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Abstract 

Zika virus (ZIKV) infection causes neurological disorders and draws great attention. ZIKV infection can 
elicit a wide range of immune response. Type I interferons (IFNs) as well as its signaling cascade play 
crucial role in innate immunity against ZIKV infection and in turn ZIKV can antagonize them. ZIKV 
genome are mainly recognized by Toll-like receptors 3 (TLR3), TLR7/8 and RIG-I-like receptor 1 (RIG-1), 
which induces the expression of Type I IFNs and interferon-stimulated genes (ISGs). ISGs exert antiviral 
activity at different stages of the ZIKV life cycle. On the other hand, ZIKV takes multiple strategies to 
antagonize the Type Ⅰ IFN induction and its signaling pathway to establish a pathogenic infection, 
especially by using the viral nonstructural (NS) proteins. Most of the NS proteins can directly interact 
with the factors in the pathways to escape the innate immunity. In addition, structural proteins also 
participate in the innate immune evasion and activation of antibody-binding of blood dendritic cell antigen 
2 (BDCA2) or inflammasome also be used to enhance ZIKV replication. In this review, we summarize the 
recent findings about the interaction between ZIKV infection and type I IFNs pathways and suggest 
potential strategies for antiviral drug development. 
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Introduction 
 Innate immune response is the first line of host 

defense against pathogens. And Interferons (IFNs) 
play an important role in innate immunity, including 
type I, type Ⅱ and type Ⅲ IFN [1-3]. Type I IFNs, refer 
to a single subtype of IFN- β and multiple subtypes of 
IFN-α, have been found in all nucleated cells and 
proven to play a pivotal role in antiviral functions [4]. 
Generally, the production of type I IFNs is induced by 
cell recognition of pathogen associated molecular 
patterns (PAMPs) [5]. Type I IFNs bind to IFNs 
receptor (IFNAR), then activate receptor-associated 
janus kinases (JAK) and tyrosine-protein kinase 
(TYK), and subsequently lead to phosphorylation and 
activation of signal transducers and activators of 
transcription (STATs) [6, 7]. The phosphorylated 
STAT1 (P-STAT1) or the phosphorylated STAT2 
(P-STAT2) and the IFN-regulatory factor 9 (IRF9) 
form IFN-stimulated gene factor 3 (ISGF3), and the 
complex enters into the nucleus to trigger expression 

of IFNs-stimulated genes (ISGs) [8, 9]. Some ISGs have 
been proven to exert diverse antiviral effects [10, 11]. 
Meanwhile, several studies demonstrate that type I 
IFNs have effects on humoral response by 
upregulating antibody production or suppressing B‐
cell linear epitopes [12, 13]. 

The induction of type I IFNs expression and type 
I IFNs signaling are key events of antiviral innate 
response [14], many members of Flavivirus genus 
have been proven to interact with type I IFN response. 
Flavivirus genus consists of more than 70 RNA 
viruses, including Dengue virus (DENV), West Nile 
virus (WNV), Zika virus (ZIKV), and Japanese 
encephalitis virus (JEV) etc. Flavivirus genus can 
cause health damage to varying degrees. DENV is 
associated with dengue shock syndrome / dengue 
hemorrhagic fever and ZIKV is related with 
microcephaly and so on. Type I IFNs is important to 
resist flavivirus infection. Studies have demonstrated 
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that IFNAR1 (Interferon Alpha and Beta Receptor 
Subunit 1) deficient mice were susceptible to DENV 
and ZIKV infection [15]. On the contrary, almost 
every member of the flavivirus genus can evade the 
type I IFN response. For example, multiple 
non-structural proteins (NS) of DENV have been 
shown to inhibit type I IFNs and the downstream 
signaling pathway. DENV NS4A blocks the 
interaction between RIG-I and MAVS [16]. DENV 
NS2A and NS4B suppresses TBK1 phosphorylation 
[17]. And WNV NS proteins are responsible for the 
degradation of IFNAR [18]. All of them were well 
summarized in previous reviews. 

