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Abstract 

As the most common malignancy from mediastinum, the metabolic reprogramming of thymoma is 
important in its development. Nevertheless, the connection between the metabolic map and thymoma 
development is yet to be discovered. Thymoma was categorized into three subcategories by 
unsupervised clustering of molecular markers for metabolic pathway presentation in the TCGA dataset. 
Different genes and functions enriched were demonstrated through the utilization of metabolic Gene 
Ontology (GO) analysis. To identify the main contributors in the development of thymic malignancy, we 
utilized Gene Set Enrichment Analysis (GSEA), Gene Set Variation Analysis (GSVA), and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. The prognosis of thymoma 
was evaluated by screening the essential pathways and genes using GSVA scores and machine learning 
classifiers. Furthermore, we integrated the transcriptomics findings with spectrum metabolomics 
investigation, detected through LC-MS/MS, in order to establish the essential controller network of 
metabolic reprogramming during thymoma progression. The thymoma prognosis is related to 
glycosphingolipid biosynthesis-lacto and neolacto series pathway, of what high B3GNT5 indicate poor 
survival. The investigation revealed that glycosphingolipid charts have a significant impact on metabolic 
dysfunction and could potentially serve as crucial targets in the clinical advancement of metabolic therapy. 
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Introduction 
The most common primary mass in the anterior 

mediastinum is thymoma, which originates from the 
thymic epithelium. At present, the molecular 
mechanisms underlying thymoma are still not 
understood. Multidisciplinary approach is necessary 
for treating thymoma, with surgery being the primary 
method for achieving cure [1]. However, up to 30% to 
50% of patients may develop advanced, recurrent, 
metastatic, or refractory tumors. Moreover, patients 
experiencing advanced stages of thymoma typically 
exhibit unsatisfactory treatment outcomes [2, 3]. 
Hence, it is crucial to discover dependable predictive 
biomarkers for the identification of thymoma patients, 

as this would enhance the chances of survival. 
Carcinogenesis often involves the reprogram-

ming of metabolism, which has significant effects on 
the tumor microenvironment, cellular differentiation, 
and the expression of genes. The alteration of 
metabolism has been demonstrated to impact the 
growth, proliferation, and invasion of tumor cells in 
various manners. For instance, it can fulfill the energy 
requirements of rapidly dividing cancer cells and 
modify biological processes by influencing the 
makeup of substances [4]. The identification of 
metabolically significant biomarkers aids in the 
identification of abnormal organism-specific 

 
Ivyspring  

International Publisher 



Int. J. Biol. Sci. 2023, Vol. 19 
 

 
https://www.ijbs.com 

4443 

alterations, and there is an increasing body of 
evidence connecting metabolic irregularities to 
unfavorable prognosis in various cancers, including 
clear cell renal cell carcinoma, colorectal cancer, and 
endometrial cancer [5-7]. Nevertheless, the precise 
expression patterns of genes associated with 
metabolism in thymoma remain uncertain. 

The beta-1,3-N-acetylglucosaminyltransferase 
(B3GNT) family consists of a collection of enzymes 
that demonstrate an extraordinary capacity to 
facilitate the transfer of N-acetylglucosamine 
(GlcNAc) from UDP-GlcNAc to specific target 
molecules [8]. The formation of beta-1,3-linked 
GlcNAc residues through this enzymatic process has 
significant implications in diverse biological 
scenarios. Currently, the B3GNT family comprises 
eight known members, namely B3GNT1 to B3GNT8, 
each displaying unique characteristics and functions. 
Notably, the disruption of the B3GNT group has been 
identified as a crucial element in the advancement 
and advancement of cancer [9]. For example, 
abnormal levels of B3GNT1 expression have 
consistently been detected in different types of cancer, 
appearing as an increase in its occurrence. The 
elevated expression is strongly linked to negative 
consequences like accelerated tumor growth, 
enhanced ability to spread, and worse prognosis [10]. 
Moreover, within the B3GNT family, B3GNT5 has 
garnered considerable attention due to its strong 
association with glioma progression [9]. 

The ST3GAL family is composed of 
sialyltransferases, which are enzymes categorized 
under the sialyltransferase 3 (ST3) subfamily [11]. Six 
members of this family has been reported. 
Glycosyltransferases known as sialyltransferases 
facilitate the transfer of sialic acid residues from 
donor molecule, typically CMP-sialic acid, to acceptor 
molecules. This process leads to the incorporation of 
sialic acid and glycan structures. The members of this 
family paly an important role in different biological 
processes, like cell communication, growth, immune 
defense, and progression of diseases. Changes in the 
expression or function of ST3GAL family members 
have been detected in various conditions, such as 
malignancy, inflammation, and neurodegenerative 
ailments [12]. 

