also promotes lipid efflux. MiR-34a-5p 

increases the level of triglycerides and cholesterol in 
the liver by suppressing ACSL1 expression [175], 
suggesting that circ-HMGCS1 may suppress lipid 
levels although it inhibits lipid synthesis by 
regulating miR-34a-5p/ACSL1 axis. In addition, 
miR-34a-5p also increased lipid droplet accumulation 
by suppressing adipose triglyceride lipase (ATGL) 
expression which is a key lipolysis gene and enhances 
adipose tissue lipolysis [176]. MiR-34a-5p suppressed 
ADAM10 expression by targeting ADAM10 3’UTR 
[177]. MiR-581 suppressed ABCG1 expression by 
targeting ABCG1 3’UTR [178]. Many studies have 
shown that ADAM10 and ABCG1 play a key role in 
promoting cholesterol efflux, suggesting that 
circ-HMGCS1 suppressed lipid accumulation by 
regulating miR-34a-5p/ACSL1, ATGL, ADAM10 axis, 
and miR-581/ABCG1 axis. MiR-503-5p promoted 
proinflammatory cytokines and adhesion molecules 
level and atherosclerosis development by regulating 
smad family members 1 (smurf1), 2 (smurf2), and 7 
(Smad7) in RAW264.7 macrophage-derived foam cells 
and apoE-/- mice [179], suggesting that circ-HMGCS1 
may suppress proinflammatory cytokines by 
regulating miR-503-5p/smurf1, smurf2, Smad7 axis. 
Therefore, circ-HMGCS1 promotes lipid synthesis by 
regulating the miR-34a-5p/ACSL1 axis. Circ- 
HMGCS1 suppresses lipid accumulation and 
proinflammatory cytokines by regulating miR-34a- 
5p/ACSL1, ATGL, ADAM10 axis, miR-581/ABCG1 
axis, and miR-503-5p/smurf1, smurf2, Smad7 axis. 
Circ-HMGCS1 may be an anti-atherosclerotic RNA. 
However, more studies are needed. 

Notable, many circRNAs could serve as a sponge 
of miR-34a-5p, including circOgdh (also named 
mmu_circ_0000231) [176], circMED12L [180], 
circ_FURIN [181], circ_CSNK1E [182], circ0036602 
[183], circ-LRP1B [184], circHUWE1 [185], circITGA7 
[186], circNFIX [187, 188], circRNA-CIDN [189], 
circ_0009910 [190], circ_0039569 [191], hsa_circ_ 
0018069 [192], suggesting that these circRNAs may 
promote lipid synthesis but suppress lipid accumu-
lation by regulating miR-34a-5p/ACSL, ATGL, and 
ADAM10 axis.  

CircRNAs/miR-141-3p/YWHAG and PTEN axis 
Tyrosine 3-monooxygenase/tryptophan 

5-monooxygenase activation protein gamma 
(YWHAG, encoding 14-3-3γ) regulates lipid 
metabolism and glucose homeostasis by regulating 
the localization of Lipin1 and GLUT4 [193, 194]. PTEN 
also regulates lipid metabolism and glucose homeo-
stasis by regulating SREBP-1c and GSK-3β expression 
[195]. Hsa_circ_0072387 could serve as a sponge of 
miR-141-3p (also named miR-141) and miR-503-5p 
[196, 197]. MiR-141-3p increases triglyceride and 
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cholesterol synthesis by upregulating YWHAG and 
downregulating PTEN expression, respectively [198], 
suggesting that hsa_circ_0072387 may suppress lipid 
synthesis by regulating miR-141-3p/YWHAG and 
PTEN axis. As mentioned above, miR-503-5p promo-
ted proinflammatory response and atherosclerosis 
development by regulating smurf1, smurf2, and 
Smad7; thus, hsa_circ_0072387 may suppress lipid 
synthesis and pro-inflammatory response by regula-
ting miR-141-3p/YWHAG and PTEN axis, 
miR-503-5p/smurf1, smurf2, Smad7 axis.  