ZIKV, as an emerging pathogen, was first 
discovered in the Zika forest of Uganda in Africa in 
1947 [19]. ZIKV can be sexually and vertically 
transmitted [20-22], and the bite by the infected 
female Aedes mosquitoes is the most common route 
of transmission [19]. Clinical symptoms of people 
infected with ZIKV are mostly described as 
asymptomatic, while 20%–25% of the infected will 
develop self-limiting flu-like symptoms after a 
duration of 4–10 days [23]. An increased risk of 
neurologic complications associated with ZIKV 
infection has been observed, such as Guillain-Barré 
syndrome, microcephaly and so forth [24-26]. The 
World Health Organization (WHO) declared ZIKV 
infection as a Public Health Emergency of 
International Concern in 2016 [27].  

ZIKV has a single-stranded RNA genome with 
positive sense, encoding three structural and seven 
NS proteins [28]. The envelope (E) protein and 
membrane (M) protein form an icosahedral shell 
anchored in a lipid membrane [29]. The E protein 
binds to cell receptor that mediates viral attachment 
and membrane fusion [30]. The E protein is also an 
important target for immune recognition. NS proteins 
of ZIKV include NS1, NS2 (NS2A, NS2B), NS3, NS4 
(NS4A, NS4B), NS5. Most of them are correlated with 
viral replication and immune response evasion [30] 
(Table 1). 

This review focuses on the interaction between 
ZIKV infection and Type I IFN signaling, which 
would help us to identify potential strategies for 
antiviral drug development. 

Pattern recognition receptors (PRRs) 
associated with ZIKV infection 

 The recognition of ZIKV by PRRs is 
fundamental in producing type I IFNs. The viral 
replication intermediates of double-stranded RNA 
(dsRNA), RNA transcripts and protein are activator 
for PRRs [52, 53]. It has been observed that the 
expression of several PRRs involved in the innate 
immune response in ZIKV-infected astrocytes, such as 

membrane-anchored Toll-like receptors (TLRs), 
RIG-I-like receptors (RLRs) [54]. Inhibition of PRRs 
signaling in testicular germ cells (TGCs) leads to the 
prolonged replication of ZIKV, and such phenomenon 
can be reversed by exogenous IFNβ [55].  

 

Table 1. Structure and functions of ZIKV proteins 

Name Functions Functional domains 
E  Viral entry, membrane fusion 

and  
eliciting neutralizing antibodies 
[31] 

Domain I, domain II and domain III 
[29] 

M  Assisting E protein folding and 
preventing ZIKV premature 
fusion [31] 

A loop at the N terminus (M-loop), 
a stem and a transmembrane region 
[29] 

C  Facilitating transfer of viral 
genome into the host cell, 
recruitment viral genome and 
genome encapsulation [32] 

Four α helices with a long pre-α1 
loop [33] 

NS1  Viral replication, antigenic 
marker, immune evasion, 
pathogenesis and inducing a 
specific immune response [34, 35]  

A β-hairpin domain, a wing domain 
and a β-ladder domain [36] 

NS2A 
 

Viral replication, viral assembly 
or secretion and immune evasion 
[37-39] 

A membrane-traversing segment 
and six segments associated 
peripherally with the ER membrane 
[37] 

NS2B/NS3 Polyprotein processing [40] A C-terminal fragment of NS2B and 
a protease domain of NS3 [41] 

NS3  Polyprotein processing, viral 
replication and immune evasion 
[42] 

A protease domain and a helicase 
domain [43] 

NS4A  Membrane binding and 
homo-oligomerization [44] 

A N-terminal cytoplasmic region 
and a transmembrane segment ([45] 

NS4B 
 

Viral replication and immune 
evasion [46] 

Three transmembrane helices and 
two helices that peripherally 
associate with the membrane [47] 

NS4  Pathogenesis, viral replication, 
membrane binding and 
homo-oligomerization [48] 

A N-terminal cytosolic region and 
four predicted transmembrane 
segments (pTMSs) [49] 

NS5  Viral replication and immune 
evasion [50] 

A N-terminal methyltransferase 
(MTase) domain and a C-terminal 
RNA-dependent RNA polymerase 
(RdRp) [51] 