For this study, we utilized mRNA expression 
information of individuals diagnosed with thymoma 
from The Cancer Genome Atlas (TCGA) repository to 
construct a metabolic prognostic signature. Extensive 
bioinformatics analysis revealed substantial altera-
tions in the metabolomics of thymoma. Afterwards, 
thymoma metabolites and metabolic pathways were 
investigated using differential metabolomics. 
Afterwards, a correlation analysis was conducted to 

examine the relationship between distinct metabolic 
pathways and significant clinical phenotypes and we 
verified the results with the clinical samples and data. 
In conclusion, we have discovered the most predictive 
metabolic pathways and crucial genes in thymoma. 
These findings could offer fresh insights into 
examining the prognosis of thymoma and 
formulating personalized metabolic treatment 
strategies. 

Methods 
Patients and tissue samples 

All the thymoma tissues and adjacent normal 
thymic tissues were collected from patients who 
underwent surgery in thoracic surgery, the First 
Affiliated Hospital, Sun Yat-sen University. All 
patients have not received any therapy before 
surgery. The samples were collected immediately 
after removing the resected thymoma, and stored at 
-80 °C. All the participating patients have signed 
informed consent form and the study was approved 
by the Ethics Committee of the First Affiliated 
Hospital, Sun Yat-sen University. 

Thymoma molecular subtyping and survival 
analysis 

Downloaded from the UCSC Xena database 
(https://xenabrowser.net/datapages/), the RNA-seq 
data for 121 TCGA-thymoma (THYM) samples was 
obtained in log2 (count+1) units. The phenotypes of 
the THYM samples were also downloaded from GDC 
Hub. The analysis of cancer molecular subtypes was 
conducted using the algorithms 'CancerSubtypes' and 
'ClassDiscovery'[13]. Cluster analysis was performed 
using the RNA expression matrix and average linkage 
method, employing the 'SNFCC' approach. 

Following subcategorization, the patients with 
distinct thymoma subtypes underwent survival 
analysis utilizing the survival and survminer software 
packages [14]. Using the top-notch Separation 
algorithm to distinguish between high and low 
expression, the samples were automatically classified 
based on variations in survival rates. Each group 
consisted of a minimum of 10% of the total samples 
[15]. 

Analysis of Prognostic differentially expressed 
genes and functional enrichment 

An analysis of differential gene expression was 
conducted on the samples from two clusters that 
exhibited the most notable disparity in survival. To 
normalize gene expression profiles and remove 
low-expression genes, the DESeq algorithm was 
employed [16]. To choose differentially expressed 
genes, the requirements included a log2-fold change 
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≥1.5 and a Benjamini-Hochberg (B-H) adjusted P value 
<0.05. The differentially expressed genes were 
clustered based on their expression patterns using 
unsupervised cluster analysis. Subsequently, the 
clusters underwent Gene Ontology (GO) enrichment 
analysis to investigate their potential biological roles 
using ToppGene Suite (https://toppgene.cchmc 
.org) [17]. 

Gene set enrichment analysis and gene set 
variation analysis  

Based on the algorithms 'clusterProfiler' and 
'AnnotationHub'[18, 19], we performed a gene-set 
enrichment analysis (GSEA, http://software 
.broadinstitute.org/gsea/index.jsp) on thymoma 
tissues from the TCGA-THYM project. The minimum 
gene set size parameter for the algorithm was set to 
10, while the maximum gene set size was 500. 
Significantly enriched pathways were determined by 
considering terms with a permutation test number of 
1000 and a B-H corrected P value less than 0.05. 

Furthermore, GSVA is a nonparametric 
unsupervised technique utilized for assessing the 
outcomes of gene set enrichment in microarray or 
RNA-seq data [20]. The gene list of central pathways 
was gathered by incorporating the KEGG (http 
//www.genome.ad.jp/kegg/), REACTOME (https 
//reactome.org/) and PathCards databases (http 
//pathcards.genecards.org/). For normalized scoring 
of gene sets per cell, the GSVA and GSEABase 
packages were used [21]. To assess the lasting impact 
on patients, we conducted survival analysis on 
pathways scored using GSVA [22]. 

Analysis of differential metabolic pathways 
GSVA is an unsupervised and nonparametric 

approach that assesses the enrichment of gene sets in 
the transcriptome. Identifying the metabolic 
pathways enriched in a sample can be achieved by 
converting the gene expression matrix into a gene set 
expression matrix. The project utilized GSVA to assess 
the variations in gene sets among different metabolic 
pathways in sample clusters [23]. By employing the 
approach described by Wu et al., we successfully 
detected gene clusters associated with 46 metabolic 
pathways in tumors. These pathways were standard-
ized and quantified using GSVA algorithms. The 
differential analysis of metabolic pathway GSVA 
scores in sample clusters was performed using the 
B-H algorithm from the Limma R package, resulting 
in the generation of a bar chart [24]. 

