Supplementary Information

Journal: International Journal of Biological Sciences

Article Title: MicroRNA-495 modulates neuronal layer fate determination

by targeting *Tcf4*

Authors: Yunli Pang^{1,5}, Xiangbin Ruan^{1,5}, Wei Liu¹, Lin Hou^{1,2}, Bin Yin^{1,2}, Pengcheng

Shu^{1,2}, and Xiaozhong Peng^{1,3,4*}

Supplementary Item & Number	Title or Caption				
Figure S1	miR-495 has expression patterns different from those of its neighboring miRNAs				
Figure S2	Validation of miR-495 overexpression and functional inhibition				
Figure S3	Overexpression of miR-495 promoted projection of superficial neurons to the contralateral cortex				
Figure S4	Knockdown of miR-495 with antagomiR promotes deep-layer neuron generation				
Figure S5	TCF4 rescues miR-495-determined neuronal fate				
Table S1	The primer used in the clone				
Table S2	The microarray raw data				

Figure S1 miR-495 has expression patterns different from those of its neighboring miRNAs

(A-D) The expression patterns of miR-494 were detected by in situ hybridization on coronal sections of embryonic telencephalons from E12.5 to E18.5. (E-H) The expression patterns of miR-667 were detected by in situ hybridization on coronal sections of embryonic telencephalons from E12.5 to E18.5. (I-J) The scrambled probe is used as the negative control. (K) The expression patterns of miR-495, miR-494, and miR-667 from E12.5 to E18.5 are shown by microarray data. Each group consists of three replicates, and data are presented as mean \pm SD. Statistical significance was determined using an unpaired two-tailed Student's t-test. P values are shown as *P<0.05, ** P<0.01.

Figure S2 Validation of miR-495 overexpression and functional inhibition

(A) Schematic diagram of pCIG-miR-495 construction. (B) qPCR to measure the levels of miR-495-3p and miR-495-5p in cells transfected with pCIG-miR-495 in vitro. The pCIG group was used as a control group, while the mock group was a blank control group without infection. Each group consists of three replicates. (C) In vivo expression levels of miR-495 in mouse embryos transformed by the pCIG-miR-495 vector were detected by in situ hybridization. (D) Construction and in vitro validation of the miR-495 knockdown vector. A pCIG-miR-495SP knockdown plasmid with a slightly different sequence was constructed. The yellow background indicates the mutated bases, and the box shows the seed sequence

of miR-495 used to identify the 3'UTR of the target gene. The bar graphs show the "rescue" of the target gene Onecut1-3'UTR by the two knockdown vectors or the repression of the overexpressed miR-495. Each group consists of four replicates. The data are presented as mean \pm SD. Statistical significance was determined using an unpaired two-tailed Student's t-test. The statistically significant P values are shown as *P <0.05, ** P <0.01 and ***P <0.001.

(A-D) pCIG+pCAG and pCIG-miR-495+pCAG were electroporated into the mouse foetal brain at E13.5, and the brain sections in P9 were stained with DAPI. (A, C) is the electric lateral cortex; (B, D) is the contralateral cortex; (A', B') are enlargements of the solid white boxes of (A, B), respectively; (C, D') are enlargements of the solid white boxes of c and d, respectively; and red arrows indicate the distribution of projection fibres. Scale bar: 500 μm.

Figure S4 Knockdown of miR-495 with antagomiR promotes deep-layer neuron generation

(A-H) AntagomiR-NC+ pCAG and AntagomiR-495+pCAG were electroporated into the mouse embryonic brain at E13.5, and the brain sections at P3 were immunostained with cortex markers (CUX1, Ctip2, and TLE4). (C'-H') are enlargements of the solid white boxes of (c-h), respectively. Scale bar: 500

μm.

