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Abstract 

RNA-based therapeutics (e.g., mRNAs, siRNAs, microRNAs, ASOs, and saRNAs) have considerable 
potential for tumor treatment. The development and optimization of RNA modifications and delivery 
systems enable the stable and efficient delivery of RNA cargos in vivo to elicit an antitumor response. 
Targeted RNA-based therapeutics with multiple specificities and high efficacies are now available. In this 
review, we discuss progress in RNA-based antitumor therapeutics, including mRNAs, siRNAs, miRNAs, 
ASOs, saRNAs, RNA aptamers, and CRISPR-based gene editing. We focus on the immunogenicity, 
stability, translation efficiency, and delivery of RNA drugs, and summarize their optimization and the 
development of delivery systems. In addition, we describe the mechanisms by which RNA-based 
therapeutics induce antitumor responses. Furthermore, we review the merits and limitations of RNA 
cargos and their therapeutic potential for cancers. 
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Introduction 
RNA-based therapeutics, including messenger 

RNAs (mRNAs), small interfering RNAs (siRNAs), 
microRNAs (miRNAs), antisense oligomers (ASOs), 
small activating RNAs (saRNAs), RNA aptamers, and 
CRISPR-based gene editing—have considerable 
therapeutic potential for genetic diseases [1, 2, 3, 4, 5]. 
Nearly 200 drugs have entered clinical trials for 
cancer, infectious diseases, autoimmune diseases, and 
neurodegenerative diseases. Compared to small- 
molecule and DNA-based drugs, RNA-based thera-
peutics have several advantages. They can target 
almost any genetic component and upregulate, 
downregulate, or abolish the expression of genes 
encoding a variety of proteins, including those with 
functions in immunity. In addition, because they are 
not integrated into the host genome, they have little 
genotoxicity. Moreover, the high efficiency and 

controllability of their production facilitate their 
development. 

These advantages are particularly beneficial in 
tumor treatment. Such therapeutics can control the 
expression of target proteins, reshape the suppressive 
tumor microenvironment (TME) by regulating 
cytokine expression, and induce an innate or adaptive 
immune response [6] (Figure 1). These mechanisms 
provide a theoretical basis for the application of 
antitumor treatment. Indeed, the field of RNA-based 
therapeutics has expanded considerably in recent 
years. Several milestone events in RNA-based 
antitumor treatment are shown in Figure 2 [7, 8, 9, 10, 
11, 12, 13, 14, 15, 16, 17, 18, 19]. 

RNA-based therapeutics remains a significant 
challenge due to the inherent susceptibility of natural 
RNA to degradation by nucleases. As a result, there is 
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a need to modify RNA structures and optimize 
delivery vehicles to efficiently deliver nucleic acid 
cargos to the target tissues and/or organs [20]. 
Chemical modifications can reduce the responses of 
cellular endogenous immunosensors to double- 
stranded RNA (dsRNA), greatly improving the safety 
of these drugs. Enhancing the stability of RNA drugs 
prevents their degradation by endogenous endo-
nucleases and exonucleases, significantly improving 
efficacy [21]. Nanotechnology-based delivery systems 
have been a focus of development because viral 
vectors have genotoxicity and side effects. Nano-
particles (NPs) enable target-specific delivery of 
therapeutic agents due to their small size, physio-
logical stability, structural tunability, high surface-to- 
volume ratio, and other favorable characteristics [22, 
23]. NPs can be engineered to improve their 
therapeutic effectiveness by attaching cross-linkers 
and designing stimuli-responsive systems, thereby 
facilitating their accumulation at target sites and 
reducing off-target toxicity. Moreover, nanocarriers 
protect their cargo from degradation in the 
circulation, thus prolonging half-life.  

Here we review recent progress in antitumor 
RNA-based therapeutics—mRNAs, siRNAs, 
miRNAs, ASOs, saRNAs, RNA aptamers, and 

CRISPR-based gene editing. We focus on the 
mechanisms by which RNA-based therapeutics 
induce antitumor immune responses. We also discuss 
RNA modification strategies and classify their carriers 
according to composition. Moreover, we review the 
relative merits and bottlenecks of various RNA-based 
therapeutics in tumor treatment (Figure 1).  

RNA Modification 
RNA molecules are inherently unstable. Exo-

genous RNA molecules trigger immune responses, 
leading to limited level of protein expression. RNA 
molecule modifications can be used to address these 
issues, which is the subject of the next section. 

mRNA modification 
mRNA drugs are synthetic versions of mature 

eukaryotic mRNAs and are typically produced by in 
vitro transcription (IVT). They consist of five main 
structures: the 5’ cap, the 5’ and 3’ untranslated 
regions (UTRs), the open reading frames (ORFs) 
encoding the target proteins, and the 3’ poly(A) tail. 
These structures affect the stability, translation 
efficiency, and immunogenicity of mRNA-based 
therapeutics [24].  

 

 
Figure 1. Overview of RNA-based antitumor therapeutics. The inner ring discusses the chemical modification strategies of RNA molecules. The middle ring discusses the 
current optimization for delivery systems. The outer ring introduces various types of RNA-based therapeutics being applied in antitumor treatment.  



Int. J. Biol. Sci. 2023, Vol. 19 
 

 
https://www.ijbs.com 

3161 

 
Figure 2. Timeline of major RNA-based therapeutics and development milestones for antitumor treatment.  

 
The 5’ and 3’ UTRs are non-coding regions 

whose secondary structures, elements, and lengths 
affect ribosome recruitment and mRNA translation 
[25, 26, 27]. The 5’ UTR directly affects the translation 
of its downstream ORFs [28]. Translated elements of 
the 5’ UTR are referred to as upstream open reading 
frames (uORFs) [29]. For example, the so-called Kozak 
sequence improves the accuracy of translation 
initiation by surrounding the start codon with highly 
conserved nucleotides [30, 31]. A completely 
randomized 10-nucleotide-sequence preceding an 
uORF would drive translational output and deter-
mine mRNA stability, providing insight into the 
cis-regulatory code in the 5’ UTR [32]. The complex 
secondary structure of the GC-rich 5’ UTR, such as 
that of the ornithine decarboxylase mRNA [33], is 
associated with translation inhibition [27]. This 
explains in part the effect of the 5’ UTR on oncogene 
expression. The presence of additional uAUG motifs 
in and the complex secondary structure of the 5’ UTR 
prevent translation and suppress BRCA1 expression 
in breast cancer cells [34]. The 3’ UTR also contains 
elements that regulate multiple aspects of mRNA 
metabolism, such as their nuclear export, cytoplasmic 
localization, translation efficiency, and stability [35]. 
There is an optimal length for the 3’ UTRs: mRNAs 
with long 3’ UTRs have short half-lives, whereas those 
with short 3’ UTRs have low translation efficiency 
[36]. The most commonly used UTR sequences are 
from those of genes expressed at high levels, e.g., 
α-globin β-globin [37]. Repetitive concatenation of 
UTR sequences can enhance mRNA stability and 

translation efficiency [38]. 
The 5’ cap structure contributes to mRNA 

stability and translation efficiency [1, 39]. The 
biological roles of cap-0 (m7GpppN-), cap-1 
(m7GpppNm-), and cap-2 (m7GpppNmNm-) in 
mRNAs have been widely investigated [40, 41]. 
Uncapped or abnormally capped mRNAs can be 
recognized by the innate-immune receptor RIG-1, 
whereas cap-1 and cap-2 prevent recognition by 
innate-immune sensors [42]. Mainstream capping 
systems include enzymatic capping and the addition 
of cap analogs co-transcriptionally [43]. To date, the 
capping enzymes from the vaccinia virus are 
commercially available and widely used for 
post-transcriptional in vitro capping [44]. Under the 
catalysis of 2’-O-methyltransferase, cap-0 structure 
can be further modified to form cap-1 or cap-2 cap 
structures. Enzymatic capping exhibits high capping 
efficiency but cumbersome production. In contrast, 
co-transcriptional capping has limited efficiency due 
to competitive binding to GTP. To prevent reverse 
incorporation, anti-reverse cap analogs (ARCAs) have 
been developed to ensure capping only at non- 
methylated guanosines [45, 46]. Co-transcriptional 
capping using the novel CleanCap™ system does not 
affect indel formation and has a capping efficiency of 
90–99%. The 3’ poly(A) tail can also be optimized. Its 
deletion renders the mRNA molecule unstable [47]. 
Polyadenylation can be engineered by adding a 
fixed-length poly(A) sequence to the DNA template 
or enzymatically [1]. 

Nucleotide modification can also optimize 
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mRNA stability, translation efficiency, and immuno-
genicity in vivo. Activation of Toll-like receptor (TLR) 
3 can be inhibited by replacing the original nucleotide 
with 6-methyladenosine (m6A) or 2-thiouridine (s2U), 
whereas replacement with 5-methylcytidine (m5C), 
5-methyluridine (m5U), s2U, m6A, or pseudouridine 
(Ψ) blocks the activation of TLR7 and TLR8, thus 
preventing an innate immune response [21, 48, 49, 50, 
51, 52]. Indeed, Ψ and m5C enhance RNA stability and 
translational capability while diminishing its 
immunogenicity [48, 53]. N1-methyl Ψ-modified 
nucleotides are employed in IVT to improve the safety 
and stability of mRNA vaccines. Two mRNA vaccines 
against severe acute respiratory syndrome corona-
virus-2 (SARS-CoV-2) were modified using N1-methyl 
Ψ and each showed > 90% protection against 
coronavirus disease 2019 (COVID-19) [54]. By 
contrast, another mRNA vaccine candidate failed to 
reach the expected level of efficacy, potentially due to 
the lack of nucleotide modification [55]. 

siRNA modification 
siRNA can be chemically modified to enhance 

the selectivity of their antisense strands for 
RNA-induced silencing complex (RISC) loading and 
to reduce off-target RNAi activity. However, unmodi-
fied siRNA may induce immune toxicity by activating 
TLR3. A variety of chemical modification strategies 
can be used to maximize the therapeutic efficacy and 
minimize the side effects of siRNAs. 

Chemical modification typically targets the 
sugar ring, base, and phosphate skeleton of nucleo-
tides. The goals are to improve the binding affinity of 
siRNA and protect it from nuclease degradation [56]. 
2’-O-methyl (2’-O-Me) is the most commonly used 
modification of naturally occurring ribose [57]. 
Modification of 2’-O-methyl to 2’-methoxyethyl 
(MOE) increases binding affinity and nuclease 
resistance [58]. In addition, 2’-fluorine (2’-F) also 
improves siRNA binding affinity and is well tolerated 
due to its similar size and charge [59]. 2’-F modified 
siRNA shows excellent silencing of factor VII gene 
expression in mouse models. 