Significance of differential metabolic pathways 
in thymoma classification 

First, the GSVA scores of differential metabolic 

pathways were extracted and matched with the 
classification of clusters. We built a machine learning 
classifier for the two groups of patients with thymoma 
who had the most distinct survival rates, utilizing 
linear regression, decision tree, and random forest 
analyses. By employing recursive feature selection, 
the decision tree algorithm categorizes the training 
dataset and produces a tree composed of nodes and 
directed edges [25]. The nodes are divided into 
internal and leaf nodes, with an internal node 
representing a feature and a leaf node representing a 
class. A random forest is a type of classifier that 
consists of multiple decision trees, and the final class 
prediction is based on the most frequently occurring 
class among these trees. The random forest method is 
highly valuable for error balancing and accuracy 
maintenance [26]. It can be applied to handle datasets 
with multiple variables, generate classifiers with high 
accuracy, and evaluate feature importance using 
decision trees. Furthermore, we assessed the 
precision, recall, and AUC curve to determine the 
accuracy and stability of the machine learning model. 
Additionally, we built a SHAP model and computed 
the SHAP score to evaluate the impact of key 
attributes on the categorization of two groups of 
thymoma patients with the most significant contrast 
in survival [27]. 

Mass spectrometry-based metabolomic 
profiling 

We picked 10 specimens, comprising of five 
samples of thymoma tissue and five samples of 
para-tumor tissue. The samples were analyzed 
utilizing ultra-performance liquid chromatography 
(UPLC, ExionLC AD, USA) and tandem mass 
spectrometry (MS/MS; QTRAP®, USA). Various 
statistical techniques were employed to examine 
variations in metabolites among the samples [28]. 

The mass spectrometry data was processed 
using Analyst 1.6.3.A combination of the sample 
extracts [29] was used for quality assurance. To ensure 
the consistency of measurement under identical 
operating conditions, analytical samples were 
periodically supplemented with quality control 
samples, with a frequency of one every ten analytical 
samples. The total ion current (TIC) chromatogram 
and multiple reaction monitoring (MRM) multipeak 
chromatogram were obtained. To identify the 
distinctive ion of every compound, a triple 
quadrupole mass spectrometer was employed for 
screening. The detector captured the signal intensity 
(counts per second) of the characteristic ion. The 
samples' mass spectrometer output files were utilized 
for chromatographic peak integration and calibration 
using MultiQuant software [30]. The chromatographic 
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peak area indicates the proportionate amount of the 
corresponding compound. All data related to the 
integration of chromatographic peak areas were 
exported and saved. In order to ensure the accuracy of 
qualification and quantification, we adjusted the 
chromatographic peak of each detected metabolite in 
various samples by considering the metabolite's 
retention time and peak type, allowing for 
comparison of their levels [31]. 

Orthogonal partial least squares-discriminant 
analysis 

By utilizing the metabolomic data obtained 
earlier, we have the capability to conduct metabolite 
identification and analyze the quality of sample data. 
We choose differential metabolites and perform 
predictive and analytical functions on the metabolites 
present in the samples. OPLS-DA (Orthogonal Partial 
Least Squares-Discriminant Analysis) combines 
orthogonal signal correction and PLS-DA to separate 
the matrix data of independent variables into two 
components: irrelevant information and dependent 
variable-related information. By utilizing this 
approach, it becomes possible to maximize variations 
between different groups, which aids in the detection 
of distinct metabolites [32]. Additionally, it helps 
eliminate irrelevant disparities in order to pinpoint 
specific variables that differ significantly. Ultimately, 
this method enhances the outcomes of differential 
analysis. The OPLS-DA model utilized Variable 
Importance in Projection (VIP) to initially identify 
distinct metabolites among groups [33]. Further 
differential metabolite selection was based on the P 
value or fold change obtained from univariate 
analysis. Differential metabolites were determined by 
setting a threshold of VIP ≥ 1.0 and fold change ≥ 2 or 
fold change ≤ 0.5. In other words, if the ratio of a 
metabolite in the tumor group to that in the control 
group was ≥ 2 or ≤ 0.5, it was considered to have 
statistically significant difference. 

Functional annotation and enrichment analysis 
of differential metabolites 

Using the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) database, we conducted an analysis 
on the connections and routes of distinct metabolites 
in living beings. This primarily encompassed the 
potential metabolic pathways of carbohydrates, 
nucleotides, and amino acids, as well as the 
degradation of organic substances. Additionally, we 
performed a thorough annotation of enzymes for a 
range of reactions. P value < 0.05 was considered 
statistically significant [34]. 