Figure S5 TCF4 rescues miR-495-determined neuronal fate

(A, A', C, C', D, D') pCIG+pCAG were electroporated into the mouse brain at E13.5, and the brain sections in P3 were stained with DAPI/EGFP/CUX1/SOX5. (B, B', D, D', F, F') pCIG-miR-495+TCF4 were electroporated into the mouse brain at E13.5, and the brain sections in P3 were stained with DAPI/EGFP/CUX1/SOX5. (G) Schematic diagram of the cerebral cortex division bin1-bin10. (H) We divided coronal sections of the cerebral cortex into 10 bins and calculated the distribution of EGFP+ cells

in the cortex. (pCIG+pCAG: n=15 sections from 13 brains, TCF4+pCAG: n=4, TCF4+miR-495+pCAG: n=5). (I) Statistical analysis of the percentage of CUX1+/GFP+ cells and SOX5+/GFP+ cells (pCIG+pCAG: n=15 sections from 13 brains, TCF4+pCAG: n=4, TCF4+miR-495+pCAG: n=5). Scale bar: 500 μ m (A, B) and 100 μ m (C-F, C'-F'). Statistical significance was determined using one-way ANOVA. Results are expressed as the mean ±SD. P values are shown as *P<0.05, **P<0.01, ***P<0.001.

Table S1 The primer used in the clone

Gene symbol	Primer sequences	purpose
miR-495	5'-CCGCTCGAGGCAAGGATGGTAGGCAACAT -3'	Over-expression
	5'- CCGGAATTCTTTCTGGGCTTCTCTTATCTGAA -3'	
TCF4	5'-CCGCTCGAGGGGAACACTCATGTGAGACAC-3'	Over-expression
	5'-CGGAATTCAAACGGGGTTAAGGAGCAGT - 3'	
	5'-	RT-PCR
miR-495	GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATA	
	CGACAAGAAG -3'	
	5'-	RT-PCR
miR-495*	GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATA	
	CGACCGAAAA -3'	
	5'-	RT-PCR
U6	GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATA	
	CGACAAAATATG-3'	
miR-495-up	5'- AAACAAACATGGTGCACTTCTT -3'	Real-time PCR
miR-495*-up	5'- GAAGTTGCCCATGTTATTTTTCG-3'	Real-time PCR
U6	5'-GCGCGTCGTGAAGCGTTC-3'	Real-time PCR
	5'-	miR-495SP
	GTAACCAAGAAGTGCTGTGTTTGTTATTTTTTTAAGAAGT	
mir-495Sponge-	GCTGTGTTTGTTAG -3'	
А	5'-	
	GTTACCTAACAAACACAGCACTTCTTAAAAAAAAAAAAA	
	ACACAGCACTTCTTG -3'	
	5'-	miR-495SP
	GTAACCAAGAAGTGCGATGTTTGTTATTTTTTTAAGAAGT	
mir-495Sponge-	GCGATGTTTGTTAG-3'	
В	5'-	
	GTTACCTAACAAACATCGCACTTCTTAAAAAAAATAACAA	
	ACATCGCACTTCTTG-3'	

