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Abstract 

Although recent advances in cancer treatment significantly improved the prognosis of patients, drug 
resistance remains a major challenge. Targeting programmed cell death is a major approach of antitumor 
drug development. Deregulation of programmed cell death (PCD) contributes to resistance to a variety 
of cancer therapeutics. Yes-associated protein (YAP) and its paralog TAZ, the main downstream 
effectors of the Hippo pathway, are aberrantly activated in a variety of human malignancies. The 
Hippo-YAP pathway, which was originally identified in Drosophila, is well conserved in humans and plays 
a defining role in regulation of cell fate, tissue growth and regeneration. Activation of YAP signaling has 
emerged as a key mechanism involved in promoting cancer cell proliferation, metastasis, and drug 
resistance. Understanding the role of YAP/TAZ signaling network in PCD and drug resistance could 
facilitate the development of effective strategies for cancer therapeutics. 
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Current landscape of cancer therapy and 
challenge 

Surgery combined with chemotherapy or 
radiotherapy are currently the first-line treatment 
modalities for localized tumors. However, many 
patients suffer from tumor recurrence and 
development of acquired resistance despite success in 
initial treatment [1, 2]. Most patients with advanced 
solid tumors, such as hepatocellular carcinoma, 
pancreatic adenocarcinoma and glioblastoma, show 
intrinsic resistance to chemotherapy and other 
antitumor agents at the initial stage [3-5]. Drug 
resistance in cancer is multifaceted and can be 
mediated by mechanisms that impact on drug 
availability, cell proliferation and response to DNA 
damage or metabolic pathways. Deregulation of cell 
death signaling represents an important mechanism 
of drug resistance because most of the anti-tumor 
therapy agents aim to trigger programmed cell death 
[6]. Thus, understanding the signaling pathways 

involved in regulating PCD and drug resistance can 
provide insights into development of new therapeutic 
targets.  

The Hippo-YAP signaling pathway 
The Hippo-YAP signaling plays an important 

role in aspects of malignant transformation, including 
cell proliferation, tumor progression, metastasis, and 
drug resistance [7-10]. YAP and its paralog TAZ are 
the main downstream effectors of the Hippo-YAP 
pathway and act as a transcriptional coactivator 
[11-13]. The YAP signaling can translocate into the 
nucleus and mediates gene transcription by binding 
to transcription factors, such as the TEA domain 
family (TEAD) proteins [12]. YAP exhibits oncogenic 
activities [14, 15] and is upregulated in most solid 
tumors [16-22]. YAP signaling target genes participate 
in regulation of development, cell proliferation, 
migration and survival [23-27].  

YAP signaling is responsive to intercellular 
adhesion, cell density, and mechanical stiffness of the 
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extracellular matrix [7-10]. YAP can be negatively 
regulated by a cascade of phosphorylation events that 
are mediated by mammalian Ste20-like kinases1/2 
(MST1/2, the mammalian homolog of Hippo) and 
large tumor suppressor 1/2 (LATS1/2) [11, 28, 29]. 
The scaffold proteins of adherens junctions, such as 
NF2 or KIBRA/WWC1, can recruit MST and LATS 
kinases to the plasma membrane and mediates their 
activation [30-33]. The kinase activity of MST1/2 can 
be activated by binding to the Salvador Family WW 
Domain Containing Protein 1 (SAV1), a scaffold 
protein that also forms a complex with LATS1/2[11, 
28, 29, 34]. The Ras Association Domain Family 
Members (RASSFs) can also associate with MST1 and 
enhance its kinase activity [35-37].MST1/2 
subsequently activates LATS1/2 by phosphorylating 
LATS1/2 and its regulatory protein Mps one binder 
kinase activator-1 (MOB-1) [38, 39]. In parallel to 
MST1/2, the MAP4K family kinases can also 
phosphorylate and activate LATS1/2 [40-42]. The 
activated LATS1/2 then phosphorylates YAP/TAZ 