The most common phosphate skeleton modifi-
cation is phosphorothioate (PS), which prolongs the 
half-life in the circulation. Clinically approved siRNA 
therapeutics (e.g., Lumasiran and Inclisiran) have PS 
modifications. The phosphorodithioate (PS2) substi-
tution in siRNAs involves the replacement of two 
non-bridged oxygen atoms. The potency and nuclease 
resistance of PS2-modified siRNAs are slightly higher 
than those of PS and unmodified siRNAs. Boron 
phosphate siRNA may be more effective than 
phosphorothioate [60]. Moreover, 5’-(E)-VP modifica-
tion of siRNA stabilizes the 5’-end of the guide strand 

and promotes Ago2 loading, thereby improving tissue 
retention and gene silencing [61, 62]. 

Base replacement is another modification 
strategy for siRNA-based therapeutics. 5’-nitroindole 
modification of siRNAs reduces passenger strand- 
mediated off-target effects [63]. Due to concern about 
genome integration of metabolized non-natural 
residues, base structures present in natural nucleic 
acids, such as m5C and m6A, tend to be used [64]. 
Notably, 5-fluoro-2’-deoxyuridine modification of 
siRNA enhances cytotoxicity 10- to 100-fold and 
activates multiple apoptotic pathways, which shows 
therapeutic potential for cancer treatment [65]. 

N-acetylgalactosamine (GalNAc)-siRNA conju-
gates enable drug delivery to the liver. Tris-GalNAc 
binds to asialoglycoprotein receptor, which is highly 
expressed on the surface of hepatocytes, resulting in 
rapid endocytosis [66]. Several GalNAc-siRNA conju-
gates have exhibited therapeutic potential in clinical 
trials [67]. In one study, delivery of GalNAc-siRNA by 
a cholesterol-modified antimicrobial peptide silenced 
the expression of peptidyl-prolyl cis/trans isomerase 
(Pin) in a model of orthotopic liver cancer [68], and 
showed sustainable drug delivery. 

ASO modification 
ASOs are susceptible to nuclease degradation 

[69]. Various chemical modification strategies have 
been explored to increase their efficacy and enzymatic 
stability and reduce their immunogenicity and 
off-target toxicity. Similar to siRNAs, 2’-ribose 
modifications (2’-F, 2’-O-Me, and 2’-O-MOE) can 
improve binding affinity and resistance to enzymatic 
degradation. However, caution is needed with 2’-F 
modifications due to their potential toxicity [70]. A 
prior study showed that ASOs with 2’-F modifications 
exhibited hepatotoxicity. G-clamp is a cytosine analog 
that increases ASO binding affinity [71] by forming 
five hydrogen bonds with complementary guanine 
nucleobases in the target sequence. 

An example of a modified ASO molecule is 
peptide nucleic acids (PNAs) [72], which have 
stronger binding affinity to RNA sequences than 
unmodified ASOs. Cationic engineering [73] and 
lysine modification [74] have been explored to resolve 
their low water solubility and poor cellular uptake. 
Locked nucleic acid (LNA) is a nucleotide derivative 
containing a disaccharide ring that locks the sugar 
ring into double ring molecular mode via a methylene 
bridge. This structure limits the flexibility of the sugar 
ring. LNA/DNA/RNA pairing products have higher 
unwinding temperatures and greater biological 
activities; they also activate RNase H [75]. Studies 
have found that the half-lives of nucleotides with 
three terminal LNAs are 10-fold longer than 
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unmodified nucleotides [76]. 

RNA aptamer modification 
The inherent susceptibility of RNA aptamers to 

nuclease degradation determines their stability [77]. 
Commonly used chemical modifications of the 3’- and 
5’-ends, the sugar ring, the phosphodiester backbone, 
and bases can protect aptamers from degradation and 
prevent their renal clearance. The strategy of 
conjugating poly ethylene glycol (PEG)[78] at the 3’- 
or 5’- end can partially overcome obstacles such as 
short serum half-life, high renal clearance rate, and 
nuclease stability for oligonucleotides. However, long 
PEG chains reduce their binding affinity and increase 
their half-life in the circulation [79]. Thus, 
PEG-conjugation involves a trade-off between renal 
clearance and gene-silencing efficiency. Other 
terminal modifications can also enhance the stability 
of RNA aptamers. In vivo administration of 
5’-cholesterol-modified aptamers significantly 
prolongs plasma half-life and exposure [80]. The most 
common 3’-end modification is inverted thymidine 
capping, which promotes RNA-aptamer stability in 
the circulation [81]. 

Modifications of the sugar ring can improve 
nuclease stability and prolong serum half-life. 
Similarly, the 2’-OH positions of RNA aptamers can 
be substituted with 2’-F [82, 83, 84], 2’-OMe [85], 
2’-NH2, 2’-LNA [86, 87], and 2’-d-/l-isonucleoside [88, 
89]. Substitution of non-natural nucleotides into 
oligonucleotides is achieved by mutating T7 RNA 
polymerase. However, such substitutions can lead to 
nonspecific immune reactions or toxicity. Phosphate- 
backbone modifications can be introduced to stabilize 
the phosphodiester bonds, including PS [90] and PS2 
[91] bonds. The substitution in PS bonds is chiral (Sp 
or Rp configuration), unlike the natural conformation, 
and may therefore have adverse effects on biological 
function. 

Others 
Chemical modification strategies are under 

development for other RNA-based therapeutics. The 
nucleotide sugar ring, base, and phosphate skeleton 
are modified in anti-miRNA oligonucleotides 
(AMOs). Most widely used chemical modifications on 
AMOs are LNA, 2’-F-RNA, 2’-OMe, PNAs. Modified 
AMOs with higher binding affinity and superior 
stability have greater regulatory potency [92, 93]. 
Oligonucleotides with 2’-F modifications show 
increased thermal stability (Tm +1.6°C, higher than the 
2’-OMe modification) [94]. The 2’-F modification can 
be combined with the 2’-MOE substitution to enhance 
AMO stability in vivo [95]. Substituting ribonucleo-
tides with LNAs can endow antimir drugs with 

increased resistance to nuclease degradation and 
enhanced target affinity [96]. This modification 
strategy has been used for the clinical trial of 
Miravirsen, an antagomir of miR-122 (NCT01200420). 
Moreover, adding a non-base modifier to the end of 
AMO have been reported to increase the Tm by 
mediating hydrophobic stacking interactions [97]. 

Delivery Systems for RNA Therapeutics 
RNA therapeutics must be delivered to the 

correct tissues without triggering an immune 
reaction. However, the high molecular weight and 
negative charge of RNA hampers their delivery to 
target sites. RNA delivery systems can be divided to 
viral or nonviral. Below we summarize several 
nonviral RNA delivery systems being extensively 
studied (Figure 3). 

Polymer-based NPs 
Polymeric NPs are typically prepared from 

biocompatible and biodegradable polymers, in which 
the drug is dissolved, entrapped, encapsulated, or 
attached to a nanoparticle matrix. Polymers bind 
nucleic acids to form polymeric complexes at physio-
logical pH, facilitating gene delivery. Polymeric NPs 
promote electrostatic binding to nucleic acid cargo by 
interacting with positively charged units. Nucleic 
acids and polymers can be covalently linked using 
degradable linkers. The addition of cationic groups 
such as chitosan to polylactic-co-glycolic acid (PLGA) 
enables its use for siRNA delivery [98]. In addition, 
polyethyleneimine (PEI) and poly(l-lysine) (PLL) form 
complexes with RNA via electrostatic interactions. 
Because unmodified PEI and PLL are not well-tole-
rated [99], they have been chemically modified to 
enhance their in vivo transfection capability and 
reduce their toxicity [100]. The synthetic bio-reducible 
polymer poly(beta-amino ester) is synthesized by 
conjugating amine monomers to diacrylates [101]. 
Polymer-based NPs have low nonspecific toxicity due 
to degradation by hydrolysis as well as by 
bio-reduction in the reducing environment of the 
cytoplasm [102]. 

Lipid-based NPs 
Lipid-based NPs have high biocompatibility and 

biosafety, and their production is simple. They 
include liposomes, micelles, emulsions, and solid 
lipid NPs (SLNs). LNPs have been evaluated as 
mainstream delivery systems in multiple preclinical 
trials. 

Because the size, shape, surface charge, and 
materials of NPs affect their cellular uptake [103], 
LNPs with different molecular structures have been 
developed for RNA delivery. Helper lipids, such as 
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DOPE and cholesterol, are critical components of 
LNPs. The structural characteristics of cholesterol are 
determinants of their intracellular delivery and the 
efficiency of gene transfection [104]. Study revealed 
that incorporation of C-24 alkyl phytosterols into 
LNPs enhances gene transfection. The length of the 
alkyl tail, flexibility of the sterol ring, and polarity are 
required to maintain high transfection efficiency [104]. 
There are also some concerns about the use of cationic 
lipids, for those cationic lipids bearing quaternary 
ammonium groups have potential cytotoxicity and 
relatively short blood circulation time stemming from 
the positive charge, which hindered their clinical 
translation [105]. In contrast, the neutrality of 
ionizable lipids at physiological pH help reduces the 
toxicity and, to some extent, increases the circulation 
half-life of ionizable LNPs [106]. The loss of mRNA 
activity in LNP delivery systems is caused by 
electrophilic impurities derived from the oxidation of 
ionizable cationic lipid components and subsequent 
hydrolysis of the tertiary amine [107]. Another report 
speculated that the highly pro-inflammatory effect of 
LNP-based systems is likely caused by their ionizable 
lipid components, the removal of which abolishes 
visible skin inflammation [108]. However, mitigating 
this toxicity by reducing the charge of cationic lipids 
seem to be unwise because of the descending level of 
nucleic acid encapsulation and transfection efficiency 
of LNP-based systems. Therefore, toxicity, immunity, 
and therapeutic effectiveness must be balanced.  

Inorganic NPs 
Inorganic NPs (gold NPs [AuNPs], silver NPs 

[AgNPs], carbon nanotubes, mesoporous silica NPs 

[MSNs] and so on) have a narrow size distribution 
and a surface chemistry suitable for ligand conjuga-
tion [109]. The physicochemical properties of 
inorganic NPs are not susceptible to the environment, 
which makes them suitable for photothermal or 
photodynamic therapy of solid tumors [110]. 