Notes: C is the abbreviation of capsid 
 

TLRs 
TLRs are widely distributed on the cell surface or 

in endosomal membranes of effector cells. TLR 
signaling pathways are crucial pathways in innate 
immune defense. Up to now, 10 human TLRs have 
been found in humans and the function of TLR1-9 has 
been confirmed. TLR-3, −7, −8 and −9, which locate in 
the endosome, are the key players involved in 
antiviral immunity [56]. After PAMPs binding to 
PRRs, the activation of downstream signaling 
depends on myeloid differentiation primary response 
88 (MyD88) or toll-interleukin 1 receptor domain- 
containing adapter (TRIF) induces type I IFNs [57]. 
Among them, TRIF is required by TLR3 or TLR4, 
while the rest recruit MyD88 [58]. Experimental 
observations indicate that TLR7/8 agonist R848 is an 
inhibitor for blocking ZIKV replication in monocytes 
[59]. TLR7/8 are sensors for single-stranded RNA 
(ssRNA) [60]. The connection of MyD88 and TLR7/8 
leads to the phosphorylation of interleukin-1 
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receptor-associated kinases (IRAKs), followed by the 
activation of TRAF6, TRAF3, IKKα and IRF7, 
resulting in the release of type I IFNs [61] (Fig. 1). 

It is noteworthy to mention that TLR3 may 
exhibit opposite effects in different cell types. On one 
hand, TLR3 can recognize the intermediate of 
double-stranded RNA (dsRNA), and then recruits 
TRIF to phosphorylate interferon regulatory factor 3 
(IRF3), nuclear factor-κB (NF-κB) successively, which 
leads to the production of type I IFNs ultimately [62] 
(Fig. 1). On the other hand, it may be related with 
pathogenicity of ZIKV. TLR3 is highly expressed in 
the early development of the brain [63]. The activation 
of TLR3 leads to dysregulation of neurogenesis in 
neural progenitor cells (NPCs) and apoptosis, the 
possible cause of microcephaly in newborn baby [64]. 
In primary human astrocytes, TLR3 contributes to 
ZIKV-associated neurodevelopmental disorders by 
releasing inflammatory factors [65]. In addition, TLR3 
enhances ZIKV replication by suppressing other IFNs 
production and their signaling [66]. Such detrimental 
effect of TLR3 can also be observed in WNV, another 
virus of the genus Flavivirus. Studies have revealed 

that TLR3-dependent inflammatory response caused 
by WNV leads to neuronal injury [67]. 

RLRs 
RLRs are cytoplasmic viral RNA sensors, 

including retinoic acid-inducible gene I (RIG-I), 
melanoma differentiation-associated gene 5 (MDA5) 
and laboratory of genetics and physiology 2 (LGP2) 
[68]. The short double stranded RNA with 5'- 
triphosphate (3P) terminal [69] and viral double- 
stranded RNAs (dsRNA) [70] are ideal ligands for 
RLRs, while the 5′ region of ZIKV’s genome is such a 
ligand [71, 72]. In ZIKV- infected cells, RIG-1- 
mitochondrial antiviral signaling (MAVS) signaling 
pathway is a major pathway against ZIKV, especially 
in the central nervous system (CNS) [73]. RIG-I and 
MDA5 are mainly distributed in astrocytes and 
microglia [74]. Neural stem cells (NSCs) infected with 
ZIKV can activate RIG-I pathway to induce the 
expression of IFN-β, which limits the transmission of 
ZIKV [74]. And RIG-I–mediated pathway effectively 
protects human dermal fibroblasts and epidermal 
keratinocytes against ZIKV infection [73].  

 

 
Figure 1. TLR signaling pathways. Upon ZIKV infection, TLR3 and TLR7/8 are mainly activated to induce the expression of type I IFNs. And other TLR family members can 
be activated during other viral infection. 
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Figure 2. RIG-I is mainly activated during ZIKV infection. The 5’ppp RNA of ZIKV activates the RIG-I with the help of Riplet and TRIM25. And the activated RIG-I 
translocates to mitochondria to interact with MAVS. And then the TRAF3 is phosphorylated to induce the expression of type I IFNs. Apart from this, the activation of MDA5 can 
be observed in other viral infections. 

 
RIG-I and MDA5 are all comprised of two 

N-terminal caspase activation and recruitment 
domains (CARD), a central DExD/H box RNA 
helicase domain that has the ability of hydrolyzing 
ATP and binding or possibly unwinding RNA, and a 
C-terminal repressor domain (RD) embedded within 
the C-terminal domain (CTD) [75, 76]. After CTD 
binding with intracellular virus-derived, CARD is 
exposed, resulting in the activation of RIG-I. And then 
the polyubiquitination of RIG-I is triggered through 
two ubiquitin E3 ligases, tripartite motif-containing 25 
(TRIM25) and Riplet [77]. The interaction between 
polyubiquitinated RIG-I and MAVS leads to further 
recruiting a group of molecules to activate TANK 
binding kinase 1 (TBK1) - IκB kinase (IKK) complex. 
These kinases then activate transcription factors such 
as IRF3, IRF7, thereby inducing the expression of 
genes encoding type I IFNs and the production of 
pro-inflammatory cytokines [78-80] (Fig. 2).  

