
Int. J. Biol. Sci. 2023, Vol. 19 
 

 
https://www.ijbs.com 

4552 

International Journal of Biological Sciences 
2023; 19(14): 4552-4570. doi: 10.7150/ijbs.80323 

Research Paper 

Protein Arginine Methyltransferases Refine the 
Classification of Clear Cell Renal Cell Carcinoma with 
Distinct Prognosis and Tumor Microenvironment 
Characteristics  
Shiqi Ye1,2,3#, Xi Tian1,2,3#, Aihetaimujiang Anwaier1,2,3#, Shiyin Wei4#, Wangrui Liu5, Jiaqi Su1,2,3, Shuxuan 
Zhu1,2,3, Bo Dai1,2,3, Jun Gu6, Yuanyuan Qu1,2,3, Wenhao Xu1,2,3, Hailiang Zhang1,2,3, Dingwei Ye1,2,3 

1. Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China. 
2. Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China. 
3. Shanghai Genitourinary Cancer Institute, Shanghai 200032, P.R. China. 
4. Department of Neurosurgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, P.R. China. 
5. Department of Interventional Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China. 
6. The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou 215228, P.R. China. 

# These authors contributed equally to this work.  

 Corresponding authors: Dingwei Ye M.D. (Email: dwyelie@163.com) & Hailiang Zhang M.D. (Email: zhanghl918@163.com) & Wenhao Xu Ph.D. (Email: 
xwhao0407@163.com) & Yuanyuan Qu Ph.D. (Email: quyy1987@163.com). Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong’an 
Road, Shanghai, 200032, People’s Republic of China. Tel: 86-21-64175590-2805; Fax: 86-21-64434556. 

© The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). 
See http://ivyspring.com/terms for full terms and conditions. 

Received: 2022.10.30; Accepted: 2023.07.31; Published: 2023.08.28 

Abstract 

Background: Clear cell renal cell carcinoma (ccRCC) is an aggressive urological cancer that originates from 
the proximal tubular epithelium. As one of the most common post-translational modification, protein arginine 
methylation plays a pivotal role in various cancer-associated biological functions, especially in cancer immunity. 
Therefore, constructing a protein arginine methylation-related prognostic signature would be beneficial in 
guiding better personalized clinical management for patients with ccRCC. 
Methods: Based on the multi-omics profiling of the expression levels of eight protein arginine 
methyltransferases (PRMTs) in 763 ccRCC samples (from TCGA, CPTAC, EMBL, and ICGC databases), we 
established a scoring system with machine-learning algorithms to quantify the modification patterns on clinical 
and immunological characterizations of individual ccRCC patient, which was termed as PRMTScore. Moreover, 
we utilized two external clinical cohorts receiving immunotherapy (n=302) to validate the reliability of the 
PRMTScore system. Multiplex immunohistochemistry (mIHC) was performed to characterize the cellular 
composition of 30 paired ccRCC samples. The proteomic profiling of 232 ccRCC samples obtained from Fudan 
University Shanghai Cancer Center (FUSCC) was analyzed to validate the protein expression of PRMT5 in 
ccRCC. Finally, CCK-8, transwell, and wound healing assays were conducted to elucidate the role of PRMT5 in 
ccRCC in vitro. 
Results: A total of 763 ccRCC patients with available multi-omics profiling were stratified into two clusters 
(PRMTCluster A and B) with distinctive prognosis, genomic alterations, tumor microenvironment (TME) 
characteristics, and fundamental biological mechanisms. Subsequently, protein arginine methylation-related 
prognostic signature (PRMTScore) was constructed and consisted of SLC16A12, HRH2, F2RL3, and SAA1. The 
PRMTScore showed remarkable differences in outcomes, immune and stromal fractions, expressions of 
immune checkpoints, the abundance of immune cells, and immunotherapy response in ccRCC patients. 
Additionally, preliminary insights unveiled the tumor-suppressive role of PRMT5 in ccRCC, and the signal of 
PRMT5low significantly predicted aggressive prognosis and the high abundance of PD1+ CD8+ cells in ccRCC. 
Conclusion: We constructed a PRMTScore system, which showed the potent ability to assess the prognosis, 
TME characteristics, and immunotherapy response for patients with ccRCC. Moreover, this is the first study to 
propose that PRMT5 acts as a cancer suppressor in ccRCC. 

Keywords: clear cell renal cell carcinoma, protein arginine methylation, prognosis, tumor microenvironment, immunotherapy 
response, PRMT5 
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Introduction 
Renal cell carcinoma (RCC) is among the top ten 

most common malignant carcinomas in America in 
2022 (1). In China, it has been estimated that 
approximately 75,800 new cases and 26,900 deaths 
occurred in 2016 due to RCC (2). Clear cell renal cell 
carcinoma (ccRCC), accounting for ~80% of RCC 
cases, is an aggressive histological subtype that 
originates from the proximal tubular epithelium 
(3)(4). In the Chinese and Caucasian populations with 
ccRCC, the genes with the highest frequency of 
somatic mutations are VHL, PBRM1, and BAP1 (5). 
Intra-tumoral heterogeneity (ITH) due to these 
mutational events appears to be a typical feature of 
ccRCC (6). Since various targeted agents were 
developed into the treatment strategies of ccRCC 
patients, such as inhibitors of vascular endothelial 
growth factor (VEGF) and mammalian target of 
rapamycin (mTOR), the prognostic outcomes of 
patients have been greatly improved (7). However, 
the treatment response and efficacy of targeted 
therapies are varied, and most patients eventually 
progress to death (8). 

In recent years, the rapid development of 
immune checkpoint inhibitor (ICI)-based immuno-
therapy has ushered in a promising era of anticancer 
therapy. Persistent response can be seen in patients 
with melanoma, non-small-cell lung cancer (NSCLC), 
and other malignant tumors (9)(10)(11). Since the U.S. 
Food and Drug Administration (FDA) approved 
nivolumab, an anti-PD-1 monoclonal antibody, for the 
treatment of advanced ccRCC (accRCC) patients in 
2015, novel immunotherapies and immunotherapy- 
based combinatorial strategies have revolutionized 
the treatment paradigm for patients with ccRCC 
(12)(13). Despite these advances, only a small 
proportion of ccRCC patients obtain durable benefits 
from ICI agents, mainly attributed to the complex 
individual heterogeneity (14)(15). Therefore, identi-
fying the TME characteristics in-depth and 
elucidating accurate predictive models are significant 
in developing better personalized ICI treatment 
strategies and optimizing clinical outcomes for 
patients with ccRCC (16). 