AuNPs typically have diameters of 1 to 100 nm, a 
large surface-to-volume ratio, good optoelectronic 
properties, excellent biocompatibility, and low 
toxicity [111]. Modifications of the shape, diameter, 
PEGylation, and surface charge of AuNPs affect their 
drug-loading capacities [110]. Due to their unique 
properties, AuNPs have been applied in conjunction 
with chemotherapy or photothermal therapy for 
cancer [112]. Currently, various optimization strate-
gies have been developed in vivo for extending the 
plasma half-lives of AuNPs and enhance their 
targeted accumulation and controllable release [113]. 
Similarly, AgNPs are NPs 1–100 nm in diameter 
composed of silver atoms [114]. In addition to their 
antibacterial properties, L-cysteine AgNPs have 
potential for drug delivery and excellent biocompa-
tibility [115]. 

MSNs are biodegradable and chemically stable 
nanostructured materials composed of silica particles 
with pore channels [116]. The tunable pore size and 
mesoporous structure of MSNs facilitate drug 
dissolution and encapsulation. Furthermore, they 
exhibit high chemical, thermal, and mechanical 
stability under physiological conditions, across broad 
ranges of pH and temperature. Exterior and interior 
surface modifications of MSNs can improve their 
therapeutic efficacy and pharmacokinetics. For 
example, structure-optimized silica nanocarriers 

 

 
Figure 3. Schematic representation of different types of nanocarriers used in RNA delivery. (A) Lipid-based delivery system mainly include liposome and lipid 
nanoparticle, etc. (B) Polymer-based delivery system mainly include polymeric nanoparticle, polymer micelles, etc. (C) Inorganic nanodelivery system mainly include carbon, 
metal NPs, core-shell, MSN, etc. (D) Others includes extracellular vesicles, DNA origami, hydrogel, etc. 
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coloaded with a TLR9 agonist and antigen exhibit 
increased accumulation in draining lymph nodes, 
thereby enhancing antigen-specific B- and T-cell 
immunity in a murine tumor model [117]. 

Others 
Versatile multifunctional nanomaterials whose 

synthesis is simple and inexpensive, as well as 
hybrids that integrate the advantages of different 
materials, have been developed [118]. An example is 
exosomes, a type of extracellular vesicle (EV) secreted 
by most types of cells [119]. Exosomes mediate 

intercellular communication and have functional and 
structural similarities with synthetic drug carriers 
such as liposomes [120], thus can serve as potent 
candidates for drug delivery [121, 122, 123, 124]. 
Exosomes could be used as biomimetic nano-vehicles 
for gene therapy. The synthesis of DNA 
nanostructure-based carriers is simple, and they have 
excellent biocompatibility. DNA nanostructure-based 
carriers are fabricated [125] as tetrahedrons [126], 
prisms [127], nanotubes [128], and planar origami 
[129, 130].  

 

 
Figure 4. Principles of mRNA-based antitumor therapeutics. (A) Antigen-encoding mRNA-based nanoparticles enter the cytoplasm through endocytosis and then 
translated to protein with the help of ribosome. Those antigen proteins are degraded to peptides by the proteasome and further presented to the APCs via MHC processing. (B) 
mRNA-based nanoparticles being delivered could be translated to proinflammatory cytokines and chemokines to activate the immune signal pathway downstream, they could 
also reshape the TME by restoring tumor suppressor expression. (C) Nanocarriers help effectively deliver CAR-encoding mRNA to the T cell, induce T cell activation and 
subsequently lead to antigen-specific recognition and tumor tissue elimination. 
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Hydrogels consist of a three-dimensional 
network swollen with water [131]. Compared to 
directly delivering naked RNA using hydrogels, 
loading RNA into nanocarriers encapsulated in the 
hydrogel network improves RNA stability with no 
need for chemical modifications. In one study, local 
delivery of mRNA using a chitosan-alginate gel 
scaffolded lipoplex promoted T-cell proliferation and 
antibody secretion [132]. Similar results were obtained 
for a COVID-19 subunit vaccine containing CpG/ 
Alum as adjuvants. Injectable polymeric NP-based 
hydrogels provide broad protection against 
SARS-CoV-2 variants [133]. Hydrogels can deliver 
RNA cargos packaged in polymers [134, 135] or 
inorganic NPs [136, 137]. Controlled continuous RNA 
release can be achieved by adjusting the cross-linking 
density, hydrophilicity, pore size, and other 
parameters of hydrogels. Modified hydrogels can 
prolong the retention of antitumor drugs in the tumor 
tissue [138], thereby enhancing their uptake by cancer 
cells and reducing their toxic effects on nontarget cells 
[131, 139]. Optimization of their degradability, 
clearance rate, and controlled release will make 
hydrogel-based systems more suitable for in vivo 
delivery of RNA-based therapeutics in clinical 
applications. 

RNA-based Tumor Therapeutics 

mRNA 

mRNA vaccines 
mRNA-based therapeutics are promising 

alternatives to DNA for cancer immunotherapy due to 
their lower mutagenicity and easier transient 
expression. Furthermore, the in vitro production and 
purification of mRNAs prevents host protein and 
virus contamination [3, 140]. When delivered to 
antigen-presenting cells (APCs), mRNAs encoding 
tumor antigens escape to the cytoplasm, where they 
are translated and processed into peptide epitopes. 
Subsequently, those peptides bind major 
histocompatibility complex (MHC) class I and are 
transferred to the APC surface, activating CD8 T cells 
and inducing antitumor immune responses [140] 
(Figure 4). However, the large size, structural 
instability, and negative charge of naked mRNAs 
hinder their ability to reach target sites. LNPs are 
self-assembled nanocarriers that prevent in vivo 
degradation and promote the intracellular delivery 
and endosomal escape of mRNAs [141]. Nucleoside- 
modified mRNA-LNPs were used by Pfizer/ 
BioNTech and Moderna in their COVID-19 mRNA 
vaccines [142, 143], and lipid-based systems have 
subsequently been a focus of interest. Other mRNA 
LNP formulations have been widely evaluated in 

preclinical and clinical trials for cancer [144, 145]. 
LNPs consist of phospholipids, cholesterol, 

PEGylated lipids, and cationic or ionizable lipids. 
Phospholipids and cholesterol mediate LNP endo-
cytosis and accelerate mRNA release during 
endocytosis. PEGylated lipids prolong the half-life in 
the circulation [146] and act as a steric barrier, 
preventing aggregation during storage. Thus, the 
particles could be controlled to an appropriate size. 
Cationic/ionizable lipids, which serve as the core 
component of LNPs [147], facilitate binding to 
negatively charged mRNA molecules and promote 
their transfer from the endosome to the cytosol for 
translation via pH-triggered electrostatic interactions 
with the anionic endosomal membrane [147]. 

Acute inflammatory responses, such as pain, 
swelling, and fever, can be caused by mRNA-LNP 
vaccines [148, 149, 150, 151]. These effects are 
associated with the pro-inflammatory properties of 
LNPs, and may provide a basis for their adjuvant 
properties. Previous preclinical data suggested 
mRNA/LNP complexes show adjuvant activity [152], 
whereas mRNAs undergo nucleoside modification to 
attenuate the activation of innate inflammatory 
pathways. Several cationic/ionizable lipids can 
induce inflammation by activating TLR pathways 
[153, 154]. In preclinical research on nucleoside- 
modified mRNA vaccines, LNPs induced consi-
derable neutrophil infiltration and production of 
inflammatory cytokines and chemokines in mice, 
independent of the administration route [108]. 
Though ionizable lipids may overcome the pro- 
inflammatory and cytotoxic effects caused by 
permanently charged cationic lipids [155]. LNP 
formulations containing ionizable lipids still elicit an 
innate immune response by releasing IL-l, triggering 
the secretion of the pro-inflammatory cytokine IL-6 
[156]. The ionizable lipid SM-102 induces inflam-
masome activation. In addition, PEG, a component of 
LNPs, is reported to be immunogenic. Repeated 
administration led those pre-existing PEG antibodies 
induce complement activation-related pseudo-allergic 
(CARPA) reactions [157]. Therefore, booster shots 
induce severe adverse reactions, possibly due to 
further strengthening of the immune memory against 
LNPs [158]. In this sense, LNPs may function not only 
as carriers of RNAs but also as adjuvants that trigger 
innate and adaptive immune responses. 

Depending on their charge and composition, 
LNPs can be broadly classified as cationic LNPs, 
ionizable LNPs, and lipid calcium phosphate (LCP) 
NPs. Classical mRNA cancer vaccines target tumor- 
associated antigens (TAAs) preferentially expressed 
in malignant cells. For instance, Oberli et al. [159] 
reported a lipid NP formulation loaded with the 
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tumor-associated antigens gp100 and TRP2 for the 
delivery of mRNA vaccines to induce a cytotoxic CD8 
T-cell response. The optimized mRNA formulation 
overcame self-tolerance and significantly prolong 
survival in transgenic and aggressive mouse mela-
noma models. More excitingly, replacement of 1% of 
the molar composition of PEG in the optimized LNP 
formulation with lipopolysaccharide enhanced the 
immune response by activating TLRs. Therefore, 
further investigation of LNPs combined with 
adjuvants as mRNA vaccine vectors is warranted. 
However, adding LPS renders manufacture difficult 
and there is a risk of toxicity. To possibly avoid 
systemic toxicity, a minimalist vaccine uses hetero-
cyclic lipids as mRNA carriers and self-adjuvants, 
thereby triggering a stimulator of interferon genes 
(STING)-mediated type I interferon innate immune 
response [160]. The 12-C-tailed C1 LNP stimulates the 
expression of inflammatory cytokines such as IL-12 
via the TLR4 signaling pathway [161]. Cationic 
lipid-assisted NPs (CLAN) fabricated with 
biocompatible and biodegradable block copolymer 
poly (ethylene glycol)-block-poly (lactic-co-glycolic 
acid) (PEG-b-PLGA) and cationic lipid have been 
developed for mRNA delivery. They have been used 
to package OVA-encoded mRNA in dendritic cells in 
vitro, enhancing CD11c-cell maturation and CD8 
T-cell proliferation in aggressive E·G7-OVA lymph-
oma models [162]. To further improve intracellular 
mRNA delivery and the immune response, liposomes 
modified with a novel cationic and hydrophilic 
antimicrobial peptide, DP7-C, have been developed. 
As an immune adjuvant, DP7-C promotes DC 
maturation and enhances the immune response by 
stimulating the TLR2-MyD88-IKK-IκB-NF-κB signal-
ing pathway. The carrier and immunoadjuvant 
functions of the system increase the antitumor effect 
of a neoantigen-based mRNA vaccine [163]. 