Many circRNAs could serve as a sponge of 
miR-141-3p, including circDLG1 [199], circDIDO1 
[200], circ_100395 (also named exo-circ_100395) [201], 
circ_0075943 [201], circTRPS1 (also named hsa_ 
circ_0085361) [202], circRNA_100338 [203-205], 
circKEAP1 [206], circ-LRP6 [207], circZEB1 [208], 
circRNA-SMG1.72 (also named circ-SMG1.72) [209], 
circSOBP [210], hsa_circRNA_100395 [211], circ_ 
0061140 [212], circATRNL1 [213], circ-GBR10 [214], 
suggesting that these circRNAs suppress lipid 
synthesis by regulating miR-141-3p/YWHAG and 
PTEN axis. 

CircRNAs/miR-494-3p/PTEN axis 
CircCYP51 (also named circ_0081001) is derived 

from CYP51 and is a potential biomarker for the 
diagnosis and prognosis of osteosarcoma (OS) [215]. 
CircCYP51 could serve as a sponge of miR-494-3p 
[216]. MiR-494-3p promoted proinflammatory macro-
phage polarization by suppressing Wnt signaling in 
atherosclerosis [217]. MiR-494-3p also promoted 
plasma cholesterol levels by suppressing PTEN [218, 
219]. As mentioned above, PTEN was negatively 
correlated with cholesterol synthesis, suggesting that 
circCYP51 suppresses proinflammatory macrophage 
polarization and cholesterol synthesis by regulating 
miR-494-3p/Wnt and PTEN axis. 

CircRNAs/miR-892b and miR-217-5p/DHCR24 
axis 

CircRNAs/miR-892b/DHCR24 axis 
CircPTK2 (also named hsa_circ_0003221) is 

located in exons 3-7 of protein tyrosine kinase 2 
(PTK2). CircPTK2 increased DHCR24 expression by 
serving as a sponge of miR-892b [220], suggesting that 
circPTK2 promotes cholesterol synthesis by regula-
ting the miR-892b/DHCR24 axis. CircPTK2 could 
serve as a sponge of miR-1278 [221], miR-139-3p [222], 
and miR-758-3p (miR-758) [223], MiR-1278 suppres-
sed cardiomyocyte inflammation in myocardial 
ischemia by reducing IL-22 and CXCL14 expression 
[224], suggesting that circPTK2 promotes cholesterol 
synthesis and inflammation by regulating the 
miR-892b/DHCR24 axis and miR-1278/IL-22 and 

CXCL14 axis. However, miR-758-3p suppressed 
cholesterol efflux and foam cell formation by 
targeting ABCA1 3’UTR [225]. MiR-758-3p/ABCA1 
axis may attenuate the pro-atherogenic effect of 
circPTK2. More studies are needed to confirm the role 
of circPTK2 on atherosclerosis in vivo. 

CircRNAs/miR-217-5p/KLF5/DHCR24 axis 
CircEZH2 enhanced Krüppel-like factor 5 (KLF5) 

expression by sponging with miR-217-5p [226]. 
Interestingly, KLF5 increases cholesterol synthesis by 
activating the DHCR24 promoter [227]. As mentioned 
earlier, circEZH2 promoted cholesterol synthesis and 
uptake by regulating the miR-133b/SQLE axis and 
miR-378b/CD36 axis. Therefore, circEZH2 promoted 
cholesterol synthesis and uptake to enhance foam cell 
formation and atherosclerosis development by 
regulating the miR-217-5p/KLF5/DHCR24 axis, 
miR-133b/SQLE axis, and miR-378b/CD36 axis.  

In addition, many circRNAs could serve as a 
sponge of miR-217-5p, including circROBO1 [228], 
circ_0033596 [229], and circ_0002099 [230], suggesting 
that these circRNAs promoted cholesterol synthesis 
by regulating miR-217-5p/KLF5/DHCR24 axis.  

