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Abstract 

Infrared (IR) based histopathology offers a new paradigm in looking at tissues and can provide a 
complimentary information source for more classical histopathology, which makes it a noteworthy tool 
given possible clinical application. This study aims to build a robust, pixel level machine learning model for 
pancreatic cancer detection using IR imaging. In this article, we report a pancreatic cancer classification 
model based on data from over 600 biopsies (coming from 250 patients) imaged with IR 
diffraction-limited spatial resolution. To fully research model’s classification ability, we measured tissues 
using two optical setups, resulting in Standard and High Definitions data. This forms one of the largest IR 
datasets analyzed up to now, with almost 700 million spectra of different tissue types. The first six-class 
model created for comprehensive histopathology achieved pixel (tissue) level AUC values above 0.95, 
giving a successful technique for digital staining with biochemical information extracted from IR spectra. 
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Introduction 
Pancreatic ductal adenocarcinoma (PDAC), the 

most common pancreatic cancer type, accounts for 
less than 3% of all cancers, but it remains the third 
leading cause of cancer-related deaths, both for men 
and women in the United States with 53,000 estimated 
new cases and an 80% death rate in one year [1]. 
Furthermore, PDAC is projected to become the second 
cause of cancer-related deaths by 2030 [2]. The 
dreadful prognosis of patients with this disease, 
including a less than 8% 5-year survival after 
diagnosis, is due to the lack of early symptoms 
and/or specific biomarkers for early diagnosis and 
the paucity of available chemotherapy. In PDAC, 
three types of biomarkers are desirable: those that 
help in the detection of the disease onset (diagnosis 
biomarkers); those that predict responses to 
treatments (predictive biomarkers) and those that 

forecast the likely course of the disease, including 
survival and recurrence patterns (prognosis 
biomarkers).  

Infrared (IR) based histopathology offers a new 
paradigm in looking at tissues and can provide a 
complementary information source for more classical 
histopathology as being label-free and non-destruc-
tive (1–4). Especially, correct understanding of the 
involved inflammation, fibrosis and neoplasia is 
required for a method to be successful. IR histopatho-
logy is being developed for an increasing number of 
cancer types, e.g. breast (5), colon (6), lung (7), brain 
(8) prostate (9), esophagus (10) - highlighting the 
increasing potential of the method. The technological 
developments, especially on the speed and spatial 
resolution front, make this approach feasible in the 
clinic (11). The key to the optimization of IR 
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measurements and reducing analysis time is the 
spectral information reduction: whether it is selection 
of specific spectroscopic bands (12) or significant 
reduction of spectral resolution (13). Both conditions 
can be met using Quantum Cascade Lasers (QCL) 
based microscopes. It has been reported that a QCL 
data collection needed for classification of a 
centimeter-scale size biopsies could be done in the 
order of minutes (13,14) with a commercially available 
Spero-QT (Daylight Solutions, CA, USA) microscope. 
However, to optimize a method for a fast screening or 
imaging modality, a proper foundation needs to be 
laid beforehand even after initial proof of concept 
studies such as this one (15,16). 

Due to the Rayleigh criterion, spatial resolution 
in IR imaging depends on the wavelength and 
objective’s numerical aperture (NA). In this study we 
applied two optical setups: 

- 15x objective with 0.4 NA, giving a projected 
pixel size of 2.7 μm, 

 - 36x objective with 0.5 NA, giving a projected 
pixel size of 1.1 μm. 

Considering under-sampling in high wave-
number region (above 2314 cm-1) for applied 15x 
objective, data measured with this optical setup are 
termed Standard Definition (SD). In the case of the 36x 
objective, spatial sampling criteria are met and 
measurements are Rayleigh-limited in the whole 
measured spectral range (3850-900 cm-1), therefore, 
data has High Definition (HD) label. In our previous 
research (17) we showed that HD data reveal small 
tissue components like thin fibers or blood cells 
squeezed in the vessels. However, SD gives more 
homogenous predictions within tissue classes while 
also being faster than HD measurements.  

In this study, we applied both mentioned 
definitions to check their influence on classification on 
the pixel (tissue) and patient level. It is especially 
interesting in the case of inflammations that are 
composed of lymphocytes (size of 7-8 μm). Reported 
results for pancreatic cancer histopathology were 
based on FT-IR imaging and machine learning, 
providing a classification model created with data 
from over 600 biopsies (coming from 250 patients). 
Data collection was done with IR diffraction-limited 
spatial resolution, forming one of the largest IR 
datasets analyzed up to now, with almost 700 million 
spectra of different tissue types.  