Several ionizable lipoplex-type mRNA carriers 
are available. Tateshita et al. [164] combined the 
ssPalmE and KALA peptides to modify NPs for 
DC-based cancer immunotherapy. Their amphiphilic 
material consists of a series of ionizable lipids and an 
SS-cleavable and pH-activated lipid-like material 
(ssPalm). ssPalm enables cytoplasmic delivery of 
loaded nucleic acids, and the α-helical cationic KALA- 
peptide synergistically increases mRNA adjuvant 
activity by triggering the cytoplasmic nucleic acid 
sensor. LCP NPs have been used for mRNA delivery 
in cancer immunology, e.g., LCP for the codelivery of 
an mRNA encoding a melanoma-associated antigen 
(TRP2) and an immune checkpoint-targeting siRNA 
to DCs in vivo [165]. The calcium phosphate core 
promotes acid-mediated dissolution in the endolyso-
somal compartment, triggering rapid cargo release 

after cellular internalization. The codelivery of a 
PD-L1 siRNA and an mRNA vaccine elicits a robust 
and durable antigen-specific immune response in the 
melanoma model. More stringent requirements have 
been proposed for delivery-system modification. To 
overcome the need for repeated administration of 
NP-based vaccines, in one study, graphene oxide 
(GO) and low-molecular-weight polyethyleneimine 
(LPEI) were mixed and used to fabricate an injectable 
GO-LPEI hydrogel. Use of this injectable hydrogel 
nanocarrier to deliver OVA-encoding mRNA gene-
rated ovalbumin and adjuvant-laden nanovaccines 
and markedly increased the number of antigen- 
specific CD8 T cells, thereby inhibiting tumor growth 
[166]. 

The clinical applications of the above delivery 
system are hampered by the lack of specific targeting, 
which make them useful only for local inoculation 
and liver-targeted therapy. Efficient lymphatic 
drainage and accumulation can be promoted by 
PEGylation and modifying NP size and surface 
charge [167] of LNP-based mRNA therapeutics. Xu et 
al. [168] found that the delivery and targeting of LNPs 
are modulated by the head chemical structure. They 
screened an endogenously LN-targeting lipid NP, 
113-O12B. Compared to Pfizer/BioNTech’s mRNA 
vaccine, ALC-0315, 113-O12B targeted lymph nodes 
and the liver at a 3:1 ratio, showing increased 
lymph-node and significantly decreased liver mRNA 
expression. Encapsulation of a TRP-2 peptide- 
encoding mRNA markedly inhibited tumor growth. 
Moreover, mice with complete remission did not 
show new tumor formation after injection of 
metastatic tumor cells, indicating induction of 
long-term immune memory [168]. Kranz et al. 
reported that a decreased cationic lipid-to-DOPE ratio 
of mRNA-loaded lipoplexes affected organ specificity. 
Based on this rationale, they developed a 
lipoplex-based system for cargo delivery to splenic 
DCs [169]. These RNA-LPX complexes showed 
synchronized induction of highly potent adaptive and 
type-I-IFN-mediated innate immune responses for 
cancer immunotherapy. 

mRNA for reshaping the TME 
Use of mRNAs to restore tumor-suppressor 

expression has therapeutic potential for cancer. An 
example is a polymeric NP platform for delivering 
mRNA encoding phosphatase and tensin homolog 
deleted on chromosome ten (PTEN), a cancer- 
inhibiting factor. Reactivating PTEN in PTEN- 
mutated melanoma cells and PTEN-null prostate 
cancer cells by mRNA delivery reversed the 
immunosuppressive TME by promoting CD8 T-cell 
infiltration and lifting the expression level of 
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proinflammatory cytokines [170]. The results 
suggested that this PTEN-NP platform elicited a 
robust and safe antitumor immune response by 
inducing tumor-cell autophagy and releasing 
damage-associated molecular patterns (DAMPs), 
thereby triggering tumor immunogenic cell death 
(ICD) and sensitizing cancers to immune checkpoint 
blockade (ICB) therapy. 

p53 is a tumor suppressor involved in cell cycle 
arrest, apoptosis, senescence, and other cellular 
pathways [171]. Beyond its autonomous tumor- 
suppressive effect, it regulates the TME by 
modulating the interactions between tumor cells and 
immune cells. In one study, a modified lipid-polymer 
hybrid NP platform for mRNA delivery enhanced the 
selectivity of CXCR4 targeting. A series of ionizable 
lipid-like compounds and varying densities of 
CXCR4-targeting ligands were screened for mRNA 
translation efficiency and HCC-targeting specificity in 
vivo. The CXCR4-targeting NP system transported 
p53 mRNA to HCC cells, restoring p53 activity and 
decreasing HCC cell viability. This mRNA 
nanotherapy-based p53 restoration strategy in 
combination with anti-PD-1 therapy induced a potent 
antitumor effect in intrahepatic and ectopic models of 
HCC with p53 loss. Therefore, combining p53 mRNA 
therapeutics with ICB could reverse immuno-
suppression in HCC [171]. The introduction of LCOR 
mRNA into tumor cells can restore the expression of 
LCOR, a tumor suppressor, by modulating IFN 
sensitivity [172]. In that study, mice serially 
administered EV-based LCOR mRNA and anti-PD-L1 
therapies in combination showed significantly longer 
survival and complete elimination of lung metastasis. 
Therefore, LCOR mRNA delivery in conjunction with 
ICB has potential for specifically modulating antigen 
presentation in tumor cells. 

mRNAs encoding cytokines or chemokines can 
also induce APC maturation and activation, activate 
T-cell-mediated immunity, and adjust the dysfunc-
tional immune TME. The mRNA-based adjuvant 
TriMix consists of mRNAs encoding the costimula-
tory molecule CD70, the activation stimulator CD40 
ligand (CD40L), and constitutively active TLR4 
(caTLR4). Upon codelivery of tumor-associated 
antigen (TAA), the TriMix mRNA reprograms CD8+ 
TiDCs in vivo into stimulatory cells that efficiently 
process spontaneously engulfed TAAs, upregulate 
costimulatory molecules, and migrate to TDLNs to 
activate cytotoxic T lymphocytes (CTLs), ultimately 
delaying the growth of established tumors [173]. 

Moderna has collaborated with AstraZeneca to 
develop a local intratumoral mRNA therapy for IL-12 

delivery [174]. As a crucial mediator of the Th1 
immune response, IL-12 facilitates the activation and 
cytotoxicity of natural killer (NK) cells and CTLs via 
the IFN-γ signaling pathway. Intratumoral injection of 
LNP-formulated mIL12 (MEDI1191) induced tumor 
regression in superficial and deep-seated lesion 
models, with upregulation of CD8+ T-cell infiltration 
and IFN-γ expression. The systematic administration 
of such cytokines leads to high exposure, possibly 
resulting in toxicity. For this reason, MEDI1191, an 
optimized IL-12 mRNA, was developed for 
tumor-targeted local delivery. To minimize off-target 
liver toxicity, the miRNA-mediated binding site was 
incorporated into the 3’-UTR of the IL-12 mRNA to 
promote its elimination [175]. 

Preclinical data suggest limited antitumor 
activity for IL-12 mRNA monotherapy. For this 
reason, other mRNA therapeutics encoding mixtures 
of cytokines and chemokines have been developed. 
Intratumoral injection of DAL4-LNP-IL-12 and IL-27 
mRNAs showed synergistic suppression of tumor 
growth with robust infiltration of immune effector 
cells [176]. Another research investigated the optimal 
combination of different cytokines, and demonstrated 
that a mixture of mRNAs encoding IL-12 single chain, 
interferon-α (IFN-α), granulocyte-macrophage 
colony-stimulating factor (GM-CSF), and IL-15 
increased systemic antigen-specific T-cell expansion 
and granzyme B T-cell infiltration, thereby promoting 
tumor regression [177]. Moderna has announced two 
other local-injection mRNA therapeutics (mRNA-2416 
and mRNA-2572), which encode multiple immuno-
regulatory factors. mRNA-2416 encodes OX40L, 
dosed alone or in combination with the intravenously 
administered PD-L1 inhibitor durvalumab for the 
treatment of lymphoma and metastatic ovarian cancer 
(NCT03323398). mRNA-2572 includes OX40L, IL-23, 
and IL-36γ mRNAs and is intended for the treatment 
of lymphoma (NCT03739931). OX40L enhances the 
expansion and survival of CD4 and CD8 T cells, and 
IL-23 and IL-36γ are pro-inflammatory cytokines of 
the IL-12 and IL-1 families, respectively, which 
activate and mature DCs and other immune cells. 
Compared to mono-cytokine mRNA therapy, 
addition of an mRNA encoding the T-cell 
costimulator OX40L increased the complete response 
rates of treated and untreated distal tumors. Mice 
treated with the mixture exhibited complete immune 
responses and effective protection [178]. In summary, 
the above multi-cytokine or chemokine strategies 
elicit durable and robust antitumor protection (Figure 
4, Table 1). 
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Table 1. Overview of clinical trials of RNA-based therapeutics discussed in this review 

RNA 
Types 

Name NCT Number Phase Description Treating diseases Delivery 
system 

 
 
 
mRNA 

CV9201 NCT00923312 I/II Encoding TAA MAGE-C1, MAGE-C2, 
NY-SEO-1, survivin, 5 T4 

NSCLC Protamine 

CV9202 NCT03164772 I/II Encoding TAA: MAGE-C1、NY-ESO-1
、MAGE-C2、survivin、5T4, MUC-1 

NSCLC Protamine 

CV9103 NCT00831467 I/II Encoding TAA: PSA, PSCA, PSMA, 
STEAP1 

Prostate cancer Protamine 

CV9104 NCT01817738 I/II Encoding TAA: PSA, PSCA, PSMA, 
STEAP1, PAP, MUC1 

Prostate cancer Protamine 

BNT111 NCT02410733 I Encoding TAA: NY-ESO-1, 
Tyrosinase, MAGE-A3, TPTE 

Advanced melanoma Lipoplex 

NCT04526899 II Encoding TAA: NY-ESO-1, 
Tyrosinase, MAGE-A3, TPTE 

Advanced melanoma Lipoplex 

BNT112 NCT04382898 I/II Encoding TAA: PAP, PSA, three 
undisclosed antigens 

Prostate Lipoplex 

BNT113 NCT04534205 II Encoding HPV16 E6 and E7 oncoproteins Head and neck squamous cell carcinoma Lipoplex 
 