[43, 44]. The phosphorylated YAP can associate with 
the 14-3-3 proteins and is rendered transcriptionally 
inactive due to retention in the cytoplasm [45, 46]. 
Alternatively, the phosphorylated forms of the 
YAP/TAZ proteins can also be primed for 
β-TrCP-mediated ubiquitination and degradation [13, 
43, 47]. In addition, YAP can be inactivated by binding 
to a series of proteins, such as angiomotin, Protein 
Tyrosine Phosphatase Non-Receptor Type 14 
(PTPN14) and tight junction protein zonula occludens 
[48-51]. Conversely, YAP can be activated by 
G-protein coupled receptors or the mevalonate 
pathway through rho GTPase signaling [52-55]. 
Epithelial cell transforming 2 (ECT2), a guanine 
nucleotide exchange factor for Rho-like GTPases that 
activates Rho signaling, can positively regulate YAP 
function and is reciprocally regulated by YAP [56]. 
The SRC family tyrosine kinases and the c-ABL kinase 
have also been reported to promote YAP signaling by 
tyrosine phosphorylation of YAP [57-59].  

 

 
Figure 1. Hippo-YAP pathway signaling and function. YAP signaling is negatively regulated through a cascade of phosphorylation events mediated by MST1/2 and LATS1/2, 
which leads to phosphorylation of YAP and subsequent proteasomal degradation or retention in the cytoplasm. Alternatively, YAP can be inactivated by binding to angiomotin, 
PTPN14 and zonula occludens. Signaling events triggered by GPCR and Rho can activate YAP by inducing its nuclear translocation. YAP target genes are involved in aspects of 
organ development, regeneration, and malignant transformation. 
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In addition to phosphorylation, YAP signaling 
can be regulated by other forms of post- 
transcriptional modifications. For example, YAP can 
be methylated by the SET Domain Containing 1A 
(SET1A) methyltransferase complex, which promotes 
its oncogenic activities by blocking nuclear export 
[60]. YAP can also be modified by O-GlcNAcylation 
that prevents its phosphorylation by LATS1, leading 
to nuclear localization and enhanced tumorigenic 
functions [61]. Moreover, O-GlcNAcylation of LAST2 
has been reported to cause YAP/TAZ activation and 
promote tumor growth [62]. Acetylation of LAST1 
inhibits YAP phosphorylation and degradation and 
promotes cancer cell invasion and growth [63]. Thus, 
post-transcriptional modification is an important 
mechanism in regulating YAP signaling.  

YAP signaling activation and Drug 
Resistance  

A growing number of studies reveal that 
activation of YAP signaling contributes to resistance 
to chemotherapy, targeted therapy and immuno-
therapy. 

(1) YAP signaling and Chemotherapy  
DNA-damaging agents, such as doxorubicin, 

irinotecan, oxaliplatin, and cisplatin, aim at DNA 
replication as a target to induce cytotoxic effects and 
are widely used in the clinics. YAP signaling is closely 
linked to the resistance of DNA-damaging agents. 
YAP is a key regulator of doxorubicin resistance in 
thyroid cancer and is regulated by tripartite 
motif-containing protein 11 (TRIM11) [64]. Overex-
pression of YAP confers resistance to doxorubicin by 
regulating bcl-xl [65]. Activation of YAP also 
promotes doxorubicin chemoresistance in cholangio-
carcinoma and osteosarcoma cells [20, 66]. Inhibition 
of YAP enhances oxaliplatin and irinotecan sensitivity 
[67, 68]. YAP activation induces cisplatin resistance in 
small cell lung cancer (SCLC) cells [69], whereas 
knockdown of YAP increases the sensitivity of 
cisplatin in ovarian cancer cells [48, 70]. In addition, 
overexpression of TAZ is involved in regulation of 
cisplatin resistance of cervical, gastric, lung and 
ovarian cancer [22, 71-73].  

