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Abstract 

Background: Renal cell carcinoma (RCC) is frequently accompanied by tumor thrombus in the venous 
system with an extremely dismal prognosis. The current Tumor Node Metastasis (TNM) stage and Mayo 
clinical classification do not appropriately identify preference-sensitive treatment. Therefore, there is an 
urgent need to develop a better ideal model for precision medicine. 
Methods: In this study, we developed a coagulation tumor thrombus signature for RCC with 10 
machine-learning algorithms (101 combinations) based on a novel computational framework using 
multiple independent cohorts. 
Results: The established tumor thrombus coagulation-related risk stratification (TTCRRS) signature 
comprises 10 prognostic coagulation-related genes (CRGs). This signature could predict survival 
outcomes in public and in-house protein cohorts and showed high performance compared to 129 
published signatures. Additionally, the TTCRRS signature was significantly related to some immune 
landscapes, immunotherapy response, and chemotherapy. Furthermore, we also screened out hub genes, 
transcription factors, and small compounds based on the TTCRRS signature. Meanwhile, CYP51A1 can 
regulate the proliferation and migration properties of RCC. 
Conclusions: The TTCRRS signature can complement the traditional anatomic TNM staging system 
and Mayo clinical stratification and provide clinicians with more therapeutic options. 
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Introduction 
In 2020, renal cell carcinoma (RCC) was 

recognized as originating from the epithelial cells of 
the urinary tubules, affecting approximately 431,288 
newly diagnosed patients worldwide and resulting in 
a staggering death toll of 179,368 [1]. Among the 
malignancies, RCC patients exhibit a heightened 

vulnerability to venous thromboembolic 
complications [2] (VTE), with a distinctive clinical 
hallmark being the potential migration of the tumor to 
the renal vein or inferior vena cava, thereby giving rise 
to the formation of a venous tumor thrombus (TT) 
[3,4]. According to statistics, TT incidence accounts for 
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approximately 15% of RCC cases [5]. The prognosis for 
RCC patients with TT is extremely poor, with a 
median survival dropping to just 5 months and a 1-
year disease-specific survival (DSS) rate of only 29% in 
the absence of treatment [6].  

RCC-TT presents a complex pathogenesis 
characterized by significant heterogeneity. 
Coagulation can be seen as a response to hemorrhage 
resulting from blood vessel wall disruption and 
intravascular coagulation or activated with increased 
blood plasma and vascular permeability leading to 
extravascular coagulation [7]. Additionally, multiple 
studies have underscored the pivotal role of platelets, 
VEGF, and their signal transduction pathways in TT 
formation [8-11]. In recent years, the tumor 
microenvironment (TME) has gained increasing 
recognition for its involvement in tumor coagulation, 
as demonstrated by pan-cancer analyses [12]. Despite 
traditional staging systems such as Tumor-Node-
Metastasis (TNM) [13] and Mayo clinical classification 
of TT in RCC [14] dominating clinical decision-making 
and therapeutic management in clinical practice, their 
limitations in comprehensively assessing molecular 
biological characteristics may impede the 
determination of optimal clinical strategies [15]. With 
the rapid advancements in genomics and 
bioinformatics, various biomarkers in RCC patients 
with TT (RCC-TT) have been identified [16,17]. 
However, limited data availability, inappropriate 
utilization of machine-learning methods, and 
insufficient validation of large, diverse patient cohorts 
hinder the clinical applications of these biomarkers 
[18-20]. It would seem, therefore, that further 
construction of a robust RCC-TT model is urgently 
needed to be fully implemented into routine clinical 
practice. 

In this study, our aim was to develop and 
validate a tumor thrombosis coagulation-related risk 
signature (TTCRRS) tailored specifically for renal cell 
carcinoma (RCC) patients. By leveraging a compre-
hensive set of coagulation-related genes (CRGs) and 
employing a sophisticated ensemble of machine 
learning algorithms, we meticulously constructed and 
refined the TTCRRS using data from 16 independent 
cohorts. Notably, our TTCRRS demonstrated 
remarkable robustness, exhibiting exceptional 
predictive performance for crucial clinical outcomes, 
including survival prognosis, immunotherapy 
response, and drug efficacy. By furnishing up-to-date 
and comprehensive information, our novel signatures 
hold immense potential to inform and empower 
healthcare professionals, enabling them to optimize 
precision treatment approaches within the RCC 
domain. This, in turn, facilitates personalized and 
targeted interventions, ultimately leading to improved 

patient outcomes.  