BNT116 NCT05142189 I Encoding NSCLC tumor-associated 
antigens 

NSCLC Lipoplex 

BNT122 NCT04161755 I Encoding personalized tumor mutation 
antigens 

Pancreatic Lipoplex 

NCT03815058 I Encoding personalized tumor mutation 
antigens 

Advanced melanoma Lipoplex 

NCT04486378 II Encoding personalized tumor mutation 
antigens 

Colorectal Lipoplex 

NCT03289962 I Encoding personalized tumor mutation 
antigens 

Solid tumors Lipoplex 

mRNA-4157 NCT03313778 I Encoding several neoantigens Solid tumors LNP 
NCT03897881 II Encoding 20 different mutated 

neoepitopes 
Melanoma LNP 

mRNA-5671 NCT03948763 I Encoding KRAS gene driver mutations 
(G12C, G12D, G12V, G13C) 

NSCLC, pancreatic, colorectal neoplasms LNP 

CARVac NCT04503278 I/II Encoding CLDN6 Solid tumors Lipoplex 
IVAC NCT02316457 I Encoding gp100 3 TAAs selected TNBC Lipoplex 
BNT141 NCT04683939 I/II Encoding IgG antibody CLDN18.2-positive solid tumors/ solid tumor Lipoplex 
BNT152+153 NCT04710043 I Encoding IL-7 and IL12 Solid tumors Lipoplex 
MEDI1191 NCT03946800 I Encoding IL-12 Solid tumors LNP 
mRNA-2416 NCT03323398 I Encoding OX40L, IL-23, IL-36γ Solid Tumor Malignancies or Lymphoma; Ovarian 

Cancer 
LNP 

BNT151 NCT04455620 I/II Encoding IL-2 Solid tumor Lipoplex 
siRNA ALN-VSP02 NCT01158079; 

NCT00882180 
I Target ACSL4 and PLK1 Solid Tumors LNP 

CALAA-01 NCT00689065 I Target Fibronectin Solid Tumor cyclodextrin 
polymer 

TKM-080301 NCT01437007; 
NCT02191878; 
NCT01262235 

I/II Target TGFBR2 Colorectal Cancer with Hepatic Metastases 
Pancreas Cancer with Hepatic Metastases 
Gastric Cancer with Hepatic Metastases 

LNP 

siG12D 
LODER 

NCT01676259; 
NCT01188785 

II Target K-ras Pancreatic Ductal Adenocarcinoma 
Pancreatic Cancer 

Polymers 

iExosomes NCT03608631 I Target K-ras Metastatic Pancreatic Adenocarcinoma 
Pancreatic Ductal Adenocarcinoma 

Exosomes 

Atu027 NCT01808638; 
NCT00938574 

I/II Target 4E-BP1 Carcinoma, Pancreatic Ductal 
Advanced Solid Tumors 

LNP 

DCR-MYC NCT02314052; 
NCT02110563 

I/II Target MYC Hepatocellular Carcinoma/ Solid Tumors LNP 

saRNA MTL-CEBPA NCT05097911; 
NCT02716012; 
NCT04105335 

I Target CCAAT/enhancer binding 
protein alpha (C/EBP-α). 

Hepatocellular Carcinoma 
Liver Cancer 

 

miRNA MRX34 NCT01829971; 
NCT02862145; 
 

I/II Target miR-34 Primary Liver Cancer 
SCLC 
Lymphoma 
Melanoma 
Multiple Myeloma 
Renal Cell Carcinoma 
NSCLC 

 

MesomiR-1 NCT02369198 I Target miR-16 Malignant Pleural Mesothelioma 
Non-Small Cell Lung Cancer 

 

Aptamer AS1411 NCT00512083; 
NCT00881244; 
NCT01034410 

I/II Target nucleolin Leukemia, Myeloid/solid tumors  

NOX-A12 NCT03168139; 
NCT00976378; 
NCT01194934 

I/II Target CXCL-12 Metastatic Colorectal Cancer/ Metastatic 
Pancreatic Cancer/ Hematopoietic Stem Cell 
Transplantation 
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mRNAs for CAR engineering 
Engineered T cells that express chimeric antigen 

receptors (CARs) for adoptive cell therapy (ACT) 
have considerable benefits for the treatment of certain 
blood malignancies [179, 180]. CARs are recombinant 
receptor constructs containing replaceable intracel-
lular T-cell signaling domains, targeting domains, and 
transmembrane domains, enabling the substitution of 
antigen-binding domains encoded by single-chain 
variable fragments (scFv). Thus, different signal 
transduction pathways activate different T-cell 
functions and properties. The activation mediated by 
intra-cytoplasmic signaling domains could promote 
tumor targeting by inducing the release of granzyme 
and perforin, as well as facilitating tumor killing via 
activation of other immune components. Although 
CAR-T therapy has much therapeutic potential for 
cancer, challenges remain in terms of “on-target, 
off-tumor” cytotoxicity and feasibility for individuals 
with severe immunodeficiency [181, 182]. 

NPs as vehicles for CAR delivery 
Clinical-scale manufacturing of engineered T 

cells requires their isolation, transfection, modifi-
cation, amplification, and re-injection, which is 
difficult and costly. Although virus-mediated transfer 
can prolong transgene expression by T cells [183] and 
has been used for the transduction of CARs into T 
cells [184], it is time-consuming and its clinical 
application is hampered by safety concerns, such as 
mutagenicity and genome-insertion toxicity. NPs 
have potential for CAR mRNA delivery and have 
higher transfection efficiency, lower cost, and fewer 
off-target effects than viral vectors (Figure 4). 

Nanocarrier-mediated targeted delivery of an 
mRNA encoding a rare-cleaving megaTAL nuclease 
disrupts T-cell receptor expression [185]. Surface- 
anchored targeting ligands of anti-CD3 and anti-CD8 
antibodies mediate selective binding of the NPs to T 
cells and initiate rapid receptor-induced endocytosis. 
Polyglutamic acid (PGA)-coated surfaces were 
designed to minimize off-target binding by shielding 
surface charges. This lymphocyte-targeted NP system 
improves the therapeutic activity of CAR-T cells by 
reprogramming them towards a TCM-like phenotype. 
mRNA NPs transiently expressing the transcription 
factor Foxo1, which mediates effector-cell differenti-
ation into functionally competent memory cells, 
induce persistent changes in surface markers and 
improved antitumor efficacy. 

Ionizable lipid NPs have been used to deliver 
mRNAs to primary human T cells ex vivo [145] and 
they show equivalent CAR expression but less 
cytotoxicity than electroporation. Ionizable lipids in 
ethanol were combined with cholesterol (NP stability 

and membrane fusion), DOPE (endosomal escape), 
and C14-PEG (suppresses aggregation and non-
specific endocytosis. In another orthogonal 
experiment for optimizing lipid nanoparticles, the 
results also showed the impact of excipient on LNP 
performance and CAR-T reprogramming efficiency 
[186]. 

NPs combined with CAR  
Most solid malignancies failed to effectively 

respond to CAR-T cell infusion because of tumor 
resistance, tumor-antigen-escape relapse, and the 
suppressive TME [187]. On the one hand, the dense 
tumor tissue and compact extracellular matrix are 
tightly crosslinked, and the resulting pressure 
hampers the infiltration of CAR-T cells into tumors 
[188]. On the other hand, the TME is not conducive to 
CAR-T cell survival because of hypoxia, low levels of 
nutrients, acidic pH, and high permeability. In 
addition, a variety of immunosuppressive cells and 
immune checkpoints (PD1, CTLA4) inhibit the killing 
activity of CAR-T cells [189]. Therefore, NPs, with 
their intrinsic properties, could improve the 
anticancer efficacy of CAR-T by enhancing cargo 
activity and stability, stimulating CAR‐T cell 
proliferation and survival, and increasing in vivo 
delivery efficiency.  

In one study, a liposomal antigen-encoding RNA 
was intravenously administered to stimulate tumor- 
associated T cells in patients with cancer [19]. This 
CAR-T cell-amplifying RNA vaccine, referred to as 
CARVac, induced the expression of CLDN6 on DCs, 
thereby stimulating cytokine secretion and the 
proliferation of co-cultured CLDN6 CAR-T cells in a 
dose-dependent manner. The RNA vaccine 
completely induced tumor regression in an ovarian 
cancer model compared to CLDN6 CAR-T therapy 
alone. This pioneering method led to the development 
of the next-generation drug BNT211, which targets 
solid tumors. Preliminary results from a dose- 
exploration clinical trial showed that RNA vaccine 
(CARVac) comprising CLDN6 CAR-T cells combined 
with CAR-T showed good safety and efficacy. After 6 
weeks of treatment, 4 of 14 patients with testicular 
cancer and 2 with ovarian cancer showed partial 
remission. In addition, the target lesions were reduced 
in size. One patient had no change compared to 
pretreatment, and two patients showed progression. 
The objective remission rate was 43%, and the disease 
control rate was 86% (NCT04503278). 

CAR targeting macrophages rather than T cells 
has emerged as another meaningful strategy for the 
treatment of solid tumors. MT-101 is a new class of 
non-T cell CARs produced by transforming mono-
cytes with mRNAs. Most monocytes in blood 
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differentiate into macrophages after migrating to 
tissues. MT-101 targets tumor cells in peripheral 
tissues by expressing CARs targeting CD5 on the 
surface of monocytes. A phase 1/2 clinical study 
demonstrated the safety and tolerability of MT-101 in 
patients with refractory or relapsed peripheral T-cell 
lymphoma (PTCL) at day 28, with no dose-limiting 
toxicity, cytokine release syndrome (CRS), or immune 
effector cell-associated neurotoxicity syndrome 
(ICANS) (NCT05138458). In 2020, Moderna and 
Carisma Therapies established a cooperative relation-
ship to combine Carisma’s engineered macrophage 
technology with Moderna’s mRNA and LNP 
technology and launched the first clinical study of 
their so-called CAR-M therapy (CT-0508). The 
combination of CT-0508 with an anti-PD-1 antibody 
(pembrolizumab) was used in the phase 1 clinical 
development stage to treat solid tumors with HER-2 
overexpression. 

siRNA 
siRNAs are double-stranded RNA molecules of 

21 to 23 nucleotides, typically with two free bases at 
the 3’-end, that silence target genes by RNA 
interference. The precursor is recognized by Dicer 
RNase and subsequently binds to the target mRNA 
via the RISC and cleaves it at bases 10 to 11 from the 

5’-end, resulting in post-transcriptional gene silencing 
[190] (Figure 5). Unlike other RNAi technologies, each 
siRNA can bind to only one mRNA target. Owing to 
its well-tolerated nature and few side effects, siRNAs 
have been used to treat various tumors in rodent 
models [191, 192]. However, the development of 
siRNA-based tumor therapies is hampered by the 
selection of a suitable targeted delivery method with 
few systemic side effects. 