The conventional analysis of enrichment, which 
relies on the hypergeometric distribution, is primarily 

suitable for identifying metabolites that have 
significant upregulation or downregulation. How-
ever, it may overlook metabolites that lack significant 
differential expression despite their crucial biological 
importance. Metabolic set enrichment analysis 
(MSEA) converts metabolomic data into a range of 
predetermined metabolic sets without specifying the 
threshold for differential metabolites in advance [35]. 
Metabolic sets with significant differences were 
identified using MSEA. P value < 0.05 for pathway 
enrichment was considered statistically significant.  

Effects of the core pathway on survival and 
identification of target genes 

The machine learning classifier mentioned 
earlier identified the regulatory metabolic pathway of 
utmost significance. Additionally, we acquired the 
GSVA scores for this pathway, which were 
automatically partitioned using the survival and 
survminer packages to derive an optimal threshold 
value. We examined the impact of this pathway on 
long-term survival, as determined by DSS, PFI, and 
OS. Additionally, we acquired the gene expression 
pattern of this central pathway and investigated gene 
correlation through Pearson correlation analysis. The 
gene expression differences corrected by the B-H 
algorithm in Limma were used to determine the 
differential expression of these genes. Finally, genes 
with Log|FC| ≥1.0 and an adjusted p value ≤ 0.05 
were selected as targets. Continuous variables may 
have nonlinear effects on survival. In order to 
eliminate the non-linear impacts of expression 
profiles, the smoothHR and Hmisc algorithms were 
employed to construct a survival prediction model 
that links differential target gene expression with 
overall survival (OS). Additionally, the risk ratio was 
calculated for each level of continuous gene 
expression compared to the baseline, providing 
further evaluation of the effects of genes on long-term 
survival. Afterwards, the validation of the effects of 
gene expression on the long-term survival (DSS, PFI, 
and OS) in patients with thymoma was conducted by 
utilizing the survival and survminer packages. 

Immunohistochemistry (IHC) and 
Kaplan-Meier survival analysis  

IHC staining for B3GNT5 and ST3GAL6 was 
performed on all 28 thymoma and adjacent normal 
tissue samples, which were fixed in 10% neutral 
buffered formalin, paraffin-processed and embedded. 
The deparaffinized tissue sections (4 mm thick) were 
stained with antibody against B3GNT5 and ST3GAL6 
(Santa Cruz, Dallas, Texas, USA) for immunohisto-
chemical analysis. Images of immunohistochemistry 
staining were photographed under a light microscope 
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(Leica, Wetzlar, Germany). IHC scores were indepen-
dently evaluated by two individuals. The final score 
was the multiplication of the positive ratio value (0–3) 
and the intensity value (0–3) of the immunoreactive 
cells. The scores ranging from 0-4 were defined as low 
expression, while the scores > 4 were considered high 
expression. Kaplan-Meier survival analysis was 
conducted by GraphPad Prism version 9.5.1. 

Results 
Thymoma subtype identification and 
differential analysis 

The 121 samples of THYM were categorized into 
three distinct groups: Group 1 (52 cases), Group 2 (39 
cases), and Group 3 (30 cases). The chi-squared test 
resulted in a Q value of 10.6 and a P value of 0.005 for 
the groups (Fig. 1A-B). The unsupervised heat map of 
tissue gene expression data indicated that this 
classification was trustworthy, with groups showing 
relative autonomy and strong correlation within each 
group (Fig. 1B). Groups 1 and 3 exhibited the most 
notable variation in survival rates, defined as the 
good-outcome and poor-outcome groups 
correspondingly (Fig. 1A). 

 The analysis of differential gene expression, 
using the transcription data of Groups 1 and 3, 
revealed 1370 differentially expressed gene. Among 
these genes, 524 were found to be downregulated 
while 846 were upregulated (Fig. 1C). We gathered 
the clinical data related to the samples and conducted 
an unsupervised cluster analysis on the expression 
levels of the top 100 genes that showed differential 
expression. The findings indicated that the genes 
exhibiting differential expression in Groups 1 and 3 
could potentially be linked to the histological 
classification of the tumor and past occurrence of 
myasthenia gravis (Fig. 1D). 