Post-translational modifications (PTMs) change 
the biophysical properties of proteins, which results in 
the diversity of their stability, interactions, and 
functions. As one of the most common types of PTMs, 
protein arginine methylation is a process in which 
protein arginine methyltransferases (PRMTs) catalyze 
the transfer of a methyl group from S-adenosyl-
methionine (SAM) to the guanidino nitrogen atoms of 
arginine (17). The methylarginine products include: 
ω‐NG‐monomethylarginine (MMA), ω‐NG,NG‐
asymmetric dimethylarginine (aDMA) and ω‐NG,N’G‐

symmetric dimethylarginine (sDMA) (18). So far, a 
total of 9 PRMTs have been identified that can be 
catagorized into three types. Type I PRMT includes 
PRMT1, PRMT2, PRMT3, CARM1 (also known as 
PRMT4), PRMT6, and PRMT8, and the members of 
this type catalyze the formation of aDMA. Type II 
PRMT (PRMT5 and PRMT9) catalyzes the formation 
of sDMA. Type III PRMT (PRMT7) only catalyzes the 
formation of MMA (19). In comparison to the PRMTs 
(“writers”), the existence of specific arginine 
demethylases (“erasers”) remains controversial, and 
further investigations are required to identify the 
enzymes necessary to reverse methylated arginine 
(20)(21). Protein arginine methylation is closely 
involved in the regulation of a wide range of 
fundamental cellular processes, including transcrip-
tion, splicing, DNA damage response, and cell 
metabolism, which are linked to numerous diseases 
(19)(22). In cancer research, protein arginine 
methylation is also well investigated. Multiple PRMT 
substrates play critical roles in regulating 
cancer-associated epigenetics, transcription, signaling, 
RNA metabolism, and DNA repair (18)(23). More 
importantly, protein arginine methylation has been 
reported to function as the regulator of cancer 
immunity (24). Some researches revealed that the 
knockout or inhibition of PRMTs, in combination with 
ICI agents, played a synergistic effect in the treatment 
of melanoma, colon adenocarcinoma, and pancreatic 
cancer (25)(26)(27)(28). These findings established a 
rationale for the immuno-oncology therapy strategies 
based on PRMTs. To date, several studies have 
investigated the roles of PRMTs (PRMT1, CADM1, 
and PRMT7) in ccRCC (29)(30)(31). However, the 
impact of PRMTs on TME characteristics and clinical 
outcomes of ccRCC patients is still uncertain (32). 

In this study, we systematically analyzed the 
underlying effects of PRMTs in ccRCC. Moreover, a 
protein arginine methylation-related signature was 
constructed to predict the prognostic outcomes, TME 
characteristics, and immunotherapy response in 
ccRCC patients. Our findings uncovered an important 
role of protein arginine methylation modification in 
complex heterogeneity of ccRCC, which may 
contribute to improvement in the individualized 
management of ccRCC patients. Besides, this was the 
first study to propose the potential anticancer 
function of PRMT5 in ccRCC, which would provide a 
foundation for the in-depth exploration of the 
promising molecular in ccRCC. 

Materials and Methods 
Data Collection and Normalization 

The transcriptome data and clinical information 
of 763 ccRCC patients were retrieved from the Cancer 
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Genome Atlas (TCGA) database (https://portal.gdc 
.cancer.gov/repository), clinical proteomic tumor 
analysis consortium (CPTAC) database (https:// 
cptac-data-portal.georgetown.edu/studysummary/S
050), European Molecular Biology Laboratory (EMBL) 
database (https://www.ebi.ac.uk/arrayexpress/), 
and International Cancer Genome Consortium (ICGC) 
database (https://icgc.org/), including TCGA-KIRC, 
CPTAC-3, E-MTAB-3267, and RECA-EU datasets or 
projects. The expression levels of the RNA-seq 
samples were converted from fragments per kilobase 
of transcript per million mapped reads (FPKM) to 
transcripts per million (TPM), and log2(TPM + 1) was 
taken. The four sets of expression data were combined 
and we intersected the same genes in different cohorts 
for further analyses. Besides, we eliminated the batch 
effect based on the ‘ComBat’ algorithm of sva 
package. Somatic mutation data, copy number 
variations (CNVs) files, and tumor mutation burden 
(TMB) data of ccRCC patients were obtained from the 
TCGA database. The detailed baseline clinical data of 
patients was summarized in Table S1. 

Consensus Clustering Analysis 
Consensus clustering analysis was applied to 

stratify ccRCC patients into different subgroups. We 
conducted the “ConsensusClusterPlus” package in R 
to identify the optimal number of clusters and the 
distribution of patients, and 1000 iterations were 
performed to ensure the stability of the results (33).  

Association between the Molecular Patterns 
and Clinical Characteristics 

The clinical factors included age, gender, tumor 
grade, and the TNM stage. Moreover, the difference in 
prognostic outcomes among distinct patterns was 
evaluated with Kaplan–Meier analysis using the 
“survival” and “survminer” packages in R software 
(34). 

Exploration of the Immune Landscape in 
Distinct Molecular Patterns 

The abundance of 22 immune cell subtypes in 
763 ccRCC specimens were assessed with the 
CIBERSORT algorithm in R software (35). The 
infiltrating fractions of immune cells were also 
identified with the single-sample gene set enrichment 
analysis (ssGSEA) algorithm (36). Subsequently, we 
evaluated the immune score, stromal score, 
ESTIMATE score, and the tumor purity of each ccRCC 
samples with the ESTIMATE algorithm (37). 
Moreover, we compared the expression levels of 
immune checkpoints (ICPs) among the different 
patient subgroups. 

Differential Expression and Functional 
Enrichment Analyses 

Differential expression genes (DEGs) between 
different arginine methylation modification patterns 
were identified using the “limma” package in R 
software, with the screening criteria of |log2-fold 
change (FC)| > 1 and adjusted P value < 0.001 (38). 
Based on the DEGs, Gene Ontology (GO) annotation 
and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway enrichment analyses were 
performed with the “clusterProfiler” package to 
compare different biological functions and signal 
pathways (39). Furthermore, we conducted the gene 
set variation analysis (GSVA) with the KEGG gene set 
(c2.cp.kegg.v7.5.1), to identify the biological 
functional differences in different subgroups, with the 
criteria of |log2-fold change (FC)| > 0.2 and adjusted 
P value < 0.001 (40). 