siRNAs can be used in combination with nano-
materials. Currently, various lipid-based delivery 
systems have been used for co-delivering siRNA and 
drugs (Table 2). Cationic liposomes protect the siRNA 
cargo from enzymatic digestion and prevent its renal 
clearance. Guo et al. [193] used 50 nm cationic 
lipid-polymer hybrid NPs (LPHs) packed with siRNA 
in combination with microbubble-enhanced focused 
ultrasound (MB-FUS) to enhance siRNA delivery in 
the preclinical brain TME in children and adults by 
more than 10-fold. In a smoothened (SMO)-activated 
medulloblastoma model, MB-FUS delivery of 
SMO-targeted siRNA significantly reduced the 
production of SMO protein and promoted tumor-cell 
death [193]. In addition, the combination of As2O3 and 
HER2-siRNA shows an excellent antitumor effect in 
an orthotopic gastric tumor model. As2O3 induces 
apoptosis and suppresses tumor metastasis, and 

 

 
Figure 5. Schematic of the mechanisms of siRNA, miRNA and ASO. (A) siRNA inhibits the expression of target genes through Dicer and the RISC, leading to mRNA 
breakdown and avoiding the expression of the corresponding proteins. (B) The pri-miRNA is processed twice to form a mature miRNA. miRNA complementarily binds the 3’ 
UTR of the target gene during transcription or translation and then directly cut the mRNA or directly inhibit the translation process. (C) ASO specifically binds to the target 
mRNA, forming a DNA-RNA hybrid that then triggers mRNA cleavage via RNase H recruitment, ultimately leading to the mRNA level reduction. 
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HER2-siRNA blocks the expression of the oncogene 
HER2, inhibiting tumor invasion and metastasis [194]. 
The cRGD peptide-modified nanocarrier enabled 
pH-triggered drug release—the pH-sensitive shell 
rapidly dissolved in the acidic lysosome, enabling 
efficient lysosomal escape and release of siRNA to 
achieve efficient gene silencing [195, 196]. A cationic 
amphiphile containing an endosomal pH-sensitive 
imidazole ring can be used to deliver both paclitaxel 
and a Bcl-2 siRNA, significantly inhibiting cellular 
proliferation and reducing tumor growth [197]. 

Suitable modification of nanocarriers enables 
siRNA delivery to target tissues for cancer treatment. 
One study introduced a versatile codelivery platform 
for the treatment of triple-negative breast cancer [198]. 
The nanocomplex was modified with hyaluronic acid 
to specifically target CD44 on TNBC cells. The 
codelivery of cabazitaxel (a microtubule stabilizer) 
and IKBKE siRNA (a TNBC oncogene) showed high 
tumor accumulation and antitumor activity in an 
orthotopic TNBC mouse model. In addition, 
integrative hybrid nanoplexes (EhCv/siRNA NPs) 
prepared from endoplasmic reticulum membranes 
isolated from cancer cells transported an siRNA via 
the endosome-Golgi-ER pathway. This method avoids 
lysosomal degradation and enhances siRNA silencing 
and antitumor activity against MCF-7 human breast 
cancer cells in nude mice [199]. An NP for dual- 
targeted immune therapy with a tumor-targeting 

peptide (SP94) enhances the tumor accumulation of 
NPs and the intracellular delivery of the therapeutic 
pDNA/siRNA to HCC cells [200].  

Silencing key elements of tumor progression or 
downregulating immunosuppressive genes can 
induce an antitumor immune response [201]. 
siRNA-based nanotherapeutics targeting tumor cells 
downregulate immune-checkpoint proteins (e.g., 
PD-L1), so-called “don’t-eat-me” signals (e.g., CD47), 
and anti-inflammatory cytokines to induce an 
antitumor immune response [202]. Programmed cell 
death protein-1 (PD-1) is an immune checkpoint 
molecule that impairs T-cell activity and induces 
T-cell depletion. Injection of liposomal nanoparticles 
loaded with PD-1 siRNA into B16F10 tumor-bearing 
mice enhances the T cell-mediated antitumor immune 
response and improves survival [203]. PD-1 is also 
expressed by B cells, macrophages, and NK cells [204]. 
Tumor-associated macrophages (TAMs) overexpres-
sing PD-1 inhibit the phagocytosis by TAMs of 
PD-L1-expressing tumor cells [205]. Hanafy et al. [206] 
reported that PD-1 siRNA encapsulated in SLNs 
downregulated PD-1 expression in TAMs and mouse 
tumor tissues and inhibited tumor growth in a mouse 
model. In another study, delivery by neutral 
nanoliposomes of mTOR-siRNA to rats with breast 
cancer enhanced antitumor efficacy by silencing the 
oncogenic gene mTOR and promoting apoptosis 
[207]. 

 

Table 2. Nanoplatform for delivery of siRNA in anti-tumor therapy 

Types Nanocarriers Function of the nanocarriers Targeted 
gene 

Treating diseases Injection 
methods 

Ref 

Ta
rg

et
in

g 

Cationic lipid nanoparticles Enhance tumor-targeted delivery CD47 Triple negative breast 
cancer; Melanoma 

Intravenous 
injection 

[210] 

Apolipoprotein E3-reconstituted high-density 
lipoprotein with a CaP 

Enhance the Ras-activated cancer cells to swallow 
drugs 

ATF5 Glioblastoma Intravenous 
injection 

[281] 

Hybrid nanocomplex Target CD44 on TNBC cells; higher cellular 
uptake and better tumor penetration of the 
encapsulated cargos 

IKBKE Triple-negative breast 
cancer 

Peritumoral 
injection 

[198] 

Tumor-targeted 
lipid-dendrimer-calcium-phosphate 
nanoparticles 

Enhanced gene delivery capacity and immune 
adjuvant properties by activating the STING–
cGAS pathway 

PD-1 Hepatocellular 
carcinoma 

Intravenous 
injection 

[200] 

Nanoliposomes Delivery to target cells and affect tumor cells and 
infiltrating lymphocytes 

PD-1 Melanoma Intravenous 
injection 

[203] 

St
im

ul
us

 
re

sp
on

si
ve

ne
ss

 

CaP-phospholipid complex nano delivery 
system 

PH sensitivity; Protects siRNA by endogenous 
RNases 

As2O3; 
HER2 

Gastric cancer Intravenous 
injection 

[194] 

Liposomal nanocarrier PH-sensitive Bcl-2 Melanoma Intravenous 
injection 

[197] 

Nucleic acid nanogel Kill tumor cells photodynamically and 
induce remarkable immunogenic cell death 

PD-1 Melanoma Intravenous 
injection 

[208] 

Photolabile spherical 
nucleic acid 

NIR-sensitive, designable and biocompatible 
merits 

HIF-1α;  
Bcl-2 

Cervical cancer Intravenous 
injection 

[282] 

Su
rf

ac
e 

ch
em

is
tr

y 

Lipidoid nanoparticles Facilitate interaction with the cell membrane; 
Endosomal escape in other tissues 

HoxA1 Premalignant breast 
lesion 

Direct nipple 
injection 

[192] 

Cationic nanoparticles Prolong RNA circulation and augment cell uptake SMO Glioma;  
medulloblastoma 

Intravenous 
injection 

[193] 

Solid lipid nanoparticles Engineered with lecithin and cholesterol and 
were surface-modified with acid-sensitive 
sheddable PEG 

PD-1 Melanoma Intratumoral 
injection 

[206] 

Stable nucleic acid-lipid nanoparticle Enable high encapsulation Efficiency of nucleic 
acids with improved cellular uptake and 
subsequent release 

CD47 Colon cancer Intravenous 
injection 

[212] 

Neutral nano-liposomal carrier Process a high rate of in vivo tumor reducing 
capability 

mTOR Mammary carcinogenesis Intravenous 
injection 

[207] 
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Research is now focusing on combination 
therapy or codelivery via nanomaterials with siRNA. 
Guo et al. [208] grafted the photosensitizer 
pheophorbide A (PPA) onto the DNA backbone at the 
phosphorothioate modification site and to a PD-1 
siRNA linker via supramolecular self-assembly to 
form a siRNA and PPA co-packaged nanogel. The 
nanogel photodynamically killed tumor cells, and 
inhibited PD-L1 expression in tumor cells, thereby 
synergistically increasing the antitumor immune 
response. Tumor-targeted lipid-dendrimer-calcium- 
phosphate NPs with thymosin-functional dendritic 
polymers have been used to deliver PD-L1 siRNA and 
immunostimulatory IL-2 encoding plasmid DNA to 
HCC. They increase tumor infiltration and CD8+ 
T-cell activation, enhancing the effectiveness of cancer 
immunotherapy and inhibiting HCC progression 
[200]. Selective targeting and reshaping of the 
immunosuppressive TME by dual delivery of siRNA 
and plasmid DNA has been attempted to improve 
cancer immunotherapy [200]. In another study, an in 
situ-injectable chitosan hydrogel containing C-C 
chemokine ligand 5 (CCL5) siRNA-loaded NPs, 
together with mRNA encoding lipid-immune regula-
tory factor 5 (IRF5), reshaped the TME in a model of 
pancreatic cancer by promoting M1 macrophage 
polarization [209]. Delivery of JQ1 (indirect inhibitor 
of MYC) and a CD47 siRNA in cationic lipid NPs 
significantly inhibits the expression of PD-L1 and 
CD47, significantly improving therapeutic efficacy in 
a mouse model of triple-negative breast cancer [210]. 

Combination therapy with siRNA and chemo-
therapeutic drugs has shown promise for some types 
of cancer. Chen et al. [211] reported that 
chemotherapeutic drugs induce cancer cells to 
overexpress Xkr8 (a scrambling enzyme activated 
during apoptosis) at the transcriptional level in vitro 
and in vivo. Coadministration of nanocarriers loaded 
with Xkr8 siRNA and the FuOXP prodrug into tumors 
via intravenous injection significantly inhibited tumor 
growth in colon and pancreatic cancer models and 
enhanced antitumor immune responses. In addition, 
doxorubicin (Dox) induces ICD in tumors, a type of 
apoptosis that enhances the protective immune 
response. Stable nucleic acid-lipid particles (SNALPs) 
have been used for the simultaneous delivery of Dox 
and an siRNA that knocks down CD47 (siCD47) [212], 
the combination therapy synergistically enhances ICD 
and shows potent antitumor activity [212]. Codelivery 
of Dox and an siRNA using a hydrogel containing an 
enzyme-cleavable peptide motif overcomes drug 
resistance by enabling controlled spatiotemporal 
release [213]. 