Results and Discussion 
Patient pathology recognition methodology 

This research was performed using Tissue Micro 
Arrays (TMAs), which are typically applied in studies 
on tissue composition and differentiation. This is 

caused by the high variability of TMAs due to many 
biopsies that are taken from patients differentiated by 
age, sex, pathology diagnosis, grade, etc. After the 
typical procedure of needle biopsies collection, to 
prevent their damage they are embedded with 
paraffin and cut into thin 5 µm slices (Figure 1 A). In 
this research, we used two neighboring slices. 
Pathology recognition needs to be done based on 
histopathological annotations performed by an 
experienced histopathologist (Figure 1B). Therefore, 
the first TMA slice is H&E (Hematoxylin and Eosin) 
stained and imaged with a visible light microscope. 
The second slice is imaged with an IR spectrometer. 
The result of this measurement is data in the form of a 
cube containing IR images in the X and Y plane, and 
spectra in the Z direction (Figure 1C). Based on 
histopathological annotations mentioned before, 
corresponding regions are marked on the IR image – 
spectra (after preprocessing) that come from this area 
are used for final histopathological model creation. 
This model is later applied to digitally describe 
histopathological regions in IR image and such 
process is called prediction. Patient pathology is 
finally recognized using Receiver Operating 
Characteristic (ROC) curves, based on the number of 
pixels (from a chosen class/classes) present in 
predicted images (Cancer class in the Patient 
pathology classification panel in Figure 1D). Model 
prediction power is evaluated using Area Under the 
Curve (AUC). 

Comprehensive histopathological model 
The FT-IR histopathological Random Forest 

model was based on 6 TMAs (more information in 
Supplementary Table S1). Our Standard Definition 
based model can differentiate six classes of pancreatic 
tissue: Benign, Cancer, Necrosis, Inflammation, Fiber, 
and Blood. Differences between analyzed classes are 
to some extent reflected in their mean spectra (Figure 
2B). At the first glance, there are visible differences in 
shape and relative intensity of Amide A and B (3550 – 
3000 cm-1) protein bands and DNA/RNA bands (1300 
– 1000 cm-1). Patients in TMAs were divided into 
model, validation, and test sets (Supplementary Table 
S3) for model optimization and prediction power 
evaluation. In Figure 2A predicted TMAs (for 
Standard Definition) images with zooms on single 
cores and regions of interest are presented. H&E 
stained images with zooms are presented in 
Supplementary Materials (S2-S3). Benign biopsies 
with green color can be easily differentiated from 
remaining cases in all TMAs. Class benign can be 
described as a combination of lobules and islands 
annotations, coming from normal pancreas tissue (for 
example single core from PA1002a TMA presented in 
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Figure 2A), and normal adjacent to cancer tissue. The 
microenvironment of cancer is stroma-rich, which is 
visible among others in the single core from PA2072a 
TMA presented in Figure 2A. In both presented 
cancerous cores in the upper part of Figure 2A there 
can be also found necrotic regions associated with 
cancer changed biopsy tissue. Frequently, we 
observed lymphocyte clusters like in the single biopsy 
from PA961e TMA presented in Figure 2A, infiltrating 
into the cancerous tissue surrounded by stroma. Most 
chronic pancreatitis cases are visible in BBS14011 
TMA. In the single biopsy predicted image, one may 
observe both: lymphocyte infiltration into the tissue 
and inflamed changed lobules. In the single core from 
BIC14011a TMA in Figure 2A, there is visible very 
well classified aggregation of erythrocytes in the 
affected stroma. The classification results on the pixel 
level (tissue level) were quantified using AUC metric 
in Figure 2C. All classes reached AUC values higher 
than 0.95, which is a very good result, especially 
taking into account that AUC value equal to one 
corresponds to the situation where each pixel was 
correctly classified.  

Finally, we used intraoperative biopsy (taken in 
clinical conditions) as the external sample for 
Standard Definition model assessment (Figure 3A). 
The most valuable result achieved for this sample is a 
very well classified transition from benign to 
cancerous state with inflammation infiltration. Zooms 
on interesting intraoperative biopsy regions are also 
presented (Figure 3B-D). In the predicted image in 
Figure 3 intraoperative margin can be easily marked.  