Agents inhibiting metabolic pathways represent 
another major class of chemotherapy agents that can 
sabotage DNA or RNA synthesis and inhibit cell 
division and survival. Gemcitabine and 5-fluorouracil 
(5-FU) are cytidine and uracil nucleoside analogues, 
respectively, which are widely used for the treatment 
of multiple tumors. Knockdown of YAP enhances 
gemcitabine sensitivity [74]. In addition, high levels of 
YAP are associated with poor survival in patients 

following 5-FU treatment, which is accompanied with 
an increase of M2 polarization of macrophage in the 
tumor [75]. However, a recent study reported that 
overexpression of an activating mutant form of YAP 
appears to enhance cancer cell sensitivity to 
gemcitabine and 5-FU, by reducing drug efflux [76]. It 
should be noted that these findings remain to be 
corroborated with knockdown studies. 

Anti-microtubule agents block mitosis by 
interfering with microtubules dynamics and induce 
apoptosis. Examples of classical anti-microtubule 
agents include taxanes (paclitaxel and docetaxel), 
which are widely used for the treatment of breast, 
ovarian, gastric, pancreatic and colorectal cancer [77]. 
YAP has been reported to confer resistance to 
paclitaxel in cancer cells [78, 79]. Similarly, TAZ and 
TAZ/TEAD-mediated expression of Cyr61 and CTGF 
are also vital in paclitaxel response [21, 80]. Moreover, 
down-regulation of YAP has been found to enhance 
sensitivity to docetaxel [81]. The mechanism by which 
YAP signaling modulates resistance to taxanes may 
involve YAP- and TEAD-regulated expression of ATP 
Binding Cassette Subfamily B Member 1 (ABCB1), 
which encodes the multidrug resistance protein 1 and 
is implicated in paclitaxel resistance [82]. In addition, 
YAP mediates the expression of an array of mitotic 
genes and deregulation YAP signaling can lead to 
aberrant mitotic checkpoint control [83, 84]. The 
mitotic regulator cyclin-dependent kinase 1 (CDK1) 
phosphorylates YAP in response to paclitaxel-induced 
G2/M arrest [85]. But its role in drug resistance 
remains to be clarified. 

Thus, an increasing body of evidence indicate 
that activation of YAP signaling results in 
chemoresistance and inhibition of this pathway may 
enhance cancer cell sensitivity to chemotherapeutic 
drugs. Targeting YAP signaling pathway represents a 
potential strategy to overcome chemotherapy 
resistance. Indeed, the combination of YAP inhibitor 
with chemotherapy has shown increased efficacy in 
chemo-resistant tumors [86, 87]. 

(2) YAP signaling and Targeted Therapy 
Targeted therapy is designed to block molecules 

and pathways that are vital for cancer cell 
proliferation, survival, invasion and metastasis and 
rewrote the paradigm of leukemia treatment [88]. 
Targeted therapy for epidermal growth factor 
receptor (EGFR), human epidermal growth factor 
receptor 2 (HER-2), vascular endothelial growth factor 
receptor (VEGFR), and BRAF have been developed 
for clinical use [88]. In this section, we will briefly 
discuss how YAP signaling regulates targeted 
therapies. 
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Figure 2. YAP signaling and chemotherapy. YAP/TAZ-mediated tumor chemoresistance by increasing survival in DNA damage and cell cycle arrest and reducing drug 
efflux. Anti-microtubule chemotherapeutic agents can induce G2/M cell cycle blockade. YAP signaling regulates their resistance through pathways such as CTGF/Cyr61, ABCB1, 
and CDKs. YAP signaling modulates resistance to DNA damage agents through TRIM11, p53, IL-8 pathways. Gemcitabine and 5-FU affect DNA and RNA synthesis in tumor cells. 
YAP signaling regulates their resistance through M2 polarization. 