Construction of PRMTs-Related Predictive 
Signature 

A prognostic scoring system (PRMTScore) was 
established in this study. First, we performed the 
univariate Cox regression analysis with the 
expressions of DEGs and survival information to 
determine the prognosis-related genes. Subsequently, 
the least absolute shrinkage and selector operation 
(LASSO) and multivariate Cox analysis were 
conducted to create an optimal predictive model. The 
PRMTScore was assessed with the selected genes as 
described: PRMTScore = h0(t) * exp (expression of 
SLC16A12 * corresponding coefficient + expression of 
HRH2 * corresponding coefficient + expression of 
F2RL3 * corresponding coefficient + expression of 
SAA1 * corresponding coefficient). Patients were 
stratified into low and high PRMTGroups, utilizing 
the median PRMTScore as the threshold. 

Evaluation of the Clinical Significance of the 
Predictive Signature 

The survival difference between the two 
PRMTGroups was analyzed through the Kaplan–
Meier analysis. The receiver operating characteristic 
(ROC) curve was constructed to validate the 
predictive ability of the PRMTScore system using the 
‘survival ROC’ R package. Additionally, the 
signature's prognostic potential was explored through 
the stratification of ccRCC patients based on clinical 
characteristics. 

Establishment of a Nomogram for Predicting 
Prognostic Outcomes 

Based on the PRMTScore and clinical 
characteristics, we constructed a nomogram to predict 
1-, 3-, and 5-year overall survival (OS) for ccRCC 
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patients using the “rms”, “regplot”, and “survival” 
packages in R software. Next, calibration curves, 
time-dependent ROC curves, and decision curve 
analysis (DCA) were performed to verify the accuracy 
and stability of the nomogram. 

Prediction of the Treatment Response to ICI 
Therapy  

We applied tumor immune dysfunction and 
exclusion (TIDE) analysis to predict the ICI treatment 
response of ccRCC patients. The analytic technique 
TIDE enables the prediction of immunotherapy 
response with two major tumor immune evasion 
mechanisms: T cell dysfunction and T cell infiltration 
inhibited in tumor with low cytotoxic T lymphocyte 
(CTL) levels (41). Patients with low TIDE score are 
predicted to respond to immunotherapy. In addition, 
we used two ICI treatment cohorts to validate the 
immunotherapy response of the PRMTs-related 
signature. We obtained the David A. Braun cohort 
from a previously reported study, which included 181 
nivolumab (anti-PD-1 blockage) treated accRCC 
patients (42). The David Liu cohort consisted of 121 
metastatic melanoma patients who were treated with 
nivolumab or pembrolizumab (anti-PD-1 blockages) 
(43). 

External Validation of PRMT5 Protein 
Expression 

First, we used the immunohistochemistry (IHC) 
staining slides from the Human Protein Altas (HPA) 
(https://www.proteinatlas.org). Next, to characterize 
the cellular compositions of ccRCC and adjacent 
tissues, we conducted multiplex immunohisto-
chemistry (mIHC) in 30 paired ccRCC and adjacent 
tissues. The tissue microarrays were obtained from 
Shanghai Wellbio Biotechnology Co., Ltd (Wellbio 
Biotechnology Co.,Shanghai, China). We investigated 
the abundance of PRMT5 (A19533; ABclonal), CD8 
(ab217344; Abcam), and PD1 (ab52587; Abcam) in 30 
ccRCC and adjacent tissues. The CaseViewer software 
was applied to visualize and obtain the images. 
Moreover, the proteomic profiling of 232 ccRCC and 
paired adjacent samples obtained from Fudan 
University Shanghai Cancer Center (FUSCC) were 
analyzed to validate the expression of PRMT5 in 
ccRCC. All patients provided consent for the 
examination and signed an informed consent form. 
The Helsinki Declaration II was followed for the 
design of the study and the testing techniques. 
Further, the Fudan University Shanghai Cancer 
Center's ethical committee approved the study 
methods utilized in this research (FUSCC, Shanghai, 
China). 

Cell Culture and Reagents 
Human ccRCC 786-O and 769-P cells were 

purchased from the Type Culture Collection Cell 
Bank, Chinese Academy of Sciences. The cells were 
grown in RPMI 1640 medium supplemented with 10% 
fetal bovine serum and 1% penicillin/streptomycin. 
The cells were cultured at 37 °C with 5% CO2.  

Cell Transfection 
The cells were planted in a 10-cm dish for 50% 

density a day before transfection. Transfection could 
be performed when the cells grew to a density of 70%. 
The negative control and PRMT5 overexpression 
plasmids were respectively mixed with Lipofectamine 
3000 (Invitrogen, Carlsbad, CA, USA) based on the 
manufacture’s guide. After incubation for 15 min at 
room temperature, we added the mixtures to the cell 
culture dish. Cells were harvested 48 hours after 
transfection for further analysis. 

Western Blotting 
Cells were harvested by scraping into an SDS 

sample buffer containing a cocktail of protease 
inhibitors and PhosSTOP Phosphatase Inhibitor 
(Roche, Pleasanton, CA, USA). Western blotting was 
conducted according to the standard procedure. We 
investigated the abundance of PRMT5 (A19533; 
ABclonal) and β-Actin (ab8226; Abcam). 

Cell Counting Kit (CCK)-8 Assay 
We first seeded cells into 96-well plates (5000 

cells/well) with 100 µl complete culture medium. 
After incubation for 1, 2, 3, and 4 days, respectively, 
10 µl CCK-8 solution was added to each well. 
Subsequently, the cells were cultured for an 
additional 2 hours while ensuring that light was 
avoided. The OD values of the cells were detected 
using a Microplate Spectrophotometer (BioTek, VT, 
USA) at 450 nm wave length. 

Transwell Assay 
A total of 20,000 cells were seeded in the top of a 

polycarbonate Transwell filter with 200 µl culture 
medium (without fetal bovine serum). The lower 
compartment was filled with 800 µl complete culture 
medium. A layer of Matrigel was spread on the upper 
surface of the Transwell filter. After incubation for 24 
hours, the cells were fixed with 4% paraformaldehyde 
solution and stained with crystal violet.  