The antiviral ability of Interferon- 
stimulated genes (ISGs) 

ISGs, induced by the binding of IFNs and 
IFNAR, have been proven to inhibit viral infection at 
different stages of the viral replication cycle [81, 82]. 
One of the canonical activation pathways to induce 
the transcription of ISGs is JAK-STATs pathway (Fig. 
3) [83]. ISGs stimulated by type I IFNs comprise 
protein-coding genes and noncoding RNAs 
(ncRNAs). At present, protein-coding genes are more 
than 300 and ncRNAs can be divided into short 
ncRNAs and long ncRNAs based on the length [84, 
85]. 

Some ISGs exert their antiviral effects by positive 
feedback on the induction of type I IFNs though ISGs 
are the effector molecules of type I IFNs response. 
OASL-IT1, a type of ncRNAs, can trigger production 
of IFN-β by regulating IRF3 and NF-κB positively to 
help epithelial cells resist ZIKV infection [85]. The 
same trend is mirrored in ISGs encoding antiviral 
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protein. Myxovirus resistance protein A (MxA) is 
found to strengthen the expression of type I IFNs and 
activate JAK-STATs signaling pathway by upregu-
lating the expression levels of PRRs [85]. In vitro 
experiments suggest that antigen processing type 1 
(TAP1) inhibits ZIKV infection by means of phospho-
rylating TBK1 and IRF3 [86]. 2′, 5′-oligoadenylate 
synthetase (OAS) 2 can also exert its antiviral effects 
by means of enhancing the expression of type I IFNs 
[87]. The possible mechanism is OAS / RNase L 
pathway, in which OAS activates RNase L (a latent 
endoribonuclease) and the activated RNase L cleaves 
both host and viral RNA indiscriminately. In turn, the 
cleaved RNA can stimulate PRRs to reinforce the 
production of type I IFNs [88]. 

There is also a significant part of ISGs exert 
antiviral activity at multiple steps in the ZIKV 
replication cycles. The ZIKV life cycle starts with the E 
protein binding to cell surface receptor and ZIKV 

enters the cell through endocytosis. The low pH in 
endosome induces conformational rearrangement of 
E protein, which leads to the release of the genome. 
The viral genome is translated into a polyprotein with 
the help of the host translation system and it is finally 
cleaved into three structural and seven NS proteins. 
Subsequently, the viral replication takes place within 
vesicles. Viral RNA is packaged in the endoplasmic 
reticulum (ER) to an immature virion and then it is 
transferred into golgi vesicles to form mature virions. 
The mature virion can be released to the extracellular 
space [89] (Fig. 4). Experimental data shows that small 
membrane-associated interferon-inducible transmem-
brane proteins (IFITMs) 3 suppresses ZIKV infection 
by inhibiting cytosolic entry of ZIKV or its early 
transcription [90] and the possible mechanism is that 
it blocks fusion pore formation and inhibits ZIKV 
viral genome and proteins entry into the cytosol after 
ZIKV-host binding [91, 92].  

 

 
Figure 3. ISGs elicit the antiviral state against ZIKV. The binding of Type I IFNs and IFNAR activate classical JAK/TYK2 pathway, which leads to the formation of ISGF3. 
And then ISGF3 translocates into the nucleus to induce the expression of ISGs. Finally, various species of ISGs exert antiviral effects at different steps of the ZIKV life cycle or 
strengthens the expression of Type I IFNs. 
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Figure 4. ZIKV life cycle. The ZIKV infection cycle can be divided into 7 stages, including viral attachment, membrane fusion, endocytosis, transcription and translation, 
genome replication, virion assembly, maturation and release. 

 
In addition to this, ISGs can inhibit viral ZIKV 

replication by degrading NS3. NS3 possesses helicase 
and RNA triphosphatase activities, playing an 
essential role in virus replication [93]. Ubiquitin- 
proteasome system and lysosomal proteolysis are two 
main intracellular protein degradation pathways. 
Theoretically, ubiquitin system refers to the ubiqui-
tinated protein being degraded by the proteasome. 