 
 
BRAF, a serine/threonine protein kinase of the 

RAF kinase family, is a key regulator of the MAP 
kinase signal transduction pathway. BRAF gene 
mutations occur in a large percentage of cancers, 
including approximately 50% of melanomas, 20% to 
40% of thyroid cancers, and 10% of colorectal cancers 
[89]. Although BRAF inhibitors have shown benefit in 
melanoma patients with the oncogenic BRAFV600E 
mutant, acquired drug resistance remains a significant 
obstacle [90]. NF-2, a negative regulator of YAP 
signaling, was identified as a gene associated with 
cancer cell sensitivity to BRAF inhibitor, which 
indicates that YAP signaling could participate in 
BRAF inhibitor resistance [91]. In a separate study, 
activation of YAP was shown to induce resistance to 
BRAF inhibitor in melanoma cells through the actin 
dynamic regulator testis associated actin remodeling 
kinase 1 (TESK1) [92]. In addition, YAP confers 
immune evasion in BRAF inhibitor resistant mela-
noma cells by promoting PD-L1 expression, which 
can be targeted by immune checkpoint therapy [93]. 
This finding suggests that the combination of BRAF 
inhibitor with immunotherapy may represent a viable 
approach to treat BRAF inhibitor resistant melanoma. 

EGFR is a receptor tyrosine kinase that is 
frequently mutated in many tumors [94]. Small- 
molecule tyrosine kinase inhibitors (TKIs) for EGFR 

have shown efficacy in treatment of EGFR-mutated 
tumors [95]. However, resistance remains a problem 
for clinicians. Numerous studies have indicated that 
activation of YAP/TAZ is widely associated with in 
EGFR TKI resistance [96-98]. YAP regulates 
epithelial-to-mesenchymal transition (EMT)-induced 
resistance to EGFR TKI in non-small cell lung cancer 
(NSCLC) via FOXM1/SAC pathway [99]. YAP could 
also mediate EGFR TKI-resistant through upregu-
lation of AXL receptor tyrosine kinase [100] or the 
autophagy mediator p62[101]. Combination of YAP 
inhibitor and EGFR TKI improved response in EGFR 
inhibitor resistant NSCLC [102].  

YAP signaling is also implicated in resistance to 
targeted therapies for HER-2, MEK, RAS, ALK and 
BET inhibitors. YAP1 dephosphorylation and TEAD2 
overexpression are closely related to trastuzumab 
resistance by regulating cytokines like CCL5 in HER-2 
positive breast cancer cell lines [103]. YAP deletion 
sensitizes the MEK inhibitor trametinib by depletion 
of MYC/MYCN and E2F transcriptional output in 
neuroblastoma cells [104]. Dasatinib can enhance the 
antitumor effect of trametinib in KRAS-mutant cancer 
models by inhibiting the expression of TAZ protein 
[105]. YAP activation promotes resistance to ALK-TKI 
through induction of p21 expression [106]. TAZ 
nuclear localization and transcriptional activity 
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induces resistance to inhibitors of BET family proteins 
[107]. In summary, activation of YAP/TAZ signaling 
contributes to the resistance to an array of targeted 
therapy agents in various tumors. Targeting YAP 
signaling may improve the outcomes of targeted 
therapy. 

(3) YAP signaling and Immunotherapy 
The recent success of using immune checkpoint 

inhibitors for the treatment of certain human cancers 
represents a breakthrough in immunotherapy. 
Immune checkpoint receptors play a critical role in 
the maintenance of immune homeostasis. The classic 
immune checkpoint receptors include PD-1, CTLA-4, 
and TIGIT. The engagement of the immune 
checkpoint receptors can result in anergy of CD8+ T 
cells and enhance tumorigenesis and invasiveness of 
tumors. Immune checkpoint inhibitors remove 
inhibitory signals of T-cell activation, which enables 
tumor-reactive T cells to mount an effective antitumor 
response [108, 109]. The anti-PD-1/PD-L1 agents, the 
most used immune checkpoint inhibitors, has shown 
promising outcomes in the treatment of certain cancer 
types, significantly extending the overall survival of 
patients [110]. Monoclonal antibodies against 
PD-1/PD-L1 or CTLA-4 have shown promising 
efficacy in certain tumors [111-113]. Emerging 
evidence indicates an important role for YAP 
signaling in modulating anti-PD-1/PD-L1 