Wound Healing Assay 
We planted 500,000 cells into 6-well plates. When 

the cells were overgrown, we scratched the cells using 
100-µl pipette tips to create a wound. After 24 hours, 
we evaluated the cell migration capacity by 
measuring the wound gap area. 
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Statistical Analysis 
All statistical analyses and graph visualizations 

were conducted using R v4.1.3 and GraphPad Prism 
v9.4.0. The Wilcoxon rank-sum test was applied to 
compare the differences between the two groups. The 
Kaplan-Meier method was utilized to perform 
survival analysis, and log-rank test was used to 
determine the significance. A P-value of less than 0.05 
was considered statistically significant unless stated 
otherwise. 

Results 
The Landscape of Expression Levels and 
Genomic Variations of PRMTs in ccRCC 

All the recognized PRMTs, except PRMT9, were 
analyzed in this study (Table S2). The mRNA 
expressions of the 8 PRMTs in tumor and normal 
specimens were assessed using the TCGA-KIRC 
dataset. Notably, PRMT1, PRMT2, PRMT3, and 
PRMT7 exhibited upregulation, while PRMT5, 
PRMT6, and PRMT8 displayed downregulation in 
tumor (Figure 1A). Further examination was 
conducted to evaluate copy number variations 
(CNVs) across the eight PRMTs in ccRCC. The results, 
illustrated in Figure 1B, revealed a low frequency of 
CNVs among these PRMTs. Specifically, PRMT5, 
PRMT2, PRMT3, and PRMT8 displayed amplification 
in copy numbers, whereas CARM1, PRMT6, and 
PRMT7 exhibited copy number deletions. The 
locations of these CNV alterations on chromosomes 
were visualized in Figure 1C. Furthermore, the 
incidence of somatic mutations across the eight 
PRMTs in ccRCC was assessed, with only 5 out of 336 
ccRCC specimens (1.49%) displaying genetic 
mutations (Figure 1D). The above findings revealed 
that there were relatively infrequent CNVs alterations 
and somatic mutations of PRMTs in ccRCC. The 
prognostic value of the 8 PRMTs in ccRCC patients 
was identified with uniCox and Kaplan–Meier 
analysis (Figure S1 and Table S3). Subsequently, a 
comprehensive regulatory network was constructed 
to illustrate the comprehensive landscapes of the 
correlations and prognostic significances of the eight 
PRMTs in ccRCC patients. Notably, PRMT2, PRMT5, 
and PRMT6 exhibited significant correlations with an 
adverse prognosis (Figure 1E and Table S4).  

Generation of Arginine Methylation 
Modification Patterns and Identification of the 
Differences in the Subgroups 

To further recognize the effects of PRMTs in 
ccRCC, consensus clustering analysis was undertaken 
to stratify ccRCC patients into different arginine 

methylation modification patterns, termed as 
PRMTClusters. The optimal number of the clusters 
was 2, and more patients were distributed in 
PRMTCluster A (538) than that in PRMTCluster B 
(225) (Figure 2A and Table S5). The results were 
defined by the least crossover in the consensus 
matrixes, the smooth trend in the cumulative 
distribution function (CDF) curves, and no significant 
shift in the area under the CDF curves (Figure S2). 
Based on the expression profiles of the 8 PRMTs, the 
principal component analysis (PCA) confirmed an 
excellent intergroup distribution (Figure 2B). 
Furthermore, we compared the OS of ccRCC patients 
between the two PRMTClusters, indicating that 
patients in PRMTCluster A had a favorable prognosis 
(Figure 2C). The expressions of PRMTs and clinical 
characteristics in the two clusters were illustrated in a 
heatmap (Figure 2D). Besides, the GSVA analysis 
uncovered activation of cancer-associated pathways 
in PRMTcluster A (Figure 2E and Table S6). Notably, 
it has been reported that the mTOR signaling pathway 
was frequently activated in human cancer (44). To 
identify the impacts of PRMTs on the TME 
characteristics of ccRCC, we explored the infiltrating 
levels of 22 human immune cell types in the two 
clusters with the CIBERSORT algorithm (Table S7). 
As demonstrated in Figure 2F, most immune cells 
showed great enrichment differences. Furthermore, to 
evaluate the abundance of immune and stromal 
fractions in TME, we performed the ESTIMATE 
algorithm to assess the TME scores in the 
PRMTClusters, which included the stromal, immune, 
and estimate scores. The result indicated that there 
were more immune cells and fewer stromal cells 
fractions in PRMTCluster A (Figure 2G and Table 
S8). Moreover, the expression differences of crucial 
immune checkpoints (ICPs) including PD-1, PD-L1, 
and CTLA-4 were explored, revealing a notable 
elevation of PD-L1 in PRMTCluster A (Figures 2H-J). 
Taken together, we identified two PRMTClusters 
based on the expression profiling of PRMTs, and 
analyzed the differences in prognosis, biological 
functions, and TME characteristics of patients 
between the two PRMTClusters. 

Functional Annotations and Identification of 
Genetic clusters Based on the DEGs 

To further recognize the differences in biological 
behaviors of ccRCC between the PRMTClusters, we 
identified 312 PRMTCluster-associated DEGs using 
the “limma” package (Table S9). A protein protein 
interaction (PPI) network among the top 50 DEGs was 
constructed from the STRING database (Figure 3A). 
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Figure 1. The landscape of expression levels and genomic alterations of the 8 protein arginine methyltransferases (PRMTs) in clear cell renal cell 
carcinoma (ccRCC) patients. (A) Expressions of the 8 PRMTs between tumor and normal specimens in the TCGA-KIRC cohort. (B) Alterations of copy number variations 
(CNVs) frequency of the 8 PRMTs. (C) Locations of alterations in CNVs of the 8 PRMTs on 23 chromosomes. (D) Mutation frequency and types of the 8 PRMTs. (E) The network 
of correlations and prognostic significances of the 8 PRMTs in ccRCC patients from the TCGA-KIRC, CPTAC-3, E-MTAB-3267, and RECA-EU cohorts. (ns, not significant; *p 
< 0.05, **p < 0.01, ***p < 0.001). 
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Figure 2. Clinical and biological characteristics of different PRMTClusters. (A) Consensus matrix heatmap defining the two PRMTClusters and their correlation area. 
(B) Principal component analysis (PCA) indicating the differences in transcriptomes between the two subgroups. (C) Kaplan–Meier curves of the overall survival (OS) for patients 
in different PRMTClusters. (D) Differences in the clinical characteristics and expressions of the 8 PRMTs between PRMTClusters. (E) Gene set variation analysis (GSVA) 
demonstrating activation states of biological pathways between PRMTClusters. (F) Abundance of 22 infiltrating immune cell types in PRMTClusters. (G) Differences in the tumor 
microenvironment (TME) scores between PRMTClusters. (H-J) Expressions of PD-1, PD-L1, and CTLA-4 in PRMTClusters. (ns, not significant; *p < 0.05, **p < 0.01, ***p < 
0.001). 
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Figure 3. The functional annotation and identification of genetic subgroups based on the differential expression genes (DEGs). (A) The protein protein 
interaction (PPI) network showing the interactions among the top 50 DEGs between the two PRMTClusters. (B, C) Gene ontology (GO) and kyoto encyclopedia of genes and 
genomes (KEGG) enrichment analysis of DEGs. (D) The consensus matrix heatmap defining different genetic clusters based on the 294 prognosis-related genes. (E) PCA for the 
transcriptome profiles of the three GeneClusters. (F) Kaplan–Meier curves for OS of patients in different GeneClusters. (G) Relationships between clinical features and 
GeneClusters. (H) GSVA showing the activation states of biological pathways between GeneClusterA and B. 