And the ubiquitination of protein is completed by a 
cascade of reactions, including ubiquitin-activating 
enzyme E1, ubiquitin-conjugating enzymes E2 and 
ubiquitin ligase E3 [94]. Lysosomal proteolysis is that 
protein is delivered into lysosomes and degraded by a 
series of proteases [95]. PARP12 belongs to the family 
of poly–adenosine 5′-diphosphate–ribose (PARPs), 
which consists of PARP domain, four zinc-finger 
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(ZnF) domains and WWE domain (named after three 
of its conserved residues, including two conserved 
tryptophan (W) residues and a glutamic acid (E) 
residue). NS3, bound by PARP domain, is ubiqui-
tylated by the E3 ligase and degraded by the 
proteasome [96]. NS1 can also be degraded by such a 
pathway [96]. Further analyses indicate that PARP11 
and PARP12 seem to have a synergistic effect in the 
defense of ZIKV [97]. Viperin, a member of the radical 
S-adenosyl methionine (SAM) superfamily of 
enzymes, has been proven to degrade NS3 via 
proteasome-dependent manner [98] and Lys358 of 
NS3 is an essential amino-acid for viperin against 
ZIKV [99]. Shiftless (also known as C19orf66) is 
reported to degrade NS3 by lysosomal proteolysis. 
Shiftless is a conserved ISG in mammals, can bind 
NS3 protease domain and then NS3-shiftless is 
localized in lysosomes to promote the degradation of 
NS3 [100]. However, according to Natasha et al. 
shiftless can bind the ZIKV RNA to inhibit viral 
replication [101].  

ISGs have also been reported to inhibit viral 
transcription and translation. Apart from degrading 
NS3, viperin is found to block the minus-strand RNA 
or plus-strand RNA synthesis to limit viral protein 
expression [59]. Jack et al. further suggest that viperin 
restricts the translation of ZIKV genome via triggering 
ribosome collisions pathway, and it even restricts the 
translation of other genomes in cells [102]. ddhCTP is 
the enzymatic product of viperin, which can activate 

the GCN2, an eIF2α kinase and the activated eIF2α 
blocks translation initiation to restrict protein 
expression immediately after [103, 104]. ISGs can also 
impair viral RNA to prevent viral infection. ISG20 is a 
3′–5′ exonuclease and can degrade ZIKV RNA to block 
viral replication in cytrophoblast cells of first‐
trimester placenta [105] (Fig. 5).  

Type I IFNs and type I IFNs- mediated ISGs 
empower host antiviral ability, however, they may 
involve in the pathogenesis of ZIKV. Type I IFNs 
induced by ZIKV interferes with the development of 
placental labyrinthine zone in mice, finally resulting 
in fetal (mouse) death and the exact mechanism still 
needs to be explored [106]. 

Antagonism of innate immunity by ZIKV 
Although innate immunity is an important 

immune response against ZIKV infection, studies 
have shown that ZIKV can escape innate immunity by 
different ways. Human dendritic cells have limited 
immunogenicity after ZIKV infection, partly due to 
the viral antagonism of type I IFN response. For 
example, IFN- β upregulates the expression of major 
histocompatibility complex class I (MHC-I) and 
inhibits the killing effect of natural killer cells against 
ZIKV [107] and NS proteins of ZIKV inhibit the 
expression of type I IFNs or its downstream molecules 
to antagonize the innate immunity of host [108, 109] 
(Fig. 6). 

 
 

 
Figure 5. Viperin inhibits ZIKV infection via different mechanisms. ① ddCTP can be a chain terminator for RNA polymerase and then inhibit viral replication. ② 
ddCTP is able to trigger ribosome collisions and activates ZAKα and induces the phosphorylation of GCNs and eIF2 successively. As a result, translation of both host cells and 
ZIKV is inhibited. ③ The complex of NS3 and viperin initiates NS3 degradation via a ubiquitin proteasome pathway. 
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Figure 6. Structural and NS proteins of ZIKV antagonize the host innate immune response. NS2B3, NS3, NS4B, NS5 can block the expression of type I IFNs and 
ISGs via inhibit phosphorylation of some factors. NS2B3 also can degrade JAK. NS1 can interact with TBK1 or enhance active caspase-1 stability to inhibit the expression of type 
I IFNs. While NS5 and NS4 can also prevent RIG-I/ MAVs translocation. 