sh1-Tcf4	1-Tef4 5'-GCCTCGTCATCTCCCAATTAT-3',		
Sh2-Tcf4	5'-GCCTCGTCATCTCCCAATTAT-3',	Knockdown	
Sh3-Tcf4	5'-CCCAGTACTATCAGTATTCAA-3'	Knockdown	
Pak3	5'- GAGCTGTGAAATCAGCTGCAACTGAAAATGTCTGA-3'	Probe	
	5' - CTAACGGCTACTGTTCTTAATTGCTTCCTTTGCGG -3'		
	5'-CCGTCCAGGAACTATGGAGA-3'	Probe	
Tcf4	5' -CTGTTGTTCGTGTGGTCAGG -3'		
	5'-ACATGACTCCAATGCAGCAG-3'	Probe	
Pbrm1	5' -GCCCGTTCCAATACTTCAAA -3'		
	5'-ACAACATCCAGTGGGTAGGC-3'	Probe	
E2f2	5' -CCACAGGTATTCGTCCTGGT -3'		
	5'-CGAGACCTCTCCGCTGAC-3'	Probe	
Zfp3611	5' -CAAGGTAGGGGAGTCTGAGC -3'		
D 12	5'-AACTGCAAGCCTTACCCCTCA-3'	Dual-Luciferase	
Pak3	5'-AACATTGATGTTTGTCGTTTTATTTG -3'		
	5'-TCACATCACTGTTTCTTCTGTGGAA-3'	Dual-Luciferase	
Pbrm1	5'-TCACTTTGCAAACTGTTGTTTTTATT-3'		
ו' ת	5'-GACTGTTAAGGAAAAGATTTTTCAACC-3'	Dual-Luciferase	
Bmil	5'-CATCTTTCTGTTGTTTTATTAAAAGACAA-3'		
M1	5'- GTGGGTCCAG AGTCACCTC-3'	Dual-Luciferase	
IVISX I	5'- CTTGTAGCTTAAAATTAATTTATTTAACAAATATAGC-3'		
Durunt2 -	5'- GGACATGGGGGGCAAACTGAA-3'	Dual-Luciferase	
Dnmt3a	5'- GCGGAAGCTGATGTCTTTGC-3'		
One sout1	5'-CCGCTCGAGACCACGGACTAGTACCTCGG-3'	Dual-Luciferase	
Oneculi	5'-GCTCTAGAGGCATTTTAGTGAATCTCAGTG-3'		
Ddy2y	5'-GCCTGCTCTGTAGTAGGTCACCC -3'	Dual-Luciferase	
Ddx3x	5'-TGCAGTTCAACTTTTTATTTTAATAAAACC-3'		
Iaf1	5'-AGGAAGTGCAGGAAACAAGACC-3'	Dual-Luciferase	
Igtl	5'-ACCAGTTAATCAAACATGATTAATTTTAAT-3'		
Tef/	5'-GTCCAAGTTGCTACCTTGCTTCA -3'	Dual-Luciferase	
1014	5'-CTATGTGCACGAGAGGTGAAATG-3'		
Flav1/	5'-АТТТСТСАСССТТАСТТАТТААААТАТАТАТАТААА-3'	Dual-Luciferase	
LIAVIA	5'-TTCATTCTACACACTTTCATTTATTGTCT-3'		
E2f2	E2f2 5'-AGCGTCCTGCATCTGTCTACCT -3'		