After clustering, the genes that showed 
differential expression were categorized into three 
distinct clusters. Cluster 1 was mainly associated with 
GO:0002475 (antigen processing and presentation via 
MHC class Ib; P < 0.001), GO:0042492 (gamma-delta 
T-cell differentiation; P < 0.001), and GO:0033151 
(V[D]J recombination; P < 0.001). Cluster 2 was 
mainly associated with GO:0008544 (epidermis 
development; P < 0.001), GO:0046068 (cGMP 
metabolic process; P <0.001), and GO:0043588 (skin 
development; P < 0.001). Cluster 3 was mainly 
associated with GO:0071449 (cellular response to lipid 
hydroperoxide; P = 0.001), GO:1902691 (respiratory 
basal cell differentiation; P = 0.001), and GO:0042398 
(cellular modified amino acid biosynthetic process; P 
= 0.002; Fig. 1D). 

Construction of a pathway interaction 
network of different subtypes and survival 
analysis 

A pathway interaction network was derived 
from the enriched differentially expressed genes of 
subtypes 1 and 3 by GSEA (Fig. 2A). Lipid metabolism 
related maps and immune/inflammation related 
maps were significantly enriched (Fig. 2B). Significant 
enrichment was observed in neutral lipid biosynthetic 
process (n = 32, normalized enrichment score [NES] = 
1.82, P < 0.001), positive regulation of phospholipid 
metabolic process (n = 44, NES = 1.65, P = 0.004), and 
positive regulation of lipid metabolic process (n = 121, 
NES = 1.59, P = 0.002) among pathways related to 
lipid metabolism (Fig. 2B). 

The unsupervised cluster heatmap based on the 
GSVA score showed significant differences between 
Groups 1 and 3 in the components of the following 
pathways: GOMF: lipid transporter activity; GOBP: 
lipid localization; and GOBP: neutral lipid 
biosynthetic process (Fig. 2C). The results suggested 
important roles of lipid metabolism in the 
proliferation and differentiation of the two subtypes 
of thymomas. Based on the GSVA scores of pathways, 
we also found that the long-term survival of patients 
with thymomas was closely associated with GOMF: 
lipid transporter activity (P = 0.027, hazard ratio [HR] 
= 4.16, 95% confidence interval [CI]: 1.03–16.78), 
GOBP: lipid localization (P = 0.002, HR = Inf, 95% CI: 
Inf–Inf), and GOBP: neutral lipid biosynthetic process 
(P = 0.01, HR = 6.01, 95% CI: 1.55–23.28) (Fig. 2D). 

Analysis of differential metabolic pathways 
Using the method described by Wu et al., we 

identified gene sets involved in 46 tumor metabolic 
pathways in the KEGG database. By GSVA and 
Limma differential analyses, we identified 12 
pathways with t value ≥ 1.0 and B-H corrected p value 
< 0.05, including PYRIMIDINE_METABOLISM, 
PURINE_METABOLISM, and GLYOXYL ATE_AND_ 
DICARBOXYL ATE_METABOLISM. We also identi-
fied 25 pathways with t valuet ≤ −1.0 and B-H 
corrected p value <0.05, including GLYCOSPHINGO 
LIPID_BIOSYNTHESIS_LACTO_AND_NEOLACTO
_SERIES, ARGININE_AND_PROLINE_METABOLI 
SM, and GLYCOSAMINOGLYCAN_DEGRADA 
TION (Fig. 3A). 

Developing a thymoma machine learning 
classifier by analyzing distinct metabolic 
pathways 

Differential analysis revealed 37 differential 
metabolic pathways important for thymoma 
progression.  
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Figure 1. Consensus clustering and different metabolic profiles between the two clusters. A. Survival analysis of thymoma subgroups. B Consensus matrix heatmap analysis. C 
Volcano plot of differentially expressed genes between subgroup 1 and 3. D Correlation analysis and GO enrichment analysis between differentially expressed genes and clinical 
phenotypes. 
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Figure 2. Construction of the pathway interaction network of different subtypes and survival analysis. A, B GSEA enrichment analysis of differentially expressed genes. C GSVA 
analysis of differentially expressed genes. D The lipid metabolism related pathway survival analysis based on GSVA score. 

 
The linear regression analysis revealed that there 

were significant variations in GSAV scores between 
Cluster1 and Cluster3 across 37 pathways. The 
pathway variables showed a linear correlation 
(precision-recall curves: sensitivity and specificity 
AUC values of 0.586 and recall and precision AUC 
values of 0.593). Decision tree analysis suggested that 
KEGG_GLYCOSPHINGOLIPID_BIOSYNTHESIS_LA
CTO_AND_NEOLACTO_SERIES with a GSVA score 
of < −0.12 and KEGG_GLYCOSPHINGOLIPID 
_BIOSYNTHESIS_GLOBO_SERIES with a GSVA 
score of ≥ 0.12 were the most important pathways for 
the model (Fig. 3B). Random forest analysis showed 
that the KEGG_GLYCOSPHINGOLIPID_BIOSYNT 
HESIS_LACTO_AND_NEOLACTO_SERIES, KEGG_ 
ASCORBATE_AND_ALDARATE_METABOLISM, 
and KEGG_PRIMARY_BILE_ACID_BIOSYNTHESIS 
pathways had the highest contribution to the 

