Supplementary Information for

PTPLAD1 Regulates PHB-Raf Interaction to Orchestrate Epithelial-Mesenchymal and Mitofusion-Fission Transitions in Colorectal Cancer

Running Title: Antimetastatic Role of PTPLAD1 in Colorectal Cancer

Supplementary Table 1: Primers

Supplementary Table I: Primers			
Name	Primer (5'-3')		
PTPLAD1-F	CGCGGATCCATGGAGAATCAGGTGTTGACGCCGC		
PTPLAD1-R	CGCGAATTCTTACTTGTCATCGTCGTCCTTGTAGTC		
	GTGGATCTTTTTCTTTTTTTGTC		
PHB-F	CGCGGATCCCATGGCTGCCAAAGTGTTT		
PHB-R	CGCGAATTCTTACTTGTCATCGTCGTCCTTGTAGTC		
	CTGGGGCAGCTGGAGGAGCACGGAC		
PTPLAD1-qPCR-F	GCCTAAATAAACGCCGACT		
PTPLAD1-qPCR-R	AGAATCGCACAGTCAGGTT		
GAPDH-qPCR-F	GAAGGTGAAGGTCGGAGTC		
GAPDH-qPCR-R	AAGATGGTGATGGGATTTC		
PTPLAD1-N-F	CTCGGATCCATGGAGAATCAGGTGTTGACGC		
PTPLAD1-N-R	CGCGAATTCTTACTTGTCATCGTCGTCCTTGTAGTC		
	TTCAGGAGAGCCTTCGCTTTCC		
PTPLAD1-C-F	CGCGGATCCTCCTTTTATGACACATTCCATAC		
PTPLAD1-C-R	CGCGAATTCTTACTTGTCATCGTCGTCCTTGTAGTC		
	GTGGATCTTTTTCTTTTTTTGTC		
PTPLAD1-M-F	CGCGGATCCATGAAGCAGGAAAAGCGACCAC		
PTPLAD1-M-R	CGCGAATTCTTACTTGTCATCGTCGTCCTTGTAGTC		
	GCAGAAATACATCATGTCAG		
PTPLAD1-mCherry-F	CTCGGATCCATGGAGAATCAGGTGTTGACGC		
PTPLAD1-mCherry-R	CGCGAATTCGTGGATCTTTTTTTTTTTTTGTC		
PHB-GFP-F	CCGGAATTCACATGGCTGCCAAAGTGTTT		
PHB-GFP-R	CGCGGATCCTTCTGGGGTGGGAGC		
PHB Y259A-F	AACATCACCgcCCTGCCAGCGGGGGCAGTCCGTG		
PHB Y259A-R	TGGCAGGgcGGTGATGTTCCGAGAGCGTGAGAG		
PHB Y259D-F	TCTCGGAACATCACCgACCTGCCAGCGGGGCAGT		
PHB Y259D-R	TcGGTGATGTTCCGAGAGCGTGAGAGCTGGTA		

F, forward; R, revese

Name	Target sequence	
si-Control	UUCUCCGAACGUGUCACGUTT	
si-PTPLAD1 #1	GGAGAGACUCACAAAGCAGTT	
si-PTPLAD1 #2	GUCCAUUCCAAUAUUCAAUTT	
si-PHB	AGAGCUGGUACGCGAUGUCCUCUGC	
sgPHB #1	CCACAATGTCCTGCACTCCA	
sgPHB #2	AACTGAGATCCTCAAGTCAG	
sh-PHB	AGAGCUGGUACGCGAUGUCCUCUGC	