Methods 
Collection and processing of publicly available 
data 

A total of 1573 RCC patients were gathered from 
13 datasets from The Cancer Genome Atlas (TCGA), 
Gene Expression Omnibus (GEO), CM-025, and E-
MTAB-1980. Among these datasets, 5 datasets (TCGA, 
ICGC, GSE167573, CM-025, E-MTAB-1980) with 
adequate information on survival outcomes were 
utilized to construct and validate our signature. 
Furthermore, to comprehensively explore the impact 
of chemo-immunotherapy, we incorporated an 
additional five drug-related datasets (IMvigor210, 
GSE91061, GSE78220, GSE135222, and GSE35640). Of 
them, The IMvigor210 immunotherapy cohort 
comprises 348 patients diagnosed with bladder 
urothelial carcinoma who received treatment with 
anti-PD-L1 agents. This cohort data was sourced from 
a published study utilizing the R package 
“IMvigor210CoreBiologies” [21]. In addition, the 
GSE91061 cohort was retrieved from pre- and post-
treatment tumor samples taken from melanoma 
patients who received anti-PD-1 and anti-CTLA4 
therapy [22]. The VTE-cohorts dataset (GSE48000) was 
utilized for the assessment of coagulation-related gene 
(CRG) expression levels. To gain insights into the role 
of protein expression levels, we leveraged the Clinical 
Proteomic Tumor Analysis Consortium (CPTAC) 
cohort, encompassing 232 tumor samples and 232 
normal samples, along with the Proteomic Cohort 
from Fudan University Shanghai Cancer Center 
(FUSCC), consisting of 232 tumor samples and 232 
paired normal samples. These cohorts served as 
invaluable resources for investigating the relationship 
between the TTCRRS and protein expression levels. 

TCGA raw read counts were converted to 
transcripts per kilobase million (TPM) from UCSC 
Xena (https://xenabrowser.net/) and log2 
transformed. For TCGA samples, all data were aligned 
and annotated on the GENCODE Homo sapiens 
GRCh38 (hg38) reference genome. The robust 
multichip average (RMA) algorithm implemented in 
the R package affy was used to process and normalize 
the raw data [23]. Meanwhile, we used annotation files 
available in GPL platforms to convert probes into gene 
symbols. Meta-cohort was combined and normalized 
(removed the batch effect) the ICGC, GSE167573, CM-
025, and E-MTAB-1980 datasets with the function 
ComBat [24] from the “sva” package [25]. 
Furthermore, the protein expression profiles of RCC 
were collected from the CPTAC database, and the 
details of our FUSCC cohort were reported in a 
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previous study [26]. Table S1 summarizes the 
baselines for the 16 enrolled datasets. 

Herein, From the KEGG database 
(https://www.genome.jp/kegg/), complement and 
coagulation cascades (hsa04610) and platelet 
activation (hsa04611) were acquired. Identification of 
genes associated with TT in patients with RCC, we 
referred to the research conducted by Ma et al [17], 
which reported genes exhibiting a higher mutation 
frequency in RCC patients with TT compared to RCC 
patients without TT. Our study defined genes in 
coagulation pathways and higher mutation frequency 
in tumor thrombus RCC patients as tumor thrombosis 
coagulation related genes (TTCRGs). These genes 
were designated as TTCRGs in our study, amounting 
to a total of 1,971 genes. By focusing on genes within 
the coagulation pathways and exhibiting higher 
mutation frequencies in tumor thrombus RCC 
patients, we aimed to capture crucial molecular factors 
involved in the coagulation process within the context 
of RCC with tumor thrombus. 