CircRNAs/miR-122/SREBP-2, HMGCR, and 
PMK axis 

MiR-122 antagonism decreases hepatic lipid 
metabolism and cholesterol biosynthesis by suppres-
sing several genes expression, including acetyl-CoA 
carboxylase alpha (ACC1), acetyl-CoA carboxylase 
beta (ACC2), ATP citrate lyase (ACLY), SCD1, Fatty 
acid synthase (FASN, also named FAS), SREBP-2, 
HMGCR, and PMK [10]. MiR-122 antagonism is a 
promising strategy for the treatment of ASCVD. Many 
circRNAs could serve as a sponge of miR-122, 
including ciRS-122 (also named hsa_circ_0005963) 
[231], circRNA_002581 [232], circCDK17 [233], 
circ_0007142 [234], circ_0011269 [235], circ-IARS [236], 
circ_0072995 [237], circFOXO3 (also named hsa_circ_ 
0006404) [238], circ_pleiotrophin (circ_PTN) [239], and 
circ_1639 [240], suggesting that these circRNAs may 
suppress cholesterol biosynthesis by serving as a 
sponge of miR-122 (Table 2). Significantly, inhibits 
miR-122 with LNA-antagomiR-122 (also named 
SPC3649 or Miravirsen, was developed by Santaris-
Pharma) and N-acetylgalactosamine-conjugated 
anti-microRNA-122 oligonucleotide (also named 
RG-101 was developed by Regulus Therapeutics) for 
the treatment of hepatitis C virus (HCV) infections has 
completed the phase II trial [241, 242]. More 
importantly, circFOXO3 is located in exon 3 of 
forkhead box O3 (FOXO3). CircFOXO3 rs12196996, a 
polymorphism at the gene flanking intron, is 
associated with circFOXO3 levels and the risk of 
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ASCVD in the Chinese Han population [243]. The 
clinical application potential of circFOXO3 in tumor 
diagnosis and treatment is immense [244], suggesting 
that circFOXO3 may be a promising future target in 
the diagnosis and treatment of cancer and 
cardiovascular disease. 

 

Table 2. The potential role and mechanism of circRNAs in 
cholesterol synthesis. 

CircRNAs Axis Refs 
circRNA_ABCA1 miR-140-3p/HMGCR and HMGCS1 

axis 
[119, 120] 

circUGGT2 miR-140-3p/HMGCR and HMGCS1 
axis 

[120, 130, 131] 

circ-PRKCH miR-140-3p/HMGCR and HMGCS1 
axis 

[120, 132] 

circEZH2 miR-133b/SQLE axis [142-144] 
miR-217-5p/KLF5/DHCR24 axis [226, 227] 