 

NS1 
NS1 is a glycoprotein and it can be secreted into 

the extracellular space in the form of a hexameric 
lipoprotein particle (sNS1) [110]. BDCA2 (also known 
as CD303) is a C-type lectin and the activation of it 
leads to a reduction of type I IFNs, which presumably 
be related to calcium mobilization and PLCγ2 
phosphorylation [111, 112]. One study has revealed 
that NS1 can activate BDCA2 to limit type I IFNs 
production based on its N-glycosylation sites [113]. In 
the CNS, NS1 can upregulate the miR-146a expression 
and followed a decrease of TRAF6 in human 
microglial cells, which leads to the reduction of type Ⅰ 
IFNs [114]. NS1 also interacts with TBK1 to inhibit the 
expression of IFNs [115]. Specifically, the NS1 A188V 
mutation leads to less phosphorylation of TBK1 [116]. 
In addition to interfering with the typical type I IFNs 
activated pathway, NS1 is also reported to weaken the 
expression of type I IFNs via activating inflamma-

some. Caspase-1 is a protease and it mediates the 
cleavage of cyclic GMP-AMP synthase (cGAS) [117]. 
cGAS is a DNA sensor located in the cytosolic and 
cells without it are more vulnerable to some flavivirus 
according to John et.al [118]. ZIKV can enhance active 
caspase-1 stability via activating the nucleotide- 
binding domain and leucine-rich repeat protein-3 
(NLRP3) inflammasome or lowering the caspase-1 
degradation, which leads to the cleavage of cGAS 
[119]. 

NS2/NS3 
 As revealed by recent studies, NS2A impairs the 

activation of the NF-κB promoter and the exact 
mechanism needs further exploration [120]. NS2A 
consists of 226 amino acids and NS2A51-100 localized in 
the ER has been proven to mediate the degradation of 
STAT1 and STAT2, but it is still unclear that such a 
degradation occurs in proteasomes or lysosomes 
[121]. Structural study has shown that NS3 protease 
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domain is folded as chymotrypsin-like and it is 
enwrapped by NS2B polypeptide [122]. NS3 can serve 
as a protease with the help of NS2B, which is 
responsible for polyprotein processing and matura-
tion of structural/NS proteins [40]. Mediator of IRF3 
activation (MITA, also known as STING or ERIS) is a 
scaffold protein located in the ER and it can recruit 
TBK1 or IRF3 to MAVS to transmit signals to 
downstream molecules [123]. The interaction of 
NS2B3 with the MITA leads to the degradation of 
MITA via the ubiquitin proteasome pathway [124]. 
And the overexpression of NS2B3 can degrade JAK 
protein levels in a proteasome-dependent manner to 
impair downstream signaling pathway [115]. Apart 
from the above, NS3 has been reported to interrupt 
the translocation of RIG-I and MDA5 from the cytosol 
to the mitochondria via interacting with 14-3-3ε 
protein and 14-3-3η protein and such a translocation is 
required for the activation of TRAF3 [125].  

NS4 
NS4A is divided into a water-soluble N-terminal 

cytoplasmic domain and three predicted transmem-
brane (pTMs) segments. It has been demonstrated that 
NS4A binds to N-terminal CARD of MAVS to inhibit 
the interaction of RIG-I and MAVS and which part of 
NS4 mediates this binding needs further investigation 
[126]. NS4A also plays an antagonistic role in the 
production of NF-κB [120]. NS4B can reduce TBK1 
activation. One possible mechanism is that NS4B 
promotes Cholesterol metabolic enzyme 7-dehydro-
cholesterol reductase (DHCR7) expression. DHCR7 is 
the inhibitor of TBK1 and IRF3 activation [127]. In 
vitro studies have shown that NS4B can strongly 
inhibit the phosphorylation of STAT1 without 
affecting the total expression of STAT1 [46]. Some 
studies have showed that NS4B and NS1 protein have 
synergistic effects to inhibit type I IFN response. IFNβ 
degrades NS2B-NS3 by autophagic degradation. Wu 
et al suggested that NS1 or NS4B impaired NS2B3 
degradation to attenuate type I IFN response and the 
detailed mechanisms needs to be explored [115].  