Somatic mutation and copy number 
alteration analysis 

Genetic alterations in TTCRGs can be classified as 
somatic copy number variations (SCNAs) or somatic 
mutations. a better understanding of TTCRGs from 
their genomic characteristics to gain, we examined the 
frequency of somatic mutations and SCNAs, and their 
correlation with patient prognosis in different groups. 
All the above data as well as the entire clinical 
information were downloaded from cBioPortal 
(https://www.cbioportal.org) [27]. Analysis and 
visualization of mutation characteristics were 
performed using the R package “maftools” [28], 
depicting the mutation frequency of TTCRGs through 
an OncoPrint plot. In the kidney renal clear cell 
carcinoma datasets, we selected the genomic profiles 
of mutation and putative copy-number alterations 
from GISTIC to investigate the genomic characteristics 
between the altered and unaltered groups. Within the 
GDC GISTIC copy number dataset obtained from 
cBioPortal, we designated the values of 2 and -2 as 
amplification and deep deletion, respectively. A 
survival analysis was used to investigate the effect of 
mutations on patient outcomes in patients with and 
without DNA alteration (SCNA versus mutations). 

Subtypes identification of TTCRGs 
To identify distinct med on TTCRGs expression 

in RCC patients, we employed three feature-based 
methods: Consensus clustering (CC) [29], Consensus 
nonnegative matrix factorization (CNMF) [30], 
Combined similarity network fusion and CC (SNF-
CC) [31] in the R package “CancerSubtypes” [31] were 

executed by repeating 500 times. Subsequently, the 
optimal number of clusters was determined using 
cumulative distribution function curves (CDF), 
silhouette plots, consensus score matrices and survival 
analyses. We used R package GSVA’s [32] single 
sample gene set enrichment analysis (ssGSEA) to 
analyze 28 different immune cells to determine their 
relative infiltration in each RCC patient [33]. In 
addition, the stability and robustness of the ssGSEA 
results were further validated to ensure their 
reliability, we performed an ensemble approach, 
incorporating 6 alternative algorithms (TIMER [34], 
quanTIseq [35], MCP-counter [36], xCell [37], EPIC 
[38] and ESTIMATE [39]) with default parameters. To 
unravel the intricate interplay between the identified 
coagulation subtypes and diverse clinicopathological 
features, encompassing grade, stage, and patient 
status were generated by the Sankey diagram using 
ggalluvial R package. 

The immune-related features of TTC 
subtypes based on enrichment analysis 

In the R package GSVA, normalized enrichment 
scores (NES) are calculated for pathways using gene 
set variation analysis (GSVA) [32], enabling a 
comprehensive exploration of biological functions 
within the TTC clusters, and were displayed in NES 
heatmap for RCC patients. Then, the differentially 
expressed genes (DEGs) obtained by the limma R 
package [40] between two TTC subtypes were applied 
to execute the procedure of the gene set enrichment 
analysis (GSEA) with aid of the R package 
clusterProfiler [41] using two MeSH terms (gendoo 
[42] and gene2pubmed [43]) as the reference gene set. 
To investigate the immune characteristics of the 
TTCRGs, a boxplot analysis was performed to 
compare the T cell stimulators and the gene expression 
of major histocompatibility complexes between 
different clusters. In addition, the tumor 
microenvironment (TME) composition within the two 
TCC clusters was assessed using the MCP-counter tool 
[36], which provides robust quantification of 8 
immune cell types (CD8+ T cells, T cells, natural killer 
cells, cytotoxic lymphocytes, monocytic lineage, B cell 
lineage, myeloid dendritic cells, and neutrophils) and 
two stromal cell populations (fibroblasts and 
endothelial cells) across diverse cohorts. Tumor tissue 
was examined for the presence of immune and stromal 
cells, as well as the level of DNA methylation of tumor-
infiltrating lymphocytes (MeTILs) using the R package 
ESTIMATE [39], in accordance with established 
protocols outlined in the literature [44]. Ultimately, the 
pRRophetic R package employed a ridge regression 
method to predict the semi-inhibitory concentration 
(IC50) values, primarily utilized in chemotherapeutic 
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drugs, for each RCC patient. This analysis aimed to 
compare the effectiveness of these drugs among 
different TTC subtypes [45,46]. 

Weight correlation network analysis 
(WGCNA) 

To further capture genes with highly relevant 
associations with the hypercoagulable state of 
TTCRGs, we applied two VTE cohorts to execute the 
WGCNA procedure with the R package WGCNA [47]. 
Based on the scale-free network criteria, a soft 
threshold was selected. Then, Topological overlap 
matrix (TOM) was generated from adjacency matrix to 
reflect the topological information of a network ad 
genes were hierarchically clustered with dissimilarity 
(1-TOM) of the topological overlap. By using dynamic 
tree cutting, the key module was identified. After that, 
a module with the highest correlation to VTE was 
selected as the module to further study to recognize 
significant coagulation modules associated with VTE. 