	5'-ACCAGAGCCGCCATTATTTAAT-3'	
Hey1 Nedd1	5'-CGGTTGTCAACACCACCCTA-3'	Dual-Luciferase
	5'-CCAAGTGCAGGCAAGGTCTA-3'	
	5'-AGACTCTGGGCACCTTGATT -3'	Dual-Luciferase
	5'-AGGCCACAGAAACTTGACACA-3'	
	5'-GTACAGAGGCCTAGGGCAAC-3'	Dual-Luciferase
Ntib	5'-TCTGCCAGCAAGACTGTAGC-3'	
	5'-GCGCATACGTGGGGGGACA -3'	Dual-Luciferase
Cupz	5'-TCAAGTTAAATGTCCCAATTTATTTTC-3'	
Ctund?	5'-CAGGACACGAGGCACTCC-3'	Dual-Luciferase
Cunidz	5'-TGGCGTCCAAGAATGTGTGA-3'	
Cda6	5'-GTCCGACTTGTTTGGGAGGT -3'	Dual-Luciferase
Cuco	5'-TCTTTGCCACTACGCCATGT-3'	
Sall1	5'-CGGTGACCACTGGGGGAGCTG-3'	Dual-Luciferase
Selli	5'-CGTCACCAGCCGTTATACTGCAT-3'	
Iaf1r	5'-TCCTCGGACACCCGAAGC -3'	Dual-Luciferase
IgIII	5'-GCATACAGAATTCTTTTATTTAACTTAATCC-3'	
Phy3	5'-GGCGCTTTCCCAGCTGACAT-3'	Dual-Luciferase
1 023	5'-CAATCCAGGGTGTGAGCCAGT -3'	
Cdb1	5'-GTGTGGCACCATGGGAGAT -3'	Dual-Luciferase
Culli	5'-ACAGTTTAACAAAACTCTTTAATAAAATTCATAA-3'	
7fn3611	5'- GCCAGGGTAGGGAGGGACC-3'	Dual-Luciferase
2105011	5'-GAAAAACGGGGTTTATTGATTTTT-3'	
Cdk6	5'-CATCTGAACACATTGGCGGC -3'	Dual-Luciferase
Cuko	5'- GTGCTGGTGGTTGAGAGCTT-3'	
Rybn	5'-TGCCCTGCTATAGTACTCCGT-3'	Dual-Luciferase
Кубр	5'-TAACAGTCGTGCACATGCCA-3'	
S - 5	5'-ACTTGAAGAAGCCCTGTCCG -3'	Dual-Luciferase
50X3	5'- GCCCCCAAACAGAACAGAAC-3'	
Hink1	5'-CTGCTGAATGTGTATGCGCC-3'	Dual-Luciferase
піркі	5'-TGCATTGCAACTGCTCTACTT-3'	
Neurod6	5'- TCTCTCACTATGCAAGATGAATTAAATGC -3'	Dual-Luciferase
	5'- TTTGTAAGTGGAAATATCTATGTTTAATTGCT-3'	
Mll1	5'- GGTCACCCACTCCATTAGGC-3'	Dual-Luciferase

	5'- GGTGAGCTGGGTCCTGAAAA -3'	
Lhx2 Elavl1 Rgma	5'- TGACTCGCCACCCCTTCT -3'	Dual-Luciferase
	5'- AGTCTTTTCGATAAGTGATTTTTATTACTGGT-3'	
	5'-GCAGATGTTTGGCCCCTTTG-3'	Dual-Luciferase
	5'- GCCAGTAACTGCACTAGCCT-3'	
	5'-CTGCCCTTTCACTTGTCTCCTAG -3'	Dual-Luciferase
	5'-TAAAAGAAAAATAACAAAACAAAACCAACTTTACTT-3'	
	5'- CAGGAACTGAGGAGCAGTCC-3'	Dual-Luciferase
FOXOI	5'- GTACTTAGGCGCACAGAGCA-3'	
0 1	5'- GGACACTCTTCCGTCTCCAC -3'	Dual-Luciferase
Cxcr4	5'- ACATTTGTAGGGAGTGAAATCAA-3'	
$D_{au}2f1$	5'- CGGCCTGGACTCTTTTTGTTG-3'	Dual-Luciferase
Pousii	5'-TCCTGGGGTACATGTTTATGTGA-3'	
Ctin 1	5'-ATCACACCGCTCTTCAGG -3'	Dual-Luciferase
Cupi	5'-CAGGTTAATGCAGACAACTGCC-3'	
Sav12	5'-CATTCCCAAGATGGGGGGTCC-3'	Dual-Luciferase
30X13	5'-TGGTCGGTCTTTATTACACCCA-3'	
Dorb	5'- GTGCTGCGGTCTGCAAAT -3'	Dual-Luciferase
KOID	5'- GTGGCTTCAAATCCTTTTGG-3'	
Mais?	5'- AAGTTGGGCAGCTTTCCTCA-3'	Dual-Luciferase
IVICIS2	5'- AAGCTTAGAATTCCCAACTCCA-3'	
Tafh?	5'-GCCAGGACACGAAAATCACG -3'	Dual-Luciferase
1 g102	5'-TGCTGGCTTCTAGACCCGT-3'	
Maial	5'- CAAAGCATTGGTCATGTGTGTGTAT-3'	Dual-Luciferase
IVICISI	5'- CTGGACCTGGAGTTTGCATAC-3'	
Dmd	5'- TGGCAGATGATTTGGGCAGA-3'	Dual-Luciferase
Dilla	5'-CGGTAGTCTCCTGGCTTTGG-3'	
Sn5	5'- GGACACTTTCGAGGCCACTC-3'	Dual-Luciferase
spa	5'- CGAGGAGACCCTGGAATGAAG-3'	
Dhf6	5'-GCTGGTAGAACAGCGTTTTG -3'	Dual-Luciferase
Phi6	5'-CCCCAGGAACAAAGAGGTC-3'	
Emr1	5'-ATAAGCTACATAATTCCGAAGTTATATTTCCTCTA-3'	Dual-Luciferase
Fmrl	5'-TAACCTGCTTTCAATGTTTCTCAGAC-3'	
Pak7	5'-GAGGATTCACACAGGATGCAAAGCT -3'	Dual-Luciferase