NS5  
NS5 is composed of an N-terminal MTase and a 

C-terminal RdRp domain, plays an important role in 
viral replication and suppresses the RIG-I/MAVs 
pathway at different levels. The interaction of 
polyubiquitinated RIG-I and MAVS is necessary for 
activating downstream signaling pathways. NS5 is 
proven to impair the polyubiquitination of RIG-I 
[128]. Some studies suggest that NS5 suppresses the 
activation of TBK1 [129] or interacts with IKKε to 
decrease IRF3 phosphorylation [130]. Recently, it has 
been shown that NS5 interacts with IRF3 localized in 

the nucleus to inhibit the transcription of type I IFNs 
during ZIKV infection [131]. Another important target 
of NS5 is STAT2, which consists of an N-terminal 
domain (ND), a coiled coil domain (CCD), a DNA 
binding domain, a linker domain (LD), a SH2 domain, 
and a transcriptional activation domain (TAD) [132]. 
It has been demonstrated that the expression of NS5 
degrades CCD of STAT2 via the proteasome pathway 
[132, 133], which may be related to the MTase domain 
of NS5 [134]. A computer simulation indicates that 
seven in absentia homolog (SIAH) 2, an E3 ubiquitin 
ligase that mediates ubiquitination and proteasomal 
degradation, can be recruited by NS5 to degrade 
STAT2, which needs to be experimentally validated 
[135]. However, Jun Shu et. al suggest that NS5 only 
slightly degrades STAT2 and it is the restriction of 
ZIKV on host de novo protein synthesis that 
accelerates the degradation of STAT2 [136]. Certain 
members of the genus Flavivirus are also proven to 
repress host protein synthesis [137]. And it is unclear 
whether the suppression of host protein synthesis of 
other Flavivirus accelerates STAT2 degradation. 
Additionally, a study demonstrated that small- 
ubiquitin-like modifier (SUMO) NS5 of ZIKV can 
form discrete punctate nuclear bodies (NBs) with 
STAT2 and thereby remove promyelocytic leukemia 
(PML) protein from NBs. STAT2/NS5 NBs repress 
ISG transcription [138].  

Structural proteins 
 Structural proteins are necessary components of 

ZIKV virions along with the nucleic acid. And they 
are also involved in innate immune evasion. Tripartite 
motif protein 25 (TRIM25) is a type of ubiquitin ligase 
E3 and mediates polyubiquitination of RIG-I, thereby 
activating downstream signal transduction [139]. One 
study reported that capsid protein of ZIKV can bind 
to TRIM25 to prevent ubiquitination RIG-I [140]. TAM 
receptor tyrosine kinases include Tyro3, Axl, Mer and 
Axl are important co-factors in ZIKV entry into 
human fetal endothelial cells [141]. It is stated that 
growth arrest specific gene 6 (Gas6), a ligand of Axl, 
firstly binds to phosphatidylserine on the E protein of 
ZIKV and subsequently helps ZIKV to bind to TAM 
[142]. Chen et al. indicates that the activation of TAM 
leads to the production of SOCS1, which inhibits type 
I IFNs and ISGs [143]. SOCS1 belongs to SOCS 
proteins and negatively regulate JAK–STATs path-
way to restrict the expression of ISGs [144]. In 
addition to the this, interleukin-6 (IL-6) promotes 
production of SOCS3. And then SOCS3 suppresses 
the levels of type I IFNs and ISGs through degrading 
TBK1 [145] and decreasing STAT1 phosphorylation 
[146] (Fig. 7). 
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Figure 7. ZIKV inhibits type 1 IFNs pathway via IL-6 and ALX receptor. The dsRNA of ZIKV can activate TLR3 to induce the expression of IL-6 and in turn IL-6 
phosphorylates STAT3 to trigger the production of SOCS3 to degrade TKB-1. On the other hand, the complex of Gas6 and E protein can promote the phosphorylation of 
STATs, which induce the expression of SOCS1. And it can inhibit the production of IFNs and ISGs. 