circ_0005273 miR-133b/SQLE axis [143, 144, 146] 
circRAB3IP miR-133b/SQLE axis [143, 144, 147] 
circ_0007031 miR-133b/SQLE axis [143, 144, 148] 
circ_0006459 miR-133b/SQLE axis [143, 144, 149] 
circ-HECTD1 miR-133b/SQLE axis [143, 144, 150] 
circ_0039569 miR-133b/SQLE axis [143, 144, 151] 
circ_BIRC6_001271 miR-133b/SQLE axis [143, 144, 152] 
circRNA-SCAP miR-221-5p/SQLE axis [154, 155] 
circRNA-XPO4 miR-221-5p/SQLE axis [155, 156] 
circ_0001513 miR-188-5p/HMGCS1 axis  [157] 
circ-PRMT5 miR-188-5p/HMGCS1 axis [157, 158] 
hsa-circRNA-005843 miR-188-5p/HMGCS1 axis [157, 159] 
circHMGCS1 miR-34a-5p/ACSL1 axis [171, 175] 
circOgdh miR-34a-5p/ACSL1 axis [175, 176] 
circMED12L miR-34a-5p/ACSL1 axis [175, 180] 
circ_FURIN miR-34a-5p/ACSL1 axis [175, 181] 
circ_CSNK1E miR-34a-5p/ACSL1 axis [175, 182] 
circ0036602 miR-34a-5p/ACSL1 axis [175, 183] 
circ-LRP1B miR-34a-5p/ACSL1 axis [175, 184] 
circHUWE1 miR-34a-5p/ACSL1 axis [175, 185] 
circITGA7 miR-34a-5p/ACSL1 axis [175, 186] 
circNFIX miR-34a-5p/ACSL1 axis [175, 187, 188] 
circRNA-CIDN miR-34a-5p/ACSL1 axis [175, 189] 
circ_0009910 miR-34a-5p/ACSL1 axis [175, 190] 
circ_0039569 miR-34a-5p/ACSL1 axis [175, 191] 
hsa_circ_0018069 miR-34a-5p/ACSL1 axis [175, 192] 
hsa_circ_0072387 miR-141-3p/YWHAG and PTEN axis [196-198] 
circDLG1 miR-141-3p/YWHAG and PTEN axis [198, 199] 
circDIDO1 miR-141-3p/YWHAG and PTEN axis [198, 200] 
circ_100395 miR-141-3p/YWHAG and PTEN axis [198, 201] 
circ_0075943 miR-141-3p/YWHAG and PTEN axis [198, 201] 
circTRPS1 miR-141-3p/YWHAG and PTEN axis [198, 202] 
circRNA_100338 miR-141-3p/YWHAG and PTEN axis [198, 203-205] 
circKEAP1 miR-141-3p/YWHAG and PTEN axis [198, 206] 
circ-LRP6 miR-141-3p/YWHAG and PTEN axis [198, 207] 
circZEB1 miR-141-3p/YWHAG and PTEN axis [198, 208] 
circRNA-SMG1.72 miR-141-3p/YWHAG and PTEN axis [198, 209] 
circSOBP miR-141-3p/YWHAG and PTEN axis [198, 210] 
hsa_circRNA_100395 miR-141-3p/YWHAG and PTEN axis [198, 211] 
circ_0061140 miR-141-3p/YWHAG and PTEN axis [198, 212] 
circATRNL1 miR-141-3p/YWHAG and PTEN axis [198, 213] 
circ-GBR10 miR-141-3p/YWHAG and PTEN axis [198, 214] 
circ_0081001 miR-494-3p/PTEN axis [198, 216, 218, 

219] 
circPTK2 miR-892b/DHCR24 axis [220] 
circROBO1 miR-217-5p/KLF5/DHCR24 axis [226-228] 
circ_0033596 miR-217-5p/KLF5/DHCR24 axis [226, 227, 229] 
circ_0002099 miR-217-5p/KLF5/DHCR24 axis [226, 227, 230] 
ciRS-122 miR-122/SREBP-2, HMGCR, and [10, 231] 

CircRNAs Axis Refs 
PMK axis 

circRNA_002581 miR-122/SREBP-2, HMGCR, and 
PMK axis 

[10, 232] 

circCDK17 miR-122/SREBP-2, HMGCR, and 
PMK axis 

[10, 233] 

circ_0007142 miR-122/SREBP-2, HMGCR, and 
PMK axis 

[10, 234] 

circ_0011269 miR-122/SREBP-2, HMGCR, and 
PMK axis 

[10, 235] 

circ-IARS miR-122/SREBP-2, HMGCR, and 
PMK axis 

[10, 236] 

circ_0072995 miR-122/SREBP-2, HMGCR, and 
PMK axis 

[10, 237] 

circFOXO3 miR-122/SREBP-2, HMGCR, and 
PMK axis 

[10, 238] 

circ_PTN miR-122/SREBP-2, HMGCR, and 
PMK axis 

[10, 239] 

circ_1639 miR-122/SREBP-2, HMGCR, and 
PMK axis 

[10, 240] 

 