	5'-CAAACACTTACTTTATTTGTGGTGCAGC-3'	
F 1	5'- GGGAAGAAAGAAAAACTCCACACA -3'	Dual-Luciferase
Foxp1	5'- GTCAGGAGGGTATGGCACTG -3'	
Foxg1	5'- GGGGGACCAGACTGTAAGTG-3'	Dual-Luciferase
	5'-ACACGGGCATATGACCACAG-3'	
Sox11	5'-GGTGTCTCAGCATCCAACCA-3'	Dual-Luciferase
	5'-CCAGAGAGCTGTCCAACACA-3'	
Onecut2	5'- CCCACCCCTCAGCTGTATTT -3'	Dual-Luciferase
	5'- AAGATCCCAGTGACAGCAGC-3'	
C 11 11	5'-AATTAAGAATATTTCCTTGTTTATTAGATACATCA -3'	Dual-Luciferase
Cukillo	5'- GCACTCAATAAATAACTACGGAAGTTTTC-3'	
Soth 1	5'-ACAGCCAGCACTCAAGGTTT -3'	Dual-Luciferase
Satur	5'- CAAGCCCCTCCCCTAAACTG-3'	
ווות	5'-GATGGAAGCGATGTGGCAAAATT-3'	Dual-Luciferase
DIII	5'-TGAATTTCTTCATTAACAAAACAGTAAAAAACTC-3'	
Satb2	5'-TGCAACCTTGTCAAAGACCTC -3'	Dual-Luciferase
	5'- TTCTAACAGCCTAACAATGCACA-3'	
Nufip2	5'- TGTGGTAGGCCAGTTTCAGA -3'	Dual-Luciferase
	5'- CAAGCCTTGGACAGAGAAGG-3'	
Tcf12	5'- CAGAGTCATCAGTAGGCTAAATAGAAG-3'	Dual-Luciferase
	5'- AAGGATGGCACATTTATTGCTACATA-3'	

Table S2 The microarray raw data

Time	mmu-miR-	mmu-miR-	mmu-miR-	mmu-miR-	mmu-miR-	mmu-miR-
	92b-3p	92b-5p	495-3p	495-5p	494-3p	667-3p
E12.5-1	9,665	541	3,213	23	2,610	650
E12.5-2	10,143	307	2,946	55	2,909	698
E12.5-3	7,749	257	2,636	16	3,290	420
E14.5-1	6,273	186	1,242	7	2,723	302
E14.5-2	7,205	335	2,029	3	4,158	199
E14.5-3	8,607	212	2,296	0	4,607	235
E16.5-1	2,740	114	1,988	59	1,415	203
E16.5-2	3,184	119	1,148	5	1,335	209
E16.5-3	4,548	127	2,120	5	1,422	231
E18.5-1	2,764	76	1,863	10	1,548	168
E18.5-2	2,490	123	2,706	16	1,600	224
E18.5-3	2,276	84	1,895	5	1,626	203