 
Subsequently, functional enrichment analyses 

were performed, yielding significant insights into 
biological processes, molecular functions, and cellular 
components (Figure 3B and Table S10). KEGG 
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analysis highlighted the top 3 significantly abundant 
pathways in cancer: PI3K-Akt signaling pathway, 
focal adhesion, and proteoglycans (Figure 3C and 
Table S10), indicative of the pivotal role of protein 
arginine methylation in regulating ccRCC growth, 
progression, and metastasis. UniCox analysis was 
employed to assess the survival significance of DEGs, 
leading to the identification of 294 genes with 
prognostic relevance with the screening criterion of p 
< 0.05 (Table S11). The consensus clustering 
algorithm was employed to stratify patients into 
different genetic clusters, termed as GeneCluster, 
based on the 294 prognosis-related genes (Figure 3D 
and Table S5). The CDF, delta, and tracking plots 
corresponding to the consensus matrixes were 
displayed in Figure S3. These GeneClusters exhibited 
distinct transcriptome profiling, as evidenced by PCA 
(Figure 3E). Subsequent Kaplan-Meier analysis 
demonstrated that patients in GeneCluster A had the 
longest OS time, whereas patients in GeneCluster C 
suffered the worst prognosis (Figure 3F). Besides, a 
heatmap was generated to elucidate the differences in 
clinical characteristics across the three GeneClusters 
(Figure 3G). Notably, patients in GeneCluster C had a 
more advanced TNM stage, consistent with the result 
of survival analysis. GSVA enrichment analysis 
unveiled varying activation states of biological 
pathways among these distinct subgroups (Figure 3H, 
Figure S3 and Table S12). Finally, we analyzed the 
tumor immune microenvironment characteristics of 
different GeneClustes (Figure S3). Interestingly, 
GeneCluster C had the highest infiltration level of T 
cells regulatory (Tregs), suggestive of immunosup-
pression and congruent with the worsened prognosis 
observed (Figure 3F). 

Construction of a PRMTs-related Predictive 
Signature 

The preceding outcomes underscore the pivotal 
role of arginine methylation modification in shaping 
the prognostic outcomes and tumor microen-
vironment (TME) characteristics of ccRCC patients. 
Nevertheless, these analyses, while informative for 
the patient population, do not facilitate accurate 
prognostication of individual patient. Considering the 
individual heterogeneity and complexity of arginine 
methylation modification, we constructed a 
PRMTs-related signature to predict the prognosis of 
ccRCC patients. We established the scoring system, 
termed as PRMTScore, based on the 294 prognosis- 
associated DEGs. LASSO and multivariate Cox 
analyses were conducted to create an optimal 
predictive model (Figure 4A-C). We identified four 

genes that had the greatest prognostic significance for 
constructing the predictive tool, including SLC16A12, 
HRH2, F2RL3, and SAA1 (Table S13). Notably, SAA1 
implied a poor prognosis, while the other three genes 
exhibited associations with favorable outcomes. 
Figure 4D displayed the distribution of patients in 
PRMTClusters, GeneClusters, and PRMTGroups. 
Notably, patients in PRMTCluster B and GeneCluster 
C had higher PRMTScore (Figure 4E-F and Table S5). 
Furthermore, Kaplan-Meier analysis confirmed that 
patients characterized by a high PRMTScore 
experienced worse OS, a trend congruent with those 
observed within PRMTCluster B and GeneCluster C 
(Figure 4G, 2C, and 3F). The area under the curves 
(AUCs) of the ROC curves of 1-, 3-, and 5-years OS 
were 0.709, 0.693, and 0.695, respectively, indicating 
exceptional sensitivity and specificity of the scoring 
system (Figure 4H). The distribution plot of the 
PRMTScore and survival status of patients revealed 
an upward trend in mortality rates with increasing 
PRMTScore (Figure 4I).  

Correlation between Clinical Characteristics 
and the PRMTs-related Predictive Signature 