identification of thymoma subtypes with poor 
prognosis (Fig. 3C). The SHAP model showed that the 
KEGG_GLYCOSPHINGOLIPID_BIOSYNTHESIS_LA
CTO_AND_NEOLACTO_SERIES, KEGG_PRIMARY 
_BILE_ACID_BIOSYNTHESIS, KEGG_TAURINE_ 
AND_ HYPOTAURINE_METABOLISM, KEGG_ 
CITRATE_CYCLE_TCA_CYCLE, and KEGG_ASCOR 
BATE_AND_ALDARATE_METABOLISM pathways 
were of utmost importance for the model (Fig. 3D). 
Hence, these algorithms recognized distinct crucial 
routes, with the decision tree, random forest, and 
SHAP models concurring that KEGG_ 
GLYCOSPHINGOLIPID_BIOSYNTHESIS_LACTO_A
ND_NEOLACTO_SERIES held utmost significance 
among the metabolic pathways. Additionally, we 
assessed the SHAP-value of this pathway and 
observed that its GSVA score greatly impacted the 
classifier output (Fig. 3E). 
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Figure 3. Differential metabolic pathway analysis and core pathway construction in thymoma. A Twenty-five differential metabolic pathways were identified via GSVA analysis. 
B, C, D, E Different models to construct key metabolic pathways (B decision tree, C random forest, D, E SHAP model) 

 

Impact of the core pathway on the long-term 
survival of patients with thymoma 

The analysis above revealed that the 
glycosphingolipid biosynthesis lacto and neolacto 
series is the central regulatory pathway linked to the 
progression of thymoma. In order to examine the 
influence of this pathway on the future outlook of 
thymoma patients, we conducted K-M survival 
analysis using the GSVA score of this pathway. The 
results in Fig. 4A show that the higher the GSVA score 
of this pathway was, the worse the prognosis of the 
patients was, as indicated by DSS (p = 0.024, hazard 
ratio = 6.47, 95% CI: 0.36–114.93), OS (p <0.001, hazard 

ratio = 10.63, 95% CI: 1.61–70.12), and, to a lesser 
extent, PFI (p = 0.091, hazard ratio = Inf, 95% CI: Inf–
Inf). 

In order to comprehend the expression and 
interaction of genes within this pathway, we 
conducted a Pearson correlation analysis on the 
expression levels of 22 genes involved in this 
pathway. In general, there was a correlation among 
the genes, with strong correlations observed between 
FUT7, ST3GAL3, and ST3GAL4, as well as between 
B3GNT4 and FUT1 (Fig. 4B). In tumor tissues, the 
expression of ST3GAL6 was found to be notably 
reduced, whereas the expression levels of B3GALT2, 
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ABO FUT3, B3GNT3, and B3GNT5 were observed to 
be significantly elevated (Fig. 4C). 

Metabolomic profiling analysis of thymomas 
Widely targeted metabolomic profiling detected 

a grand total of 1758 metabolites from the 10 samples. 
Hierarchical cluster analysis suggested that the 
distributions of different types of metabolites had 
certain heterogeneity among groups (Fig. 5A). 
Unsupervised principal component analysis (PCA) 
revealed significant metabolic heterogeneity among 
groups and minimal variation within groups (Fig. 5B). 

The coefficient of variation (CV) is the ratio of 
the standard deviation to the mean of the original 
data, reflecting the degree of data dispersion. The 

proportion of substances with CV < 0.3 in the quality 
control samples was higher than 85%, which was 
higher than the standard value of 75%, indicating that 
the experimental data were very stable.  

The Q2 of the OPLS-DA model was 0.542, higher 
than the acceptable limit of 0.5 for an effective model 
proposed by Thévenot et al. By the permutation test, 
there were 93 randomized models with a superior 
interpretation rate for the matrix to this OPLS-DA 
model (P < 0.05). A total of 534 differential metabolites 
were selected by VIP, including 233 downregulated 
metabolites and 301 upregulated metabolites (Fig. 
5C). A significant interaction map among different 
metabolites was detected, as shown in Fig. 5D. 

 

 
Figure 4. Relationship between core metabolic pathways and long-term survival in thymoma patients. A K-M survival analysis of glycosphingolipid biosynthesis lacto and neolacto 
series. B, C Pearson correlation analysis and differential expression analysis of genes in glycosphingolipid biosynthesis lacto and neolacto series.  
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Figure 5. Metabolomic analysis of thymoma samples. A Correlation analysis of differential metabolites in thymoma tissue samples and para-tumor tissue samples. B The 
OPLS−DA plot. C Screening of differential metabolites D. Interaction diagrams between different metabolites. 