Conclusions and Future Directions 
Many genes play a central role in cholesterol 

synthesis, including CYP51, DHCR7, DHCR24, EBP, 
FDFT1, FDPS, HMGCR, HMGCS1, HSD17B7, IDI1/2, 
LBR, LSS, MSMO1, MVD, MVK, NSDHL, PMK, 
SC5D, SQLE, and TM7SF2. Many circRNAs regulate 
cholesterol synthesis by regulating ACSL1, DHCR24, 
HMGCR, HMGCS1, PTEN, SQLE, and YWHAG 
expression by sponging miRNAs. Some circRNAs 
were also involved in other atherosclerotic risk factors 
(Table 3). Notable, CYP51, EBP, FDFT1, FDPS, 
HMGCR, LSS, and SQLE, are promising therapeutic 
targets for drug development due to many specific 
inhibitors have been approved and entered into 
clinical research by targeting these genes. Many 
circRNAs regulated cholesterol biosynthesis by 
regulating HMGCR expression via sponging miR-122. 
Several drugs targeting miR-122 have completed the 
phase II trial for the treatment of HCV infections, 
including Miravirsen and RG-101. Thus, the 
circRNA/miR-122/HMGCR axis is a promising 
therapeutic axis for drug development. However, 
several interesting and critical tasks remain to be 
explored: (1) The naming of circRNA is not uniform 
and even a little confusing, such as HMGCS1 could 
encode five circRNA, including hsa_circ_0072391, 
hsa_circ_0072387, hsa_circ_0008621, hsa_circ_ 
0072389, and hsa_circ_0072386. However, hsa_circ_ 
0072391 is also named circ-HMGCS1 or circHMGCS1, 
while hsa_circ_0008621 is also named circHMGCS1- 
016. SCAP could encode circRNAs, including 
hsa_circ_0001292, has_circRNA_103352, hsa_circ_ 
0065214, and hsa_circ_0007291. However, only 
hsa_circ_0001292 is also named circRNA-SCAP or 
circSCAP. (2) Several circRNAs not only promoted 
cholesterol biosynthesis but also promoted cholesterol 
efflux or suppressed proinflammatory cytokines, 
including circUGGT2, circ-PRMT5, circ-HMGCS1, 
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circOgdh, circMED12L, circ_FURIN, circ_CSNK1E, 
circ0036602, circ-LRP1B, circHUWE1, circITGA7, 
circNFIX, circRNA-CIDN, circ_0009910, circ_0039569, 
hsa_circ_0018069, and circPTK2. The role of these 
circRNAs in atherosclerosis remains to be investi-
gated in vivo. (3) The state of the disease may affect 
circRNAs studies, such as circHMGCS1-016. 
CircHMGCS1-016 may exhibit an anti-atherogenic 
effect in the early stages of the disease. However, as 
the disease progresses, circHMGCS1-016 may exhibit 
a pro-atherogenic effect. The development of drugs 
and diagnostic reagents must consider the state of 
disease progression. (4) CircRNAs regulate gene 
expression through various mechanisms, including 
sponge miRNA, protein scaffold and sponge, 
encoding protein, and regulation of splicing and 
transcription. However, so far, almost all circRNAs 
regulate cholesterol synthesis genes through sponge 
miRNA. Whether there are other mechanisms is not 
clear. (5) Until now, most circRNA's role in cholesterol 
synthesis has been studied in vitro. However, there are 
many factors influencing the development of the 
disease. The effect of circRNAs on the disease still 
needs to be studied in vivo. (6) Given that inhibits 
miR-122 completed the phase II trial, circFOXO3 is a 
promising target for drug research by sponging 
miR-122. However, more studies are needed. (7) 
Many drugs have been approved for market by 

targeting HMGCR and SQLE expression. Several 
circRNAs may be promising therapeutic targets for 
drug development by targeting HMGCR and SQLEM, 
such as circRNA_ABCA1, circ-PRKCH, circEZH2, 
and circRNA-SCAP. However, more studies are 
needed. (8) The development of new drugs usually 
requires preclinical studies in multiple animal models 
before clinical application to improve drug 
development's success rate. The development of 
circRNAs drugs also requires much research. (9) 
Current methods of circRNA synthesis are limited by 
low cyclization efficiency and the high cost of 
enzymes and other reagents. There is an urgent need 
to address these issues. (10) The current study has 
shown that circRNAs have many targets. However, it 
may be caused by different dosing doses. Whether 
there are multiple targets in vivo still needs much 
research. 