 

Subgenomic flavivirus RNAs and the 
genomic RNA of ZIKV  

 Subgenomic flavivirus RNAs (sfRNAs) are 
products of incomplete degradation of viral genome. 
They have been proven to be involved in antagon-
izing type I IFNs responses [147, 148]. Two species of 
sfRNAs are produced during ZIKA infection, as a 
consequence of stalling of host 5′- 3′ exoribonucleases 
in the 3′ untranslated region (UTR) of ZIKV genome 
[149, 150]. It has been reported that ZIKV sfRNAs 
inhibited type 1 IFN response, as evidence by that 
ZIKV-derived sfRNA suppressed type I response at 
the cellular level [150, 151]. Some evidence suggests 
that ZIKV sfRNAs and ZIKV NS5 act in cooperation 
to inhibit STAT1 phosphorylation [152].  

The genomic RNA (gRNA) can be chemical 
modificated during flavivirus infection and RNA 
methylation modification is the most common. ZIKV 
RNA methylation occurs at different sites. For 
example, the ribose 2′-oxygen (2′-O), the position N-6 
of adenosine, and the nitrogen on position 7 (N-7) of 
guanosine [153]. Some studies indicate that 
2′-O-methylation of the cap structure can escape the 
recognization of PRRs [154, 155]. Experimental 
evidence shows that 2′-O methylation of WNV can 

evade the ISG, tetra-tricopeptide repeats (IFIT) 
response [156] and DENV deficient 2′-O methylation 
mutant was more sensitive to IFN [157].  

Conclusions and future perspectives 
 Currently, there are no licensed vaccines or 

approved drugs to prevent or treat ZIKV infection. 
Drug targets can be either host proteins or viral 
proteins. Targeting host factors may trigger immune 
antiviral responses or disrupt the viral life cycle, while 
targeting viral protein could directly damage or 
suppress the virus life cycle [158].  

Type I IFNs plays an important role in defending 
against viral infection and type 1 IFNs system has 
been used as a host-targeting antiviral method. 
However, the interaction between ZIKV and type 1 
IFNs system is complicated. Better understanding 
their interactions would help us to identify potential 
molecular targets for treating ZIKV infection. As 
mentioned in this article, ZIKV has different 
mechanisms to evade the innate immunity, especially 
the inhibition of the type I IFN response. At present, 
many research studies focus on ZIKV proteins 
directly act on the key factors involved in type I IFNs 
induction pathway and type I IFNs signaling 
pathway. A NS protein can interfere with multiple 
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factors involved in the typical type I IFNs system and 
there are cascade reactions between those factors, 
such as TBK1 and IRF3. The inhibitory mechanism of 
NS proteins on these interrelated factors needs further 
exploration. NS proteins are usually composed of 
several domains and some of the inhibitory effects of 
NS proteins on type I IFNs are not localized to specific 
domains or sites. This allows us to conduct detailed 
studies about this aspect in the future. And some 
proteins induced by ZIKV can also indirectly inhibit 
the expression of type I IFNs and ISGs, such as SOCS 
proteins and this field needs further investigation. A 
recent study showed that ZIKV infection stimulates 
Pim1 kinase expression, which serves as a negative 
regulator of type I IFN signaling. The Pim1 inhibitors 
potently inhibited ZIKV reproduction [159], suggest a 
strategy for developing anti-ZIKV drugs although the 
underlying mechanism is to be further investigated.  

Type I IFNs therapy has been considered an 
effective antiviral therapy, for example, IFN-β 
treatment can repress the transcription of ZIKV in 
primary human vaginal and cervical epithelial cells 
[160]. Apart from this, the combination of type 1 IFNs 
and drugs has evident limitations in viral replication. 
Sofosbuvir [161], ribavirin [162] and bromocriptine 
[163] combined with IFN-α/β have also been proved 
to protect against ZIKV infection in vitro. In addition 
to that, antiviral proteins encoded by ISGs may 
applied in protecting against ZIKV infection and some 
drugs with positive feedback on the type I IFNs 
induction pathway and type I IFNs signaling pathway 
are considered. After all, there are some 
disadvantages in using type I IFNs as drug therapy, 
such as short half-life in vivo, high cost, unexpected 
side effects and high dosage [164]. In addition to this, 
some researchers think it is an effective vaccine 
strategy to modify the NS proteins sites. ZIKV 
NS4BC100S mutant has been reported to induce higher 
type 1 IFNs and it enhances CD4+ and CD8+ T-cells 
responses in immunized mice [165]. Whether the 
same effect is achieved by modifying the NS proteins 
sites involved in innate immune evasion should be 
investigated in the future study.  
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