To comprehensively validate the predictive 
reliability of the PRMTScore, Kaplan-Meier analyses 
were conducted across subgroups stratified by 
distinct clinical factors. We found that patients in low 
PRMTGroup had low tumor grade and TNM stage 
(Figure 5A and C). Conversely, an elevated 
PRMTScore was associated with more advanced 
tumor grade and TNM stage among patients (Figure 
5B and D). Stratified survival analyses indicated that 
the differences in prognostic outcomes of ccRCC 
patients between the high and low PRMTGroups 
were more significant with advanced tumor grade 
and TNM stage (Figure 5E-H). Importantly, it was 
observed that patients endowed with high 
PRMTScore exhibited unfavorable clinical outcomes 
across all subgroups delineated by tumor grade, TNM 
stage, T stage, age, and gender (Figure 5E-H and 
S4G-L). Moreover, the influence of tumor mutation 
burden (TMB) on the prognosis of ccRCC patients was 
explored via survival analyses across different TMB 
subgroups, where patients with low TMB displayed a 
more favorable prognosis (Figure 5I). Subsequently, a 
combined analysis of TMB and PRMTScore was 
conducted, revealing that the prognostic advantage 
observed in the low-TMB group was mitigated by a 
high PRMTScore (Figure 5J). Collectively, the results 
outlined above underscore the precision and stability 
of the PRMTs-related signature in predicting the 
clinical prognosis of ccRCC patients (Figure 4-5). 
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Figure 4. Construction of a PRMTs-related predictive signature. (A-B) Coefficient profiles of 294 prognosis-related genes and identification of the best parameter 
(lambda) according to the least absolute shrinkage and selector operation (LASSO). (C) Four genes identified to construct the optimal PRMTs-related predictive signature using 
multivariate Cox analysis. (D) The alluvial diagram showing the correlations among PRMTClusters, GeneClusters, PRMTScore, and clinical outcomes. (E) Differences in patients’ 
PRMTScore between the two PRMTClusters. (F) Differences in patients’ PRMTScore among the three GeneClusters. (G) Kaplan–Meier analysis of OS for patients in different 
PRMTGroups. (H) The receiver operating characteristic (ROC) curves to predict the sensitivity and specificity of 1-, 3-, and 5-year OS according to the PRMTScore. (I) The 
scatter plot of distributions of the PRMTScore and survival status, and the heatmap of expressions of the four selected genes. 
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Figure 5. Association between clinical information and the predictive signature. (A-D) The proportion of clinical characteristics (tumor grade and TNM stage) of 
ccRCC patients in high and low PRMTGroups. (E-H) Kaplan–Meier analyses for OS of patients in different PRMTGroups stratified by clinical features (tumor grade and TNM 
stage). (I) Survival analysis for patients in high and low tumor mutation burden (TMB) groups. (J) Survival analysis for patients subgroups stratified by TMB and the PRMTScore. 

 

Establishment of A Nomogram for Prognosis 
Prediction 

Considering the compelling correlation between 
the PRMTScore system and the prognosis of ccRCC 
patients, we incorporated clinical characteristics with 
the PRMTScore to establish a nomogram for 
predicting the 1-, 3- and 5-year OS (Figure 6A). The 
calibration plot demonstrated remarkable alignment 
between the nomogram-predicted OS and actual OS 
of ccRCC patients at 1-, 3- and 5-year (Figure 7B). The 
AUCs of ROC curves for 1-, 3-, and 5-year OS were 
0.842, 0.803, and 0.766, respectively, implying a potent 
predictive ability (Figure 6C-E). Besides, DCA 
substantiated the favorable net benefit conferred by 
the nomogram (Figure 6F-H). These results indicated 
that the nomogram had a robust power to predict the 
prognosis of ccRCC patients and may benefit the 
personalized clinical management. 

Exploration of Immune Characteristics of the 
PRMTs-related Predictive Signature 

Since the high heterogeneity of TME affected the 
efficacy of immunotherapy, we further explored the 
immune landscape of ccRCC patients in different 
PRMTGroups. We first assessed the abundance of 22 
immune cell types in ccRCC patients with high and 
low PRMTScore. Noteworthy observations emerged, 
revealing significantly heightened infiltrations of B 
cells memory, activated T cells CD4 memory, T cells 
follicular helper, regulatory T cells (Tregs), and 
macrophages M0 within the high PRMTGroup. In 
contrast, diminished infiltrations were discerned for T 
cells CD4 memory resting, resting NK cells, 
monocytes, macrophages M1, resting dendritic cells, 
and resting mast cells (Figure 7A). A correlative 
analysis between the abundance of immune cell types 
and PRMTScore was further depicted in Figure 7B. 
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Interestingly, there was a close positive correlation of 
PRMTScore with the infiltration of Tregs, and a 
negative correlation with the infiltration of 
macrophages M1. Considering the importance of ICI 
in the clinical treatment of ccRCC patients, we 
analyzed the differences in the expression levels of 
ICPs between the PRMTGroups. This analysis 
uncovered significant differences in the expression 
levels of CD274, TNFSF18, CD200, CD40, CD44, 
PDCD1LG2, TNFSF4, NRP1, TNFRSF18, HAVCR2, 
CD160, ADORA2A, and TNFRSF14 between the two 
PRMTGroups (Figure 7C). Specifically, CD44 and 
TNFRSF18 exhibited positive correlations with 
PRMTScore, whereas other ICPs displayed inverse 
correlations (Figure 7D). To offer further insight into 
the TME, the ESTIMATE algorithm was applied to 

determine TME scores across PRMTGroups, revealing 
a higher immune score and a lower stromal score in 
the high PRMTGroup, suggestive of an enriched 
immune-related composition (Figure 7E). Notably, a 
heatmap was constructed to illustrate the distribution 
of tumor purity, TME scores, and the abundance of 
immune-related cell types across PRMTGroups 
(Figure 7F and Table S14).  

Furthermore, we explored the immunotherapy 
response in ccRCC patient subgroups stratified by the 
PRMTScore. We first calculated the TIDE score of each 
patient. As shown in Figure 7G, patients in low 
PRMTGroup had a lower TIDE score, which implied 
that patients with the low PRMTScore may be more 
sensitive to immunotherapy. External validation 
using the David A. Braun and David Liu cohorts 

 

 
Figure 6. Construction and validation of a nomogram predicting the prognosis of ccRCC patients. (A) The nomogram predicting the 1-, 3- and 5-year OS of 
ccRCC patients. (B) Calibration curves for validation of the nomogram. (C–E) The time-dependent ROC curves of the nomogram for predicting the 1-, 3-, and 5-year OS. (F–
H) The decision curve analysis (DCA) of the nomogram for predicting the 1-, 3-, and 5-year OS. 
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reaffirmed these trends, whereby patients situated in 
the low PRMTGroup exhibited a more favorable 
prognosis, aligning with heightened potential for 
benefiting from ICI therapy (Figure 7H-I). In 
conclusion, our findings suggested that the 
PRMTScore emerged as a potent predictor of the 
clinical response to immunotherapy in ccRCC 
patients. 

PRMT5 Plays an Anticancer Role in ccRCC 
PRMT5 is the hottest research frontier in the field 

of protein arginine methylation (21). It’s widely 
believed that PRMT5 is associated with oncogenic 
processes in many tumors, such as leukemia, 
glioblastoma, and prostate cancer (45)(46)(47). 
Moreover, several inhibitors targeting PRMT5 have 
entered clinical development for patients with 
hematological malignancies and advanced solid 
tumors (19). However, the role of PRMT5 in ccRCC 
remains enigmatic. In the above results, we found that 
PRMT5 was down-regulated in the transcriptome 
data of ccRCC (Figure 1A). Moreover, the ccRCC 
patient with high expression of PRMT5 had an 
excellent prognosis (Figure S1F). Therefore, we 
proposed a hypothesis that PRMT5 may play an 
anticancer function in ccRCC.  