immunotherapy. PD-L1 is a direct transcriptional 
target of YAP signaling, knockdown of YAP inhibits 
expression of PD-L1 and reverses resistance to 
EGFR-TKI [114]. TAZ also upregulates PD-L1 
expression in pancreatic cancer, leading to immune 
evasion and immunotherapy resistance [115]. 
Activation of YAP-mediated transcriptional hubs in 
the nuclei is associated with resistance of anti-PD-1 in 
a mouse model of lung cancer cells, and inhibition of 
YAP can enhance the efficacy of anti-PD-1 therapy 
[116]. In addition, YAP signaling in cancer cells can 
facilitate recruitment of macrophages or myeloid- 
derived suppressor cells (MDSC) to the tumor 
microenvironment by regulating CXCL5, IL-6 and 
Csf1-3, and inhibition of YAP-mediated immune cell 
infiltration impairs tumor growth [117, 118]. These 
findings indicate that targeting YAP signaling may 
improve the efficacy of immunotherapy. 

YAP signaling and Programmed Cell 
Death 

Apoptosis, ferroptosis and other forms of PCD 
are associated with cancer drug resistance [119, 120]. 
Recent studies discovered that YAP signaling plays an 
important role in the regulation of PCD in cancer 
[121]. Understanding the relationship between YAP 
signaling and PCD can assist the development of 
more effective cancer therapeutic strategies. 

 
 

 
Figure 3. YAP signaling and targeted therapy. YAP signaling drives resistance of BRAF inhibitors by regulating TESK1. YAP signaling mediates EGFR TKI resistance by via 
FOXM1/p62. YAP signaling mediates Trastuzumab, ALK TKI and MEK inhibitors resistance by via CCL5, EGFR/AXL and MYC/E2F, respectively. 
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Figure 4. YAP signaling and immunotherapy. YAP mediates immunotherapeutic resistance by regulating cytotoxic T cells through upregulation of PD-L1 expression in 
cancer cells. YAP-mediated transcription of CXCL5, IL-6 and Csf1-3 promotes MDSC recruitment and macrophage infiltration. 

 

YAP signaling and Apoptosis 
Apoptosis is a major cancer cell response to most 

therapeutic drugs. Dysregulation of apoptosis 
contributes to tumorigenesis and drug resistance 
[119]. YAP signaling participates in the regulation of 
apoptosis and inhibition of YAP signaling can 
promote apoptosis via multiple pathways. Inhibition 
of YAP signaling can promote apoptosis in multiple 
pathways. Knockdown of YAP and TAZ can enhance 
apoptosis under hypoxic condition [122]. YAP 
appears to modulate cancer cell susceptibility to 
apoptosis triggered by an ER stress inducing agent 
[123]. Knockdown of YAP can sensitize colon cancer 
cells to inhibitors of the MAPK pathway, which may 
involve YAP-mediated expression of CDK6 [124]. 
YAP is implicated in playing a role in determining the 
switch between apoptotic and survival pathways 
following activation of G protein–coupled bile acid 
receptor (GPBAR) signaling [125]. Inhibition of YAP 
increases cancer cell apoptosis induced by genotoxic 
agents [126]. Knockdown of YAP enhances apoptosis 
in cancer cells treated with the Abl and Src family 
kinase inhibitor bosutinib, which is associated with 
mitochondrial fragmentation and reactive oxygen 
species (ROS) accumulation [127]. Indeed, 
knockdown of YAP increases mitochondrial fission 
via JNK-Drp1, which can lead to apoptosis [128].  

Activation of YAP can inhibit apoptosis by 
mediating the pro-apoptotic function of nuclear 

receptor 4A1 (NR4A1) [129]. Knockdown of YAP in 
cancer cells increases the levels of ER stress and 
apoptosis [18]. Ras association domain family 
member 4 (RASSF4) enhances apoptosis by 
decreasing YAP-regulated bcl-2 expression [130]. 
Knockdown of YAP can induce apoptosis by reducing 
SIRT1- and Mfn2-mediated mitophagy [131]. The 
YAP/TEAD4 complex can inhibit apoptosis and 
promote cancer progression by activating kinesin 
family member 4A (KIF4A) expression [132]. 
Overexpression of YAP promotes proliferation and 
suppress apoptosis via increase of bcl-2 [133]. YAP 
knockdown sensitizes bladder cancer cells to 
cisplatin-induced apoptosis, which is accompanied 
with downregulation of surviving [134]. A recent 
study showed that YAP plays a vital role in evasion of 
apoptosis by mediating cancer cell dormancy, which 
involves recruitment of the EMT transcriptional factor 
SLUG and suppression of the expression of the 
pro-apoptotic protein bcl-2-modifying factor (BMF) 
[135].  