 

Functional enrichment analysis of differential 
metabolites 

The Pearson analysis showed that different 
differential metabolites had a synergistic or 
incompatible relationship (i.e., metabolic proximity), 
suggesting mutual regulation of differential 
metabolites (Fig. 6A). The differential abundance 
(DA) score is a numerical assessment of alterations in 
metabolism based on KEGG pathways, indicating the 
average and overall modifications in all metabolites 
within a particular pathway. The formula for the DA 
score was DA score = (the number of upregulated 
differential metabolites in the pathway – the number 
of downregulated differential metabolites in the 
pathway)/the number of all metabolites annotated to 
the pathway. Lipid and atherosclerosis, cholesterol 
metabolism, and regulation of lipolysis in adipocytes 

showed a decreased expression trend in the 
pathological progression process of thymoma. Ether 
lipid metabolism, and synthesis and degradation of 
ketone bodies showed an increased expression trend 
(Fig. 6B). 

In the KEGG pathway map related to 
metabolism, 30 DEMs were enriched in the 
glycerophospholipid metabolism pathway (Fig. 6C). 
Furthermore, the galactose metabolism, steroid 
biosynthesis, and endocrine resistance pathways 
exhibited significant enrichment with the richness 
factor > 0.5 (Fig. 6D). In this plot, the compounds 
lactose (VIP = 1.023, Log2FC = 2.274, p value = 0.002), 
UDP-glucose (VIP = 1.915, Log2FC = -2.898, p value = 
0.004), and UDP-D-galactose (VIP=1.915, Log2FC = 
-2.898, p value = 0.004) were identified (Fig. 6D). 
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Figure 6. KEGG analysis of differential metabolites. A Pearson correlation analysis of differential metabolites. B KEGG pathway-based differential abundance (DA) scoring. C, 
D Screening of significantly enriched pathways. 

 

Hub regulator detection  
In order to mitigate the impact of nonlinear gene 

expression on survival analysis using transcriptome 
profiling, we employed the restricted cubic spline 
model to assess the non-linear impacts of the 
continuous expression of the target genes ST3GAL6, 
B3GALT2, ABO, FUT3, B3GNT3, and B3GNT5 on 
survival. ABO (p for combined association = 0.007, p 
for non-linear association = 0.082) and B3GNT5 (p for 

combined association = 0.004, p for non-linear 
association ≤ 0.001) had a notable influence on the 
overall survival (OS) of thymoma patients (Fig. 7A). 
The linear continuous expression of ABO and 
B3GNT5 showed significant impacts on OS (ABO: p = 
0.056, hazard ratio = 0.26, 95% CI: 0.04−1.93; B3GNT5: 
p < 0.001, hazard ratio = 22.71, 95% CI: 0.89−578.3), 
PFI (ABO: p = 0.058, hazard ratio = 0.38, 95% CI: 
0.1−1.53; B3GNT5: p = 0.015, hazard ratio = 3.01, 95% 
CI: 0.89−10.17), and DSS (ABO: p = 0.003, hazard ratio 
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= 0.07, 95% CI: 0.01−0.94; B3GNT5: p < 0.001, hazard 
ratio = 25.3, 95% CI: 0.15−4249.41) (Fig. 7B). 

High B3GNT5 expression associated with 
worse disease-free survival 

Expression of B3GNT5 and ST3GAL6 was 
upregulated in thymoma tissues than adjacent normal 
thymic tissues (p < 0.05) (Fig. 8). Furthermore, the 
clinical data showed that high expression level of 
B3GNT5 in thymoma was associated with worse 
disease-free survival (p < 0.05, HR = 0.3339, 95%CI 
0.1204-0.9263), while ST3GAL6 expression didn't 
influence DFS (p > 0.05, HR = 1.995, 95%CI 
0.7339-5.424) (Fig. 8). 

Discussion 
Due to the marked heterogeneity of thymoma, 

even with the same histological diagnosis, the 
prognosis of patients tends to vary significantly. The 
conversion of healthy cells to cancerous cells is 
accompanied by various biological characteristics 
with metabolic reprogramming being the most 
notable, including glycolysis, glutamate-dependent 
anabolism, and lipid synthesis [36-38]. Hence, 
exploring novel subtypes of tumors, especially 
regards to their metabolism, is an effective way to 
study the heterogeneity of thymoma, thereby 
providing insights for clinicians to make more 
accurate clinical assessments [39, 40]. The aim of this 
study was to identify a valuable metabolic gene 
signature for thymoma by examining the distinct 
metabolic genes in the TCGA database. 