We first explored the IHC staining of PRMT5 
protein from the HPA database, which confirmed that 
PRMT5 was down-regulated in renal cancers at the 
protein level (Figure 8A). Thereafter, we applied 
mIHC to characterize the cellular composition of 
cancer and adjacent tissue for 30 ccRCC patients. We 
found that the expression of PRMT5 was significantly 
lower in cancer, compared with the adjacent normal 
tissues. (Figure 8B and 8C). Moreover, the abundance 
of PD1+ CD8+ cells was higher in cancer, implying that 
the immune microenvironment was relatively 
exhausted (Figure 8B and 8D). Moreover, the 
expression of PRMT5 was negatively correlated with 
the abundance of PD1+ CD8+ cells (Figure 8B and 8E). 
The FUSCC cohort comprising 232 ccRCC and 
adjacent samples also demonstrated that PRMT5 was 
low-expression in ccRCC at the protein level (Figure 
8F).  

Furthermore, we explored the biological role of 
PRMT5 in ccRCC in vitro. We transfected human 
ccRCC cells (786-O and 769-P) with PRMT5 
overexpression plasmid, and western blotting was 
conducted to verify the transfection efficiency (Figure 
8G). The CCK-8 assay showed that the proliferative 
ability of the cells with PRMT5 overexpression was 
significantly inhibited (Figure 8H). In transwell assay, 
the number of invasive cells decreased in the PRMT5 
overexpression group (Figure 8I-J). Besides, the 
wound healing assay demonstrated that, in PRMT5 

overexpression group, the migratory ability of the 
cells reduced (Figure 8K-L).  

Taken together, the comprehensive investigation 
unveiled that PRMT5 was down-regulated in ccRCC 
at the mRNA and protein levels, and the low 
expression of PRMT5 was correlated with a malignant 
prognosis. Importantly, functional experiments 
suggested an anticancer role for PRMT5 in ccRCC, 
underscored by inhibiting the proliferative, invasive, 
and migratory abilities. 

Discussion 
Despite remarkable advances in the diagnosis 

and management of ccRCC patients during the last 
two decades, ccRCC remains one of the most lethal 
urological malignancies (48). With the rapid 
development of cancer immunotherapy, treatment 
strategies targeting the immune suppression state in 
TME have contributed to dramatic clinical 
improvements for ccRCC patients. Immunotherapy- 
based combinatorial therapies are now transforming 
the treatment paradigm for patients with ccRCC (15). 
Nonetheless, a substantial proportion of ccRCC 
patients are resistant to the ICI therapy and do not 
derive persistent benefits (49). Therefore, it’s an 
urgent need to explore new models for predicting 
prognostic outcomes and immunotherapy responses 
of ccRCC patients, guiding better individualized 
treatment strategies and facilitating enhancements in 
the clinical efficacy of immunotherapy. 

The realm of protein arginine methylation, 
recognized as a pivotal epigenetic modification, exerts 
profound influence over diverse fundamental 
biological processes (19). Notably, growing evidence 
suggests that PRMTs are closely involved in cancer 
immunity, which has highlighted their emerging as 
attractive immunotherapeutic targets (24). However, 
in the field of ccRCC research, the precise impacts of 
PRMTs have not been well described, especially the 
subject of how PRMTs affect the immune 
characteristics of ccRCC (32). 

To the best of our knowledge, this is the first 
study to construct an arginine methylation 
modification signature for the prediction of 
prognostic outcomes in cancer patients. In our 
research, based on the expressions of 8 PRMTs, we 
stratified ccRCC patients into two arginine 
methylation modification subgroups (PRMTCluster A 
and B) with the consensus clustering algorithm. The 
two subgroups showed significant differences in 
clinical outcomes, biological functions, and TME 
characteristics. Subsequently, we identified the DEGs 
between the subgroups and performed uniCox 
analysis to obtain the prognosis-related genes. 
Moreover, the consensus clustering algorithm was 
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applied again to classify ccRCC patients into different 
genetic clusters (GeneCluster A-C) based on the 294 
prognosis-related genes. Similar to the clustering 
results of the arginine methylation modification 
phenotypes, the three genetic subtypes also showed 

apparent differences. The aforementioned results 
revealed that arginine methylation modification 
contributed to the formation of complex TME, and 
thereby affected the prognostic outcomes of ccRCC 
patients.  

 

 
Figure 7. Evaluation of TME and immunotherapy response of the predictive signature. (A) Abundance of immune cell types in different PRMTGroups. (B) 
Correlation between the PRMTScore and abundance of immune cell types. (C) Expressions of immune checkpoints (ICPs) in different PRMTGroups. (D) Correlation between 
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the PRMTScore and ICPs genes expressions. (E) Differences in the immune, stromal, and ESTIMATE scores between the two PRMTGroups. (F) The heatmap showing the 
distributions of TME score, PRMTClusters, GeneClusters, PRMTGroups, and the abundance of immune cell types between the two PRMTGroups. (G) Tumor immune 
dysfunction and exclusion (TIDE) scores in different PRMTGroups. (H) Survival analysis for patients with different PRMTScore in the David A. Braun cohort. (I) Survival analysis 
for patients with different PRMTScore in the David Liu cohort. (ns, not significant; *p < 0.05, **p < 0.01, ***p < 0.001). 

 

 
Figure 8. PRMT5 Plays an Anticancer Role in ccRCC. (A) Immunohistochemistry staining of PRMT5 protein expression from the HPA database. (B) Representative multiplex 
immunohistochemistry (mIHC) images show the positivity of PRMT5, PD1, and CD8 in 30 paired ccRCC and adjacent tissues. (C) The PRMT5+ cell rate of mIHC in 30 paired 
ccRCC and adjacent tissues. (D) The ratio of PD1+CD8+ cell and CD8+ cell of mIHC in 30 paired ccRCC and adjacent tissues. (E) The correlation between PRMT5+ cell rate and 
the abundance of PD1+CD8+ cell of mIHC in 30 paired ccRCC and adjacent tissues. (F) The relative protein expression of PRMT5 in 232 paired ccRCC and adjacent tissues from 
FUSCC cohorts. (G) Western blotting for PRMT5 protein expression level in 786-O and 769-P cells. (H) The CCK-8 assay of 786-O and 769-P cells transfected with vector or 
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PRMT5 overexpression plasmid. (I-J) The transwell assay of 786-O and 769-P cells transfected with vector or PRMT5 overexpression plasmid. (K-L) The wound healing assay of 
786-O and 769-P cells transfected with vector or PRMT5 overexpression plasmid. (ns, not significant; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001). 