In summary, drugs that target CYP51, EBP, 
FDFT1, FDPS, HMGCR, LSS, SQLE, and miR-122 have 
entered the stage of market or clinical trials. 
CircRNA_ABCA1, circ-PRKCH, circEZH2, circRNA- 
SCAP, and circFOXO3 are promising therapeutic 
targets for drug development, specifically circFOXO3. 
With the progress of science and technology, the 
deepening of research, and the cooperation of 
scientific research, we believe there will be the clinical 
application of circRNAs agents soon. 

 

Table 3. The role and mechanism of circRNAs that are involved in multiple atherosclerotic risk factors. 

CircRNAs Axis Function Refs 
circRNA_ABCA1 miR-140-3p/HMGCR and HMGCS1 axis Increased cholesterol synthesis [119, 120] 

miR-140-3p/MAP2K6 axis Increased vascular endothelial injury [119, 120, 130, 131] 
circUGGT2 miR-140-3p/HMGCR and HMGCS1 axis Increased cholesterol synthesis [120, 130, 131] 

miR-140-3p/MAP2K6 axis Increased vascular endothelial injury [119, 120, 130, 131] 
miR-186-3p/ABCA1 axis Increased cholesterol efflux [133] 

circEZH2 miR-133b/SQLE axis Increased cholesterol synthesis [142-144] 
miR-217-5p/KLF5/DHCR24 axis Increased cholesterol synthesis [226, 227] 
miR-378b/CD36 axis Increased cholesterol uptake [145] 
LPL, FADS1 and SCD1 Increased fatty acid uptake [145] 

circRNA-SCAP miR-221-5p/SQLE axis Increased cholesterol synthesis [154, 155] 
miR-221-5p/PDE3B axis Promoted lipid deposition, apoptosis, inflammation, and oxidative stress [154] 

circRNA-XPO4 miR-221-5p/SQLE axis Increased cholesterol synthesis [155, 156] 
miR-221-5p/PDE3B axis Promoted lipid deposition, apoptosis, inflammation, and oxidative stress [154-156] 

circ-PRMT5 miR-188-5p/HMGCS1 axis Increased cholesterol synthesis [157, 158] 
miR-203/Ets2 axis Increased intraplaque proinflammatory phenotype [162] 
miR-377/DNMT1/LPL/GPIHBP1 axis Increased triglyceride metabolism [161, 163, 164] 
miR-145/ABCA1 axis Increased cholesterol efflux [125, 165, 166] 

circ-HMGCS1 miR-34a-5p/ACSL1 axis Promoted lipid synthesis but suppressed lipid accumulation [171, 175] 
miR-34a-5p/ATGL axis Promoted lipolysis [171, 176] 
miR-34a-5p/ADAM10 axis Increased cholesterol efflux [171, 177] 
miR-581/ABCG1 axis Increased cholesterol efflux [172, 178] 
miR-503-5p/smurf1, smurf2, Smad7 axis Suppressed proinflammatory cytokines and adhesion molecules level [173, 179] 

hsa_circ_0072387 miR-141-3p/YWHAG and PTEN axis Increased triglyceride and cholesterol synthesis [196, 198] 
miR-503-5p/smurf1, smurf2, Smad7 axis Suppressed proinflammatory cytokines and adhesion molecules level [179, 197] 

circCYP51 miR-494-3p/PTEN axis Suppressed cholesterol synthesis [198, 216, 218, 219] 
miR-494-3p/Wnt axis Suppressed proinflammatory macrophage polarization [216, 217] 

circPTK2 miR-892b/DHCR24 axis Increased cholesterol synthesis [220] 
miR-1278/IL-22 and CXCL14 axis Promoted cardiomyocytes inflammation [221, 224] 
miR-758-3p/ABCA1 axis Increased cholesterol efflux [223, 225] 
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