Further investigation of the precise mechanisms 
regarding the regulation of apoptosis by YAP 
signaling may contribute to the discovery of potential 
therapeutic targets. 

YAP signaling and Ferroptosis 
Ferroptosis is a biochemically and morphologi-

cally distinct form of PCD characterized by 
iron-dependent lipid peroxidation and compromise of 
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cell membrane integrity [136]. Lipid peroxidation is a 
process under which oxidants such as free radicals 
and intracellular ROS attack lipids especially polyun-
saturated fatty acids, leads to lipid peroxidation and 
cell death. Imbalance of iron redox ability leads to the 
production of oxygen free radicals and damages 
various cellular components, eventually induces 
ferroptosis. Cancer cells have developed many 
defense mechanisms to prevent lipid peroxidation. 
The most well-known is the glutathione peroxidase 4 
(GPX4)-glutathione (GSH) system. GPX4 can reduce 
peroxidized lipids to their corresponding alcohols by 
binding to its cofactor GSH [137]. Ferroptosis is 
associated with multiple diseases, such as cancer, 
inflammation, heart injury and sepsis [138-141]. A 
growing number of studies indicates that YAP 
signaling modulates ferroptosis by regulating 
expression of genes involved in keeping the balance of 
intracellular ROS and lipid peroxidation.  

YAP can modulate iron concentration through 
the transcriptional regulation of transferrin receptor 
(TFRC) [142]. Activation of YAP also confers 
sensitivity to ferroptosis via regulation of the 
arachidonate lipoxygenase 3 (ALOXE3) [143], which 
promotes lipid peroxidation and ferroptosis [144], or 
by upregulating multiple regulators of ferroptosis, 
particularly TRFC and acyl-CoA synthetase long 
chain family member 4 (ACSL4) [145]. TAZ mediates 
ferroptosis through indirectly regulating the 
expression of the ROS-generating nicotinamide 

adenine dinucleotide phosphate oxidases (NOX) 
through angiopoietin-like 4 (ANGPLT4)-NOX2 and 
epithelial membrane protein 1 (EMP1)-NOX4 axis 
[146, 147]. YAP/p53 axis is required for lipid 
peroxidation and ferroptosis induced by cytoglobin, a 
heme-binding protein that mediates redox homeo-
stasis in cells [148].  

However, in a separate line of studies, YAP 
appears to have anti-ferroptosis effect. YAP/TAZ 
mediate the expression of solute carrier family 7 
member 11 (SLC7A11), a subunit of the cystine/ 
glutamate transporter that is important for 
maintaining intracellular cysteine and glutathione 
storage, and thus contributes to resistance to 
ferroptosis [149, 150]. Induction of ferroptosis by 
inhibition of the cystine/glutamate transporter 
system by erastin is accompanied with glutamate- 
induced O-GlcNAcylation and down regulation of 
YAP, and ectopic expression of a mutant form of YAP 
that cannot undergo O-GlcNAcylation reduces 
sensitivity to ferroptosis [151]. Moreover, YAP can 
also protect cells from ferroptosis by suppressing the 
expression of ferritin light chain, a major protein 
important for storing intracellular iron [152].  

In summary, YAP signaling can regulate genes 
involved in different aspects of lipid peroxidation. 
The overall effect of YAP disruption on ferroptosis 
may depends on the genetic background of the cell 
types or the metabolic environment. 