 
Furthermore, to evaluate the role of arginine 

methylation modification in individual ccRCC 
patients, we established a scoring system 
(PRMTScore). The four most compelling prognosis- 
related genes (SLC16A12, HRH2, F2RL3, and SAA1) 
were identified to calculate the PRMTScore of 
individual patients by LASSO and multivariate Cox 
analysis. We found that ccRCC patients in 
PRMTCluster B and GeneCluster C had a higher 
PRMTScore, associated with a poor prognosis. We 
then conducted ROC curves to validate the predictive 
reliability of the PRMTScore system. The AUCs (0.709, 
0.693, and 0.695, respectively) implied an excellent 
performance of the signature in predicting the 
prognosis for the 1-, 3-, and 5-year OS. Among the 
ccRCC patient subgroups stratified by different 
clinical factors (tumor grade, TNM stage, and TMB), 
the PRMTScore also showed stable predictive efficacy. 
Considering the robust predictive power of the 
PRMTScore, we constructed a nomogram that 
integrated the PRMTScore and clinical characteristics 
(age, gender, tumor grade, and TNM stage) to guide 
the clinical management of ccRCC patients. In 
addition, we explored the differences in TME 
characteristics, especially immune fractions, between 
the PRMTGroups. The high PRMTGroup had a higher 
immune score and lower stromal score, indicating 
that arginine methylation modification affected the 
abundance of immune and stromal fractions in 
ccRCC. We found that the abundance of 22 immune 
cell types and the expression levels of 26 ICPs showed 
significant differences between the two PRMTGroups. 
Moreover, we evaluated the ICI therapeutic response 
of ccRCC patients in the two PRMTGroups with the 
TIDE algorithm, indicating that patients with low 
PRMTScore benefited more from ICI therapy. The 
predictive result was well validated by two external 
ICI-treated cohorts. Taken together, the PRMTScore 
could be an ideal tool for predicting the prognostic 
outcomes, TME characteristics, and immunotherapy 
response in ccRCC patients. 

In patients who receive ICI treatment, 
responders typically show a “hot” (“immune- 
inflamed”) phenotype, characterized by the presence 
of T lymphocytes in the tumor parenchyma, whereas 
non-responders usually exhibit a “cold” 
(“immune-excluded”/ “immune-desert”) phenotype, 
characterized by the exclusion or absence of T 
lymphocytes (50). However, increasing findings 
suggest that the infiltration level of T cells might be 
necessary but insufficient to define “hot” and “cold” 
tumors, which raised questions on how to identify ICI 

responders precisely (51). In this study, we identified 
that ccRCC patients in low PRMTGroup were 
responders to ICI treatment, and they exhibited a 
lower abundance of T cells regulatory (Tregs) and a 
higher level of macrophages M1. Tregs, an 
immunosuppressive T cells subset, were associated 
with weaker anticancer immune response and worse 
OS in cancer patients (52). Macrophages M1 within 
the TME can induce the initiation of inflammatory 
and immune responses, widely is widely considered 
to play a proinflammatory and anticancer role (53). 
Therefore, it is inappropriate to define “hot” tumors 
based only on the abundance of T cells; rather, 
different subtypes and ratios of T cells and other 
immune cells in the TME should be taken into 
consideration for the identification of the responders 
to ICI treatment. 

PRMT5 is at the forefront in the research field of 
protein arginine methylation. It’s commonly 
recognized that PRMT5 is an important oncogene, 
and several small-molecule inhibitors targeting 
PRMT5 have been identified for cancer patients (19). 
Only one research has reported on the role of PRMT5 
in ccRCC, and it proposed that LINC01138 can 
interact with PRMT5, thereby promoting lipid 
desaturation and cell proliferation in ccRCC (54). 
However, the main focus of this study was the 
function of LINC01138 in ccRCC, and the authors only 
made a preliminary exploration of PRMT5. Therefore, 
more studies are required to elucidate the role of 
PRMT5 in ccRCC. In our current study, we found that 
PRMT5 was significantly down-regulated in ccRCC 
and related to a better prognosis for patients from 
TCGA, CPTAC, EMBL, and ICGC databases at 
transcription level. Thereafter, IHC staining of PRMT5 
protein in renal cancers from the HPA database and 
proteomic data from the FUSCC cohort including 232 
ccRCC patients confirmed the low-expression of 
PRMT5 in ccRCC at the protein level. Moreover, we 
discovered that the expression of PRMT5 was 
significantly lower in cancer and was negatively 
correlated with the abundance of PD1+ CD8+ cells in 
30 ccRCC patients by mIHC. Besides, the proliferative, 
invasive, and migratoty abilities of human ccRCC 
cells were inhibited in the PRMT5 overexpression 
group. These results suggested that PRMT5 acted as a 
cancer suppressor in ccRCC.  

However, several limitations of this study 
should be noted. First, the results were constructed 
and validated retrospectively by the information of 
ccRCC patients from public databases. To further 
validate the discoveries, more prospective studies are 
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required. Second, demographic differences among the 
cohorts introduced an unavoidable bias in this study. 
Third, we did not deeply clarify the role and 
mechanism of individual PRMT in ccRCC; hence, 
more comprehensive experiments should be 
conducted in vivo and in vitro to gain further insight 
into the relationship between PRMTs and ccRCC.  

Conclusion 
In conclusion, this study elucidated the 

underlying relationship between tumor epigenetic 
heterogeneity and immune characteristics. Our 
findings demonstrated that protein arginine 
methylation modification played a pivotal role in the 
formation of complex TME in ccRCC. We constructed 
a protein arginine methylation-related signature for 
predicting prognostic outcomes, TME characteristics, 
and immunotherapy response in ccRCC patients. This 
robust predictive tool may help clinicians in making 
more precise treatment decisions for ccRCC patients. 
Moreover, this was the first study to propose the 
anticancer role of PRMT5 in ccRCC. 
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