High definition histopathological model 
A similar model based on the same 

histopathological annotations and TMAs was built for 
High Definition data. The projected pixel size was 1.1 
µm ensuring sufficient spatial sampling (for 0.5 NA 
objective) to retrieve the maximum of spatial 
information. In comparison to Standard Definition, 
this model unraveled small cells (i.e. lymphocytes) 
located between tissue. In general, predicted classes 
are not as consistent as in Standard Definition, there 
are cases with pixels that are highly mixed (Figure 
4A). This is reflected in AUC values – there are three 
classes with results below 0.95 (Figure 4C). The mean 

 

 
Figure 1. Patient pathology recognition pipeline: A) Tissue Micro Array preparation, B) Histopathological annotation on H&E stained biopsies images, C) Biopsies’ Infrared 
Imaging and obtained data structure, D) Model creation and patient pathology recognition. 
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spectra (and differences between them) for the HD 
data set (Figure 3B) are similar to those calculated for 
the SD data set in Figure 2B. 

We also calculated AUC metrics on the core and 
patient level for test set (49 patients) giving high AUC 
results in the range 0.99 (Figure 5) regardless of the 
definition. 

The Standard and High Definition images seem 
to provide a very similar contrast for these 6-class 
models. Similar results have been found for other 
pathologies (18) which means that for most cases 
High Definition is not required for a robust model. 
The increased noise level actually makes HD models 
slightly less stable, while still having very high 
performance. 

 
 

 
Figure 2. Standard Definition based histopathological recognition of six pancreatic tissue classes with Random Forest classification for: A) Tissue Micro Arrays with zooms on 
single cores with chosen regions, B) Tissue Micro Arrays raw mean spectra, and C) Pixel level AUC values of recognized tissue classes. 
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Figure 3. Predicted image of intraoperative biopsy A), with zooms on: B) margin between benign and cancerous tissue, with clearly visible inflammation between, C) big necrosis 
region surrounded by cancerous changed tissue, D) benign tissue with small inflammation and blood infiltration. 
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Figure 4. High Definition based histopathological recognition of 6 pancreatic tissue classes with Random Forest classification for A) Tissue Micro Arrays with zooms on single 
cores with chosen regions. B) Tissue Micro Arrays raw mean spectra, and C) Pixel level AUC values of recognized tissue classes. 

 

Conclusions 
The infrared imaging combined with the 

machine learning algorithm was applied to develop a 
comprehensive model predicting pancreatic histo-
pathology. In the first step FT-IR Random Forest 
model was built based on a broad and rich in 
biochemical information spectra. This model has 
enabled recognition of six tissue classes: Benign, 
Cancer, Necrosis, Inflammation, Fiber, and Blood for 
both Standard and High Definition. In predictions 
based on High Definition data it was possible to 
differentiate inflammatory cells in more detail, 

however, predicted images were of better quality for 
Standard Definition. Pathology recognition that can 
be performed based on this model allows 
differentiation of cancerous, benign, and chronic 
pancreatitis cases with sensitivity higher that 95%. 
Moreover, in the event of a nonobvious case, an image 
of a predicted biopsy can be analyzed further to 
diagnose a patient, finding specific regions of affected 
tissue, i.e. immune cells and erythrocyte infiltration, 
fibrosis, changes in a number of characteristic tissue 
structures. Model for Standard Definition achieved 
similar AUC values for cancerous patient detection to 
High Definition – that is positive in the context of 
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research continuation using fast QCL system (that is 
equipped with objective giving projected pixel size 
down to 1.3 μm). This study opens the way for more 
subtle pathology recognition in pancreatic tissues. 

Methods  
All calculations described in this study were 

done in MATLAB software.  

Biological material 
Human pancreatic tissue was used in this study, 

with sample set consisting of six TMAs: PA2081b, 
PA2072a, PA1002a, PA961e, BBS14011, BIC14011a, 
purchased from Biomax Inc. and a surgical resection. 
Since biopsy collection and personal data 
anonymization was done by Biomax Inc. no written 
consent from patients was requested. TMAs are 
assembled from tissue cores coming from needle 
biopsies with diameters between 1-1.5 mm 
(depending on the TMA). Resection material was 
specifically selected to present border between cancer 
and control tissue (surgical margin), sample sizes is 
roughly 16x35 mm. Samples were placed in a paraffin 
block and cut using microtome for 5 μm thick slices, 
with one slice placed on IR transparent BaF2 salt plate 
for transmission measurement, and consecutive slice 
mounted on glass for Hematoxylin and Eosin (H&E) 
staining allowing histopathological annotations. 
Initially paraffin covered IR samples were 

deparaffinized with 24 hours hexan bath to avoid 
paraffin absorption around 1462 cm-1. 

High patient statistic was achieved by the use of 
TMAs with 663 tissue cores in total. However, in most 
cases, more than one tissue core came from a single 
patient. Additionally, overlapping cases existed 
between some TMAs, thus, final patient cohort 
comprised of 250 cases (with an additional patient 
represented by surgical resection). Ethical approval 
was granted by Ethics committee at Jagiellonian 
University in Krakow (no. 1072.6120.304.2020). 