 
 

 
Figure 5. YAP signaling in regulation of apoptosis. YAP signaling can regulate apoptosis by modulating (1) Mitochondria-related events (e.g. bcl-2, BMF, NR4A1, 
SIRT1/Mfn2, survivin and JNK/Drp1); (2) ROS and ER stress responses; or (3) Mediators of the cell cycle, (e.g. CDK6 and survivin). 
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Figure 6. YAP signaling related mechanisms in regulation of ferroptosis. Drugs such as erastin and sorafenib directly target cystine transporter and trigger ferroptosis. 
Activation of YAP induce ferroptosis by upregulating the expression of ACSL4 and TRFC. Other regulators of YAP mediated ferroptosis include NOX2, NOX4, ALOXES3 and 
cytoglobin. Glutamate-induced O-GlcNAcylation of YAP inhibit ferroptosis. YAP signaling suppress ferroptosis by targeting SLC7A11 and ferritin light chain. 

 
YAP signaling and Autophagy 

Autophagy is a mechanism by which cells adapt 
to physiological or pathological changes by degrading 
and recycling parts of the cell in a lysosome- 
dependent manner. Autophagy is vital in maintaining 
organismal homeostasis [153, 154] and dysfunction of 
autophagy is implicated in multiple diseases 
[155-157]. The molecular mechanism of autophagy 
involves several autophagy-associated proteins 
(ATG). Various stimuli, such as nutrient deficiencies 
and hypoxia, can leads to the formation of phagocytic 
vesicles, a step regulated by two protein complexes. 
One is the Vps34 complex containing Vps34, ATG6, 
ATG14 and Vps15. The other is the unc-51 like 
autophagy activating kinase (ULK1)/ATG1 complex, 
which is an important positive regulator of 
autophagosome formation [158]. Autophagy is 
involved in aspects of tumorigenesis, including cancer 
cell survival, invasion and immune response 
[159-162]. Recent studies have shown complex 

interactions between YAP signaling and autophagic 
pathways [163].  

YAP signaling promotes autophagy in most 
tumors. YAP is required for lncRNA-ATB induced 
autophagy [164]. YAP activates autophagy by 
promoting ATG5 transcription, while autophagy in 
turn negatively regulates YAP through autophagic 
degradation [165]. Disruption of autophagy by 
genetic deletion of ATG7 in the hepatocytes leads to 
upregulation of YAP and malignant transformation in 
the liver, which can be reversed by concurrent 
deletion of YAP [166]. Silencing of YAP leads to 
impaired autophagy, which enhances cisplatin 
sensitivity in cancer cells [70]. Proto-oncogene SKIL 
could induce TAZ-dependent autophagy in NSCLC 
cell lines [167]. Cisplatin-induced autophagy can 
activate YAP by decreasing phosphorylation [168]. 
YAP promotes autophagy and tumor progression in 
glioblastoma through upregulation of high mobility 
group box 1 (HMGB1) [17].  
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Contrary to the above-mentioned studies, YAP 
signaling has also been shown to inhibit autophagy. 
YAP can suppress autophagy in sarcoma [169]. 
Autophagy induced by depletion of TAZ could 
inhibit migration and invasion [170]. Blockade of YAP 
induces autophagy‑related cell death and confers 
sensitivity of chemotherapy [19]. YAP inhibits 
autophagy through the suppression of phosphatase 
and tensin homolog (PTEN) and activation of the 
AKT/mTOR pathway [171]. Moreover, YAP inhibits 
autophagy by upregulating expression of bcl-2 [172].  

In summary, YAP signaling appears to play 
opposing roles in regulation of autophagy, which may 
be dependent on the genetic background of the tumor. 
The mechanisms involving in the relationship 
between YAP signaling and autophagy needs further 
exploration. 