Supplementary Table 2: siRNA, shRNA and sgRNA sequences

Protein ID	Protein Name	Protein Description
Q14240	IF4A2	Eukaryotic initiation factor 4A-II
Q9H936	GHC1	Mitochondrial glutamate carrier 1
P08574	CY1	Cytochrome c1, heme protein, mitochondrial
Q96HS1	PGAM5	Serine/threonine-protein phosphatase PGAM5, mitochondrial
P35232	PHB	Prohibitin
O00743	PPP6	Serine/threonine-protein phosphatase 6 catalytic subunit
P16402	H13	Histone H1.3
B3KVR1	B3KVR1	Sm domain-containing protein
Q8TAA3	PSMA8	Proteasome subunit alpha-type 8
J3QQ67	RPL18	60S ribosomal protein L18
P63244	GBLP	Receptor of activated protein C kinase 1
P12004	PCNA	Proliferating cell nuclear antigen
P12236	ADT3	ADP/ATP translocase 3
P27635	RPL10	60S ribosomal protein L10
J3KPX7	PHB2	Prohibitin
P62753	RS6	40S ribosomal protein S6
P45880	VDAC2	Voltage-dependent anion-selective channel protein
P21796	VDAC1	Voltage-dependent anion-selective channel protein
P11021	GRP78	Endoplasmic reticulum chaperone BiP
P62701	RS4X	40S ribosomal protein S4, X isoform
P50914	RL14	60S ribosomal protein L14
P15880	RPS2	40S ribosomal protein S2
P51148	RAB5C	Ras-related protein Rab-5C
P62258	1433E	14-3-3 protein epsilon
P25789	PSA4	Proteasome subunit alpha type-4
P26373	RL13	60S ribosomal protein L13
P36542	ATPG	ATP synthase subunit gamma, mitochondrial
H0Y368	H0Y368	Dolichol-phosphate mannosyltransferase subunit 1
P62829	RL23	60S ribosomal protein L23
075489	NDUS3	NADH dehydrogenase [ubiquinone] iron-sulfur protein 3, mitochondrial
P05141	ADT2	ADP/ATP translocase 2
P62241	RS8	40S ribosomal protein S8

Supplementary Figure 1. (A) Comparison of the invasive abilities of SW480 and SW620, HCT116 and HCT116-i8. Upper, representative images of cell invasion; Lower, statistics of the invaded cells. Scale bar, 100 μ m. (B) The representative IHC images of PTPLAD1 staining in N0, N1 and N2 stages of CRC tissues. Data are represented as the means \pm SD; *p < 0.05, ** p < 0.01; *** p < 0.001; n.s., no significance.

Supplementary Figure 2. Heatmap analysis showing the DEGs between PTPLAD1high and PTPLAD1-low in both COAD and READ.

Supplementary Figure 3. (A) The expression of mitochondrial dynamics markers OPA1, MFN1, MFN2 and Fis1 in HCT116 and RKO cells transfected with a siRNA against PTPLAD1 and/or treated with U0126 were detected by western blotting. (B) The invasion ability of HCT116 and RKO cells treated with si-PTPLAD1 and/or Mdivi-1 was determined by Boyden chamber invasion assays. Scale bar, 200 μ m. Bars, S.D.; * p < 0.05; ** p < 0.01 compared with the control group.

Supplementary Figure 4. (A) The individual N/M/C segment of PTPLAD1 could not interact with PHB. HCT116 cells were transfected with N-flag or M-flag or C-flag plasmid, and Co-IP assays were performed by using a flag antibody, and the expression of PHB was detected by western blotting. Up, structures of N/M/C segment genes; IgG was considered as the loading control. (B) PHB-deficient CRC cell lines were established by CRISPR/Cas9 technology.

Supplementary Figure 5. (A) Representative TEM images of RKO transfected with si-PTPLAD1 and/or si-PHB, and the mitochondrial morphology with tubular and fragment were statistically analyzed (n = 3). Scale bars, 1 µm. (B) Mitochondrial morphology was visualized using MitoTracker probe in the indicated cells, and the mitochondrial morphology with tubular and fragment were statistically analyzed (n = 3) Scale bars, 5 µm. (C, D) HCT116 and RKO cells were transfected with a siRNA against PTPLAD1 or co-transfected with a siRNA against PHB, and the invasion ability of these cells was evaluated by Boyden chamber invasion assays (C). Scale bar, 100

µm; Histogram, statistics of the invaded cells. The expression of PTPLAD1, PHB, p-Y259-PHB, p-Raf, Raf, p-ERK1/2, ERK1/2 and Snail were detected by western blotting (D). Data are presented from three independent experiments. (E) The expressions of indicated EMT markers (E-cadherin and Vimentin), mitochondrial dynamics markers (MFN1, MFN2 and Fis1) and p-ERK1/2 in 6 cases of CRC patients were determined by western blotting. Data are represented as the means \pm SD; *p < 0.05, ** p < 0.01; *** p < 0.001; n.s., no significance.