Fourier Transform Infrared Imaging 
Bruker Vertex 70v spectrometer coupled with 

Hyperion 3000 microscope and 64x64 FPA MCT 
detector was used for FT-IR measurements. Spectra 
were measured within 3850-900 cm-1 range, with 8 
cm-1 spectral resolution and zero filling factor of 2, 
giving 765 spectral points. Signal was co-averaged 4 
times for a sample region and 64 times for 
background collection. Two types of objectives were 
used during measurements – 15x (SD) and 36x (HD), 
giving projected pixel sizes of 2.7 μm and 1.1 μm, 
respectively. All TMAs were measures with both 
resolutions, but surgical resection sample was only 
measured using 15x objective. Total number of 
sample spectra collected with FT-IR imaging in this 
study reached 672 407 632 (including both 
resolutions). Additional information on experimental 

 
Figure 5. AUC for model (cross validation set - CV) and test set on: A) Core level, and B) Patient level for Standard (SD), and High Definitions (HD). 
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time optimization is provided in Supplementary 
Materials.  

The first step of preprocessing was data 
denoising using Minimum Noise Fraction (MNF) 
method with 20 bands used for reconstruction (19,20). 
Due to partially spatial character of MNF’s noise 
estimation and RAM memory constrains, TMAs 
processing was done in a core-by-core manner. In case 
of resection material, denoising was done for region of 
2x2 measurement tiles. Such approach allows to 
prevent information leakage between patients, which 
could cause over optimistic results in further 
classification. For the classification purpose, FT-IR 
spectra were transferred into so-called metrics. 
Metrics provide spectral information extracted from 
selected IR bands defined by experienced 
spectroscopist (list of spectral regions presented in 
Table S2 in Supplementary Materials). Metrics 
calculation for each spectral region includes local 
linear baseline removal followed by calculation of 
band integration, maximum value and center of 
gravity. Finally, those three characteristics are 
normalized to the corresponding value of Amide I. 
Total number of metrics extracted from single 
spectrum is 123.  

Random Forest Classification  
Classification model creation requires multiple 

steps, starting from tissue types annotation and 
Region of Interests (ROIs) definition for chosen 
classes, which are required to extract data later used 
to feed the classifier. Annotations of Infrared images 
for all TMAs were done utilizing ground truth 
annotations provided by an experienced Histo-
pathologist, based on visual inspection of H&E 
images. Such annotations were later transformed into 
ROI masks, allowing correct pixels (metrics/spectra) 
selection. Furthermore, to assure classification using 
only tissue originating pixels, a tissue mask was 
created after thresholding absorbance for 1650 cm-1 
(most intensive band). Such a mask was used to 
remove background spectra from ROI masks and to 
select samples for final prediction images.  

To prevent from Random Forest classifier being 
biased, all classes had the same number of samples 
(pixels) during a particular model training process. 
This number was determined by the number of 
samples available for the smallest class. Moreover, to 
ensure training data variability, equal number of 
samples from each TMA was taken, unless the 
number of available samples was insufficient. In such 
case, lacking samples were evenly topped up from 
other TMAs. In all cases, samples were always 
randomly selected.  

FT-IR based six-class models (SD and HD) were 

built with 50 Trees, which was sufficient to prevent 
overtraining, but at the same time did not 
unnecessarily complicate the model. A crucial factor 
for stable model creation is its proper validation, 
assuring its stability and lack of overtraining. For 
FT-IR based models, patients were divided according 
to their annotations (benign, inflammation, cancer) in 
a random manner into model, validation and test sets. 
Subset of patients from each TMA was assigned to a 
test set, keeping in mind overlapping cases between 
TMAs. Number of patients in validation and test sets 
are presented in Supplementary Table S3. A four-fold 
cross validation (using model data) was used during 
the model optimization, which is a long and iterative 
process. To assess models’ performance during the 
cross validation, confusion matrix along with 
Receiver Operating Characteristic (ROC) and Area 
Under the Curve (AUC) were calculated. Finally, 
when created model reached satisfactory parameters, 
a test set was used for its final evaluation with ROC 
and AUC defining final diagnostic ability. Described 
validation approach was applied to both, SD and HD 
datasets. Nonetheless, adopted validation method is 
strongly dependent from available patient cohort. 
Additional information on model validation is 
provided in Supplementary Materials.  

Supplementary Material 
Supplementary information and figures.  
https://www.ijbs.com/v19p3200s1.pdf 
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