YAP signaling and Pyroptosis 
Pyroptosis, also known as inflammatory 

necrosis, is a type of PCD characterized by Gasdemin- 
mediated membrane rupture and release of 
inflammatory molecules [173]. Pyroptosis is usually 
initiated in response to viral and bacterial infections, 
accompanied by activation of the inflammasome and 
secretion of pro-inflammatory cytokines [174]. 
Pyroptosis facilitates inflammatory microenviron-
ment, which promotes carcinogenesis and metastasis 
[175]. The role of pyroptosis in tumor development is 
complicated. In the initiation stage, pyroptosis can 
promote tumor development through inflammasome 
or the release of pro-inflammatory cytokines, such as 

interleukin-1β and IL-18 [176, 177]. In later stages, the 
inhibition of pyroptosis may promote tumor 
progression [178].  

Pyroptosis is involved in the regulation of drug 
resistance in cancer. Downregulation of Gasdermin E 
(GSDME), a key regulator of pyroptosis, confers 
retinoblastoma cells resistance to chemotherapy [179]. 
Bioinformatics analysis reveals that four regulatory 
genes of pyroptosis are closely related to temozolo-
mide resistance in glioma [180]. Caspase-1/GSDMD 
dependent pyroptosis is involved in cisplatin 
resistance of NSCLC cells [181]. Pyroptosis induced 
by STAT-3β enhances cisplatin sensitivity in 
esophageal squamous carcinoma cells [182]. In 
addition, pyroptosis-related gene signature has 
shown promise in predicting the efficacy of immuno-
therapy in multiple cancer types [183]. Pyroptosis 
improves the sensitivity of immunotherapy by 
remodeling tumor microenvironment [184].  

Existing research regarding YAP signaling on 
the regulation of pyroptosis is mostly focused on 
non-cancerous diseases like infection, inflammation 
and diabetes [185-187] and only a few studies 
explored the role of YAP signaling in cancerous 
pyroptosis. Inactivation of YAP switch chemotherapy 
induced cell death from apoptosis to pyroptosis 
through upregulating the expression of GSDME [69]. 
A recent study showed that MST1 can promote 
ROS-induced pyroptosis, which is accompanied by 
inactivation of YAP via phosphorylation and results 
in suppression of tumor cell proliferation and 
invasion [188].  

 

 
Figure 7. Connection between YAP signaling and Autophagy. lncRNA ATB and SKIL can promote autophagy via YAP signaling. YAP signaling promotes autophagy 
through regulation of HMGB1, ATG5. On the other hand, YAP signaling inhibits autophagy via bcl-2, and PTEN/AKT pathway. YAP signaling could regulate carcinogenesis and 
chemosensitivity via autophagy. 
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Conclusion and Future Perspectives 
In summary, YAP signaling is engaged in the 

regulation of multiple forms of programmed cell 
death, including apoptosis, ferroptosis, autophagy, 
and pyroptosis. Activation of YAP/TAZ contributes 
to resistance to a variety of tumor therapeutic 
modalities, such as chemotherapy, targeted therapy 
and immunotherapy. Verteporfin (VP), originally 
used for treating fundus macular degeneration, 
possesses potency of effectively YAP inhibition [189]. 
Several studies indicate that VP could increase 
sensitivity to targeted or chemotherapy drugs by 
inhibition of YAP [190-194]. Clinical trials using VP 
for the treatment of pancreatic cancer are underway 
[195]. As such, VP has the potential to become an 
anti-tumor agent of multiple tumor types in the 
future. More recently, a pan-TEAD inhibitor has been 
developed and showed activity in blocking YAP 
signaling and overcoming KRAS G12C inhibitor 
resistance [196]. Moreover, small molecule inhibitors 
of TEAD auto-palmitoylation have also been reported 
to exhibit potency to inhibit NF2-deficient 
Mesothelioma [197]. Similarly, K-975, a TEAD 
inhibitor, can inhibit the proliferation of malignant 
pleural mesothelioma (MPM) cell lines and provide 
significant survival benefit in MPM xenograft model 
[198]. In addition, several other YAP/TEAD inhibitors 
are currently tested in the preclinical and clinical 
research stages, and may provide more drug choices 
for YAP/TEAD based anti-tumor therapy in the 
future [199]. The advancement of our understanding 
in YAP or YAP-mediated signaling events in cancer 
drug resistance may lead to development of new 
therapeutic regimen for cancer. 
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