ASOs 
ASOs are synthetic single-strand nucleic acids of 

12 to 30 nucleotides. Upon entering a cell, they 
specifically bind to the target mRNA, forming a 
DNA-RNA hybrid that triggers mRNA cleavage via 
recruitment of RNase H, reducing the mRNA level 
[214]. The single strand of ASOs enables targeting and 
specificity via binding interactions (Figure 5). Because 
ASOs are based on nucleotide sequences, they can be 
used to develop protein-associated inhibitors suitable 
for use in conjunction with traditional therapeutic 
approaches. Furthermore, they can be chemically 
modified to improve their stability and resistance to 
DNases [215]. In addition to the 2’-MOE modification, 
next-generation ASOs have a phosphorothioate (PS) 
backbone and 2’-4’ constrained ethyl (cEt) chemistry 
at both ends [216], which improve their effectiveness. 

Because conventional methods cannot downre-
gulate the protein level of STAT3, Hong et al. used a 
2.5-generation cEt-ASO (AZD9150) to suppress 
STAT3 expression, resulting in antitumor activity in 
lymphoma and lung cancer models [217]. In a 
preclinical study, AZD4785 [218], a high-affinity 
cEt-ASO targeting KRAS mRNA, selectively depleted 
KRAS mRNA and protein, selectively inhibited the 
downstream pathways, and suppressed the prolife-
ration of KRAS-mutant cells. AZD4785 targeted KRAS 
in tumors and showed antitumor activity in mouse 
and primate models [218]. 

The limited cell membrane permeability and lack 
of nuclear targeting of ASOs hinder their clinical 
application. To address these issues, Cheng et al. [219] 
implemented a gapmer-based design for ASOs by 
adding 2’-O-methyl modifications with PS linkages, 
which protected ASOs from nuclease degradation and 
enhanced their RNase H-mediated cleavage. ASOs 
targeting both Bcl-2 and Akt-1 were loaded onto lipid 
NPs to increase their stability. Several studies have 
evaluated ASO-conjugated nanocarriers for cancer 
treatment. For instance, the T7 peptide, which has 
high affinity for the transferrin receptor, was 
conjugated to a nanocarrier for specific tumor 
targeting. An ASO-based gene therapy drug for 
homozygous familial hypercholesterolemia [220] 
received O-methyl moieties on the terminal ribose 
groups. The ASO together with a nucleus-targeting 
TAT peptide packaged in Au NPs shows promise for 
controlling cancer metastasis [221]. Codelivery of 
ASOs with siRNAs or other drugs may have a 
synergistic effect. Codelivery siRNA and ASO 
responds to NIR light [222]. Upon NIR light 
irradiation, the oxygen-cleavable linker between the 
siRNA and pASO promotes the lysosomal escape of 
the siRNA and pASO. A multifunctional DNA 
origami-based nanocarrier for codelivery of 
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doxorubicin and dual-targeted ASOs significantly 
silences Bcl2 and P-gp and induces apoptosis, 
enhancing therapeutic effectiveness [130]. 

miRNAs  
miRNAs are single-stranded, non-coding RNAs 

typically of 20 to 24 nucleotides. They comple-
mentarily bind the 3’ UTR of the target mRNA, and 
then cleave the mRNA or inhibit its translation [223, 
224] (Figure 5). miRNAs regulate gene expression via 
silencing, upregulation, translation activation, or 
post-transcriptionally. They modulate tumor progres-
sion by affecting the interactions between tumor cells 
and immune cells. miRNA-based therapeutics can 
restore tumor-suppressor miRNA levels (miRNA 
mimics and other small-molecule drugs) or block 
oncomiR function (locked nucleic acids or miRNA 
sponges) [225]. However, naked miRNA mimics are 
unstable and easily degraded by nucleases, thus 
requiring a suitable delivery system. 

The first clinical miRNA-based therapeutic was 
the liposomal formulation of miR-34a, named MRX34 
[226]. miR-34a is a tumor-suppressor miRNA that is 
dysregulated by p53. In phase 1 studies, delivery of 
miR-34a using liposome restored a normal tumor- 
suppressor pathway, inducing apoptosis in tumor 
cells in vitro and in mouse models of cancer. In 
addition, mice treated with MRX34 exhibited signifi-
cant tumor growth inhibition, and a significantly 
increased survival rate. However, liposomal delivery 
systems have issues with liver and kidney 
accumulation and acute hypersensitivity reactions.  

Inorganic NPs are superior to liposomes in terms 
of their adjustable size and superior pharmaco-
kinetics. For example, a lipid-coated calcium 
phosphonate NP has been designed for macrophage- 
targeted miRNA delivery in tumor immunotherapy 
[227]. Mannose conjugation and a pH-responsive 
steric shielding enable this nanocarrier to reach 
macrophages and release miRNA-155 in the acidic 
TME, reactivating protumor TAMs to antitumor 
macrophages, thereby inhibiting tumor growth 
without marked off-target effects. Similar TAM- 
targeting strategies have been used in a non-small cell 
lung cancer mouse model [228] and epithelial ovarian 
cancer model [229]. HA-based polymeric NPs have 
been modified to deliver miRNA-125b to CD44 
macrophages. The augmented expression of miR-125b 
markedly inhibits primary tumor growth and 
repolarizes TAMs [228], suggestive of therapeutic 
potential.  

Vesicular exosomes could be used for miRNA 
delivery. Exosomes, the smallest extracellular vesicles 
(EVs) (40 to 160 nm), can transport miRNAs in a 
paracrine and endocrine manner [230]. miRNA- 

containing exosomes are taken up via receptor-ligand 
interaction and subsequently regulate gene expres-
sion in recipient cells [231]. Exosomes can overcome 
the limitations of liposomes, such as their membrane 
toxicity and low biocompatibility with target ligands. 
Their small size promotes the penetration of, and 
retention in, solid tumors, suggesting potential for 
tumor immunotherapy. EVs from patients with 
melanoma can prevent tumor relapse by 
downregulating β-catenin and blocking tumor-cell 
proliferation in an miR-34a-dependent manner [232]. 
In hepatoma cells, insulin-like growth factor 1 (IGF1) 
secretion prevents the intercellular exosomal transfer 
of miR-122, thus promoting the proliferation of 
neighboring cells by suppressing the expression of 
miR-122 [233]. These findings suggest a link between 
the loss of tumor-suppressor miRNAs in cancer and 
exosome secretion. 

saRNAs 
Small activating RNAs (saRNAs) are small 

dsRNAs of approximately 21 nucleotides. After 
generating active Ago-RNA complexes, they trigger 
gene expression activation by targeting promoter 
regions. In addition, they have an effect in any 
genomic region with antisense transcripts [234, 235]. 
SaRNAs have received much attention in the field of 
cancer therapy, as they can enhance the transcrip-
tional activation of tumor-suppressor genes such as 
p21 [236, 237], Wt-1 [238], E-cadherin [239], NKX3–1 
[240], and PTEN [241] through various mechanisms 
[236, 242, 243], by inducing cell-cycle arrest, inhibiting 
proliferation, inducing apoptosis, inhibiting meta-
stasis, and reversing multidrug resistance [236, 242, 
243]. Chemical modification could overcome the 
endonuclease resistance, serum stability, and off- 
target effects of saRNAs and nano-delivery systems. 

Lipid-based delivery systems are commonly 
used for systemic or local saRNA delivery. Take target 
gene P21 as example, results illustrated that using 
targeting saRNA transcriptionally activated p21 
expression and promoted cell-cycle arrest in the 
G1/G0 phase, inhibiting cell proliferation and 
enhancing chemosensitivity [236]. Local adminis-
tration of saRNAs has minimal off-target potential. 
Regarding the therapeutic potential of saRNAs 
targeting p21, intravesicular delivery of LNP/dsP21–
322 results in approximately 40% tumor regression 
and prolongs survival in a mouse orthotopic model of 
bladder cancer [244]. 

Surface modification, for example, with 
biodegradable polymers such as PEG, can overcome 
the toxicity and off-target effects of LNP delivery 
systems [244]. Indeed, 2’-fluoro modification of the 
saRNA backbone improves duplex stability in urine 
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[244]. To further increase tumor tissue specificity, a 
selective rectal delivery system has been designed for 
colorectal cancer. In this system, saRNA-322 is loaded 
onto an HA covalently anchored anionic lipid shell to 
accumulate at the lesion site and effectively target 
CD44-rich tumor cells [245]. In another study, to 
achieve targeted delivery, pancreatic ductal adeno-
carcinoma (PDAC)-specific adapters have been used 
to deliver 2’-fluoropyrimidine-modified saRNA to 
tumor cells to activate C/EBPα expression [246]. Due 
to their ability to maintain their structural conforma-
tion even under physiologically harsh reducing 
conditions, aptamers exhibit better structural stability, 
lower toxicity, and lower immunogenicity. Compared 
to lipid-mediated delivery, high-affinity aptamers 
better deliver saRNA to tumor nodules, markedly 
inhibiting tumor growth and significantly reducing 
the tumor burden in a xenograft model [246]. 

RNA aptamers 
RNA aptamers are sequences 20–100 nucleotides 

in length with complex three-dimensional structures 
that bind to target molecules with high affinity and 
specificity via non-covalent pocket interactions [247]. 
Aptamers have high structural flexibility, stability, 
and specificity. In addition, targeted ligands can 
confer cancer tissue specificity to antitumor drugs 
[248, 249]. RNA aptamers are classified into three 
functional categories: antagonists that block the 
interactions of disease-related targets, agonists that 
activate target receptor function, and those that target 
moieties that deliver drugs to cancer tissue [250]. 

Several clinical trials of aptamers for tumor 
therapy are ongoing. The guanosine-rich AS1411 is 
the first oligodeoxynucleotide aptamer to be 
evaluated in phase I and II clinical trials. It suppresses 
tumor-cell proliferation by interfering with the 
stability of Bcl-2 mRNA [251, 252]. NOX-A12 is an 
L-type RNA antagonistic aptamer known as 
Spiegelmer® that targets chemokine (C-X-C motif) 
ligand 12 (CXCL-12) [253], mobilizes cells from the 
protective TME, and induces apoptosis and 
chemosensitization to have an antitumor effect [254]. 
NOX-A12, a mirror-image oligonucleotide with 40 
kDa PEG branches, resists nuclease degradation and 
is immunologically passive [254, 255].  

RNA aptamers are used in combination with 
other therapeutic agents (e.g., siRNAs, microRNAs, 
and peptides) for targeted delivery. For example, the 
combination of a PSMA-specific aptamer for prostate 
cancer with therapeutic oligonucleotides inhibited 
oncogene activity in PSMA-expressing cells, thereby 
having an antitumor effect [256]. Combining this 
aptamer with other functional units can achieve 
multiple biological effects [250, 257, 258]. Similarly, in 

one study, linking a FOXP3-blocking peptide to an 
aptamer targeting CD28 functionally inactivated 
Tregs and enhanced the efficacy of cancer 
immunotherapy [259]. 