 
 

 
Figure 7. Hub regulator detection. A Association analysis of hub gene expression and survival. B Long-term survival analysis of hub gene expression in patients with thymoma 
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Figure 8. B3GNT5 and ST3GAL6 are upregulated in thymoma tissues and B3GNT5 expression associates with disease-free survival. 

 
Through investigation, we conducted consensus 

clustering on thymoma individuals within the 
database by utilizing genes associated with 
metabolism. By employing advanced bioinformatics 
analysis, we successfully pinpointed the crucial 
involvement of lipid metabolism in thymoma. 
Organelles contain lipids that serve as essential 
nutrients for normal cell growth and also function as 
components of cell membranes [41]. Research showed 
that the alteration of lipid metabolism is vital in 
membrane synthesis, energy production, and signal 
transduction during cancer cell progression. Tumor 
cells rely on lipid metabolism to fuel their energy 
needs, support cell growth, produce signaling 
molecules, and prioritize lipid synthesis for rapid 
proliferation [42-44]. The alteration of lipid 
metabolism is strongly associated with worse tumor 
prognosis, evidenced in different types of tumors 
including pancreatic cancer, breast cancer, and 
non-small cell lung cancer [45-47]. Elevated lipid 
levels can enhance the metastatic potential of cancer 
cells and contribute to drug resistance. Adjust the 
sentence structure, delete unnecessary words, and use 
synonyms to maintain the meaning [48, 49]. 

Creation of a machine learning classifier helped 
us to find glycosphingolipid biosynthesis, particularly 
the lacto and neolacto series, played an important role 

in thymoma progression. This classification model 
helped us to identify two key enzymes, namely 
B3GNT5 and ST3GAL6, that play crucial roles in this 
process [50-53]. Glycosphingolipids (GSLs) are highly 
varied and plentiful glycolipids that exist on the outer 
layer of the cell membrane in various living 
organisms. They are a crucial part of the lipid 
composition of the plasma membrane in most 
eukaryotic cells. Their involvement includes processes 
of cell‒cell recognition and regulation of signals 
through the regulation of membrane microdomains 
and proteins associated with the membrane [54, 55]. 
The glycan composition present on the cell surface is a 
major determinant of the structural and functional 
classification of GSL, and alterations in GSL 
glycosylation are associated with stem cell 
differentiation and contribute to a variety of cancer 
processes, such as persistent tumor cell proliferation, 
promotion of tumor cell metastasis [56, 57]. The core 
glycans of GSLs are categorized into three primary 
groups: the ganglio-series, globo-series, and 
lacto/neolacto series. Glycosphingolipids from the 
lacto/neolacto series function as carriers or essential 
constituents of numerous glycan antigens, which have 
demonstrated significant involvement in various 
types of cancer [58]. B3GNT5, an essential enzyme 
involved in the production of lactate and the 
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glycosphingolipids of the lactate series, is crucial in 
the development of certain cancerous conditions like 
ovarian cancer and glioblastoma [59, 60]. A recent 
study showed enhanced enzymatic function of 
B3GNT5 causes the buildup of a fresh lactate 
sequence of glycosphingolipids in cancer cells, 
impeding immune monitoring [9]. ST3GAL6 belongs 
to sialyltransferase family, involving in synthesis of 
glycolipid substrates, abnormalities of which are 
associated with cancer development, cell adhesion, 
invasion and metastasis [61]. ST3GAL6 is excessively 
expressed in different types of cancers. For instance, it 
stimulates the growth and invasion of hepatocellular 
carcinoma and colon cancer cells through the 
PI3K/AKT signaling pathway. Additionally, its 
overexpression enhances the ability of gastric cancer 
cells to inhibit the resistance of the Met tyrosine 
kinase receptor to crizotinib treatment [62]. 
Nevertheless, the results from the TCGA repository 
indicate a significant correlation between increased 
B3GNT5 levels and unfavorable prognosis, whereas 
ST3GAL6 acts as a gene that provides protection. This 
result was validated in our tissue samples but remains 
to be further elucidated. 

To summarize, our examination revealed two 
molecular categories linked to metabolism in 
thymoma, and we investigated the metabolic routes 
and crucial genes implicated in thymoma.The results 
of our study provide new insights into the 
classification of thymoma and emphasize its 
involvement in the heterogeneity of tumors related to 
metabolism. However, further validation requires 
larger sample sizes. 

Conclusions 
This study revealed a strong correlation between 

the glycosphingolipid biosynthesis pathway and 
thymoma. B3GNT5 can be used as potential 
biomarkers to predict better prognosis of thymoma 
patients. 
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