CRISPR-Cas9 system  
The clustered regularly interspaced short 

palindromic repeat (CRISPR)/Cas9 system has 
unprecedented therapeutic potential for genetic 
diseases [16]. This adaptive and heritable immune 
defense system was discovered in bacteria and 
archaea, and uses short RNAs to guide the 
degradation of invading viruses, plasmids, or foreign 
mobile genetic elements [260]. CRISPR/Cas9 has 
progressed since the first report in 2013 of its use for 
simultaneous precise editing of several sites in the 
mammalian genome [16, 261]. The 2020 Nobel Prize in 
chemistry was awarded for the discovery of CRISPR 
RNA (crRNA) and transactivating-crRNA (tracrRNA) 
[262]. The interaction between these two elements 
forms a two-RNA guide RNA (gRNA), which directs 
the Cas9 nuclease to the target site (Figure 6). 

The two critical components of the CRISPR/ 
Cas9 system are the Cas9 protein and gRNA. The 
principle of this system involves the insertion of a 
specific DNA sequence (spacer) from the invading 
virus and plasmid into the CRISPR locus. Upon 
re-infection, the CRISPR sites containing the spacer 
acquired previously are transcribed and the products 
are processed into mature gRNAs. The gRNA targets 
Cas9 to a particular genomic locus, where it induces 
double-strand breaks (DSBs). For binding to and 
cleavage of DNA by Cas9, the 3’-side of the target 
sequence must have an NGG protospacer adjacent 
motif (PAM) [263]. The DSB triggers DNA repair by 
non-homologous end joining (NHEJ) or homologous 
directed repair (HDR) [264].  

Cancer arises from the accumulation of genetic/ 
epigenetic abnormalities. CRISPR-Cas9-mediated 
genome editing enables precise manipulation of a 
genomic sequence, enabling the identification of 
genes involved in carcinogenesis and correction of 
oncogenic mutations [265, 266]. In addition, CRISPR- 
Cas9 gene editing allows permanent disruption of 
genes that are essential for tumor survival, potentially 
circumventing the need for repeated dosing of 
chemotherapeutics and thereby improving treatment 
outcomes [267, 268]. To selectively kill cancer cells 
without affecting surrounding normal cells, Kwon et 
al. [269] developed a cancer-specific insertions- 
deletions (InDels) attacker (CINDELA), which targets 
cancer-specific CRISPR-mediated DSBs to promote 
cell death. Notably, CINDELA with CRISPR/Cas9 
targets multiple InDels, generating many DNA DSBs. 
The CINDELA method has been used to kill cancer 
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cells, xenograft cancer cells in mice, patient-derived 
glioblastomas, and patient-driven xenograft (PDX) 
lung cancer models without affecting normal cells 
[269]. 

However, the CRISPR/Cas9 system has 
limitations related to cell injury, limited packaging 
capacity, and immune activation. In addition, the 
large sizes of Cas9 (160 kDa, 4300 bases) and sgRNA 
(~31 kDa, 130 bases) preclude the use of viral and 
nonviral delivery systems [267]. The CRISPR-Cas9 
gene editing system can be delivered intracellularly 
using arginine NPs (ArgNPs) to generate SIRP-α 
knockout macrophages [270]. The technique enables 
tumor penetration and codelivery of the single gRNA 
and Cas9 to knockdown the “don’t-eat-me” signal in 
macrophages, which prevents engulfment of cancer 
cells. The technique enhances the phagocytic capacity 
of macrophages fourfold [270]. To address the low 
editing efficiency and high toxicity of CRISPR-Cas9, 
Rosenblum et al. [267] used lipid NPs to deliver Cas9 
mRNAs and sgRNAs. A single intracerebral injection 
of CRISPR-LNPs for PLK1 (sgPLK1-cLNPs) into an 
aggressive orthotopic glioblastoma resulted in ~70% 
gene editing in vivo, promoting tumor-cell apoptosis. 
In addition, the technique allows antibody-targeted 
delivery for the treatment of diffuse tumors. 
Intraperitoneal injection of EGFR-targeted sgPLK1- 
cLNPs resulted in selective uptake into diffuse 
ovarian tumors, leading to up to ~80% gene editing in 
vivo, inhibiting tumor growth and improving survival 

[267]. A CRISPR/Cas9 codelivery strategy has been 
used for the treatment of immunological diseases and 
cancers. In one study, MSNs were encapsulated in 
lipid layers to form virus-like nanoparticles (VLNs), 
which protected the RNP complex from enzymatic 
degradation and prolonged their half-life in the 
circulation [271]. Simultaneous delivery of an RNP 
complex targeting the PD-L1 gene and the antitumor 
drug axitinib achieved PD-L1 knockout in cancer 
cells, significantly reduced immunosuppressive 
Tregs, and enhanced tumor growth inhibition [271]. 
Zhang et al. [272] developed a gene-drug combination 
that targeted EGFR by specifically inhibiting 
CRISPR/Cas9 and Sora. Similarly, gene-drug 
coloaded NPs have been used to stimulate the 
antitumorigenic pathway in hepatoma carcinoma by 
inhibiting pro-inflammatory cytokines (IL-6 and IL-8) 
by regulating the downstream tumorigenic pathway 
(NF-κB p65) [273]. Stimulus-responsive nano systems 
using NIR-responsive and reducing agent-responsive 
NPs for codelivery of the Cas9/sgRNA RNP and the 
antitumor photosensitizer chlorin e6 (ce6) result in the 
generation of reactive oxygen species (ROS) upon NIR 
irradiation, facilitating the release of Cas9/sgRNA 
targeting Nrf2 and enhancing tumor-cell sensitivity to 
ROS [274]. The therapeutic potential of NIR 
light-triggered systems has been verified by others 
[275, 276]. Although they target different oncogenes, 
these platforms specifically inhibit the proliferation of 
cancer cells. 

 

 
Figure 6. Schematic diagram of CRISPR-Cas9 technology for gene editing. Cas9 can specifically target any genomic locus and induce double-strand breaks under the 
guidance of gRNA. Cells then initiate the repair mechanism by non-homologous end joining (NHEJ) or homologous directed repair (HDR). 
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Perspectives, Challenges, and Conclusion 
Although cell and antibody-based therapies 

currently dominate tumor immunotherapy, more 
work is needed to overcome the risk for side effects, 
induction of an inappropriate and potentially harmful 
immune response, the complexity of treatment, and 
the high cost of production. RNA-based therapeutics 
(mRNAs, siRNAs, miRNAs, ASOs, saRNAs, RNA 
aptamers, and CRISPR gene editing) can modulate the 
expression of target genes to varying degrees. In 
addition, they can stimulate an immune response or 
reshape the suppressive TME by producing antigens 
or restoring the levels of beneficial proteins. The 
ability to target multiple genetic components is an 
advantage of RNA therapeutics over other 
small-molecule or protein-based drugs. Furthermore, 
once the chemical structure of the RNA molecule and 
the in vivo delivery system have been developed, 
RNA-based drugs can be rapidly designed and 
synthesized. However, several technical bottlenecks 
affect RNA-based antitumor therapies, including their 
targeting specificity, safety, and efficacy. To address 
these issues, a variety of optimization and modifi-
cation strategies for RNA molecules and delivery 
systems have been explored.  

Therapeutic effectiveness is influenced by 
off-target effects induced by nonspecific accumula-
tion. To prolong accumulation at tumor sites, promote 
target uptake, and control drug release, surface 
modifications with targeting ligands have been 
developed [277]. Target ligand length, density, 
hydrophobicity, and avidity are determinants of the 
efficacy of such surface modifications [278]. 
Furthermore, optimization of the particle size, surface 
charge, and other properties of delivery vehicles 
would promote selective accumulation of cargo in 
target organs or tissues. Strategies based on micro-
environment-specific targeting release are feasible, 
including on-demand delivery of CRISPR-Cas9 for 
precise genome editing. Tumor heterogeneity results 
in significant variability in the responses—including 
nonspecific responses—to internal stimuli. The design 
of next-generation RNA delivery systems should 
focus not only on reducing the potential toxicity of 
byproducts but also on overcoming the problems of 
irreversibility and weak selectivity. Delivery systems 
will gradually shift from passively responding to 
actively modulating via several mechanisms, such as 
regulating tumor-associated immune cells, enhancing 
tumor cell immunogenicity, and blocking tumor 
immune-escape mechanisms.  

The safety of RNA cargos is a key consideration 
for their clinical application. The innate immuno-
stimulatory properties of RNA molecules and their 
function as immune adjuvants enhance the immune 

response to antigens during vaccine development. 
However, excessive immunogenicity can lead to 
severe adverse reactions. Clinical translation requires 
the striking of a balance between safety and efficacy. 
The development of more biocompatible delivery 
vehicles with better biodegradability would accelerate 
the clinical translation of nanomedicines [279]. Novel 
carriers such as exosomes, bacteriophages, and 
macrophages could be used to deliver therapeutics 
such as siRNAs, ASOs, antibodies, and small- 
molecule drugs. These have considerable potential for 
gene therapy based on their transport characteristics, 
prolonged half-life in the circulation, and excellent 
biocompatibility. Because the components of RNA- 
based therapeutics are from different cell sources and 
have different biological functions [280], their safety 
needs to be systematically evaluated. 

Another crucial issue is therapeutic effective-
ness. Tumorigenesis involves complex regulatory 
networks and immune-escape mechanisms. Treating 
tumors with a single modality is often unsatisfactory. 
Treatment of tumors requires multiple modalities, 
potentially including codelivery of cytokines and 
chemokines, alleviating immunosuppressive signal-
ing in the TME, and in vivo targeting of immune cells. 
Such approaches could enhance the effectiveness of 
immunotherapy and so reduce the RNA-based drug 
dose required. Because drugs have different 
pharmacokinetic and pharmacological characteristics, 
as well as interindividual differences in drug distri-
bution after systemic administration, multiple-drug 
treatment strategies must consider the optimal dosage 
ratio and sequential release to reduce toxicity and 
enhance efficacy. P-gp inhibitors should be released 
by delivery systems prior to any co-delivered drugs. 
Otherwise, the co-delivered drug(s) might be 
exported extracellularly by P-gp, thus reducing their 
therapeutic efficacy. 

In conclusion, we reviewed the modifications of, 
delivery systems for, and potential applications of 
RNA-based therapeutics for cancers. Although RNA 
delivery platforms have limitations, advances in 
RNA-based bioengineering mean considerable thera-
peutic potential for cancer treatment. Indeed, these 
modalities offer hope for types of cancers with few or 
no treatment options. 
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