The signature generated from machine 
learning-based integrative approaches 

We integrated 10 machine learning algorithms 
and 101 algorithm combinations according to Liu’s 
research to develop TTCRRS with high accuracy and 
stability [48]. Our integrative algorithms included 
generalized boosted regression modeling (GBM), 
Least absolute shrinkage and selection operator 
(LASSO), elastic network (Enet), random survival 
forest (RSF), ridge, stepwise Cox, partial least squares 
regression for Cox (plsRcox), CoxBoost, survival 
support vector machine (survival-SVM) and 
supervised principal components (SuperPC). There 
were several algorithms that had features selection 
functionalities, including stepwise Cox, Lasso, RSF 
and CoxBoost. The RSF model, executed through the 
random ForestSRC package, optimized parameters 
(ntree and mtry) via grid-search with LOOCV. Lasso, 
Enet, and Ridge facilitated by the glmnet package, 
determined the regularization parameter (λ) through 
LOOCV and set the L1-L2 trade-off parameter (α) 
within the interval of 0-1 (step 0.1). The Stepwise Cox 
model, integrated within the survival package, 
conducted an iterative stepwise search based on the 
Akaike Information Criterion (AIC), exploring both 
forward and backward directions for feature selection. 
CoxBoost, facilitated by the CoxBoost package, 
employed componentwise likelihood-based boosting, 
optimizing the penalty term via LOOCV 
(optimCoxBoostPenalty function) and the boosting 
steps using cv.CoxBoost routine. The plsRcox model, 
operationalized through the plsRcox package, utilized 
cv.plsRcox to ascertain the optimal number of 
components and further utilized the plsRcox function 

for fitting a generalized linear model based on partial 
least squares regression. SuperPC, harnessed from the 
superpc package, applied superpc.cv for supervised 
principal component analysis and feature threshold 
estimation, with a special consideration for the ‘pre-
validation’ approach when fitting Cox models to 
smaller validation datasets. The GBM model, accessed 
via the gbm function within the superpc package, fine-
tuned the number of trees by minimizing cross-
validation error through cv.gbm. Lastly, the survival-
SVM model, leveraging the survivalsvm package, 
implemented a regression-based approach, 
accounting for censoring while formulating inequality 
constraints within the support vector problem. 

The formulation of the TTCRRS ensued through 
a sequential methodology: (a) Identification of 
prognostically significant TTCRGs within the TCGA-
KIRC cohort was accomplished via Univariate Cox 
regression analysis; (b) Subsequently, leveraging these 
pivotal TTCRGs, an exhaustive exploration involving 
101 algorithmic permutations was conducted to 
fashion predictive models within the TCGA-KIRC 
cohort, employing the leave-one-out cross-validation 
(LOOCV) framework; (c) Rigorous validation of all 
resultant models ensued across four distinct validation 
datasets (CM-025, E-MTAB-1980, ICGC, and 
GSE167573); (d) Further refinement led to the 
determination of the optimal model, predicated upon 
a comprehensive comparison of Harrell’s concordance 
index (C-index) across all validation datasets, thereby 
delineating the model manifesting the highest average 
C-index as the pinnacle. 

Immunotherapeutic and other therapeutic 
benefits 

In exploring the immune-related characteristics 
of TTCRRS, the urothelial cancer dataset (IMvigor210) 
and the melanoma datasets (GSE91061, GSE78220) 
were stratified into four distinct treatment effects: 
stable disease (SD), progressive disease (PD), partial 
response (PR) and complete response (CR). 
Additionally, in the other melanoma dataset 
(GSE35640), patient cohorts were dichotomized into 
two distinct groups: non-responders (NR) and 
responders (R). Utilizing the expression profiles from 
both datasets, we computed the TTCRRS for each 
patient, subsequently delving into its implications on 
both prognosis and the efficacy of immunotherapy. To 
further explore the chemosensitivity of patients in 
different TTCRRS subtypes, we employed the 
pRRophetic R package [45], with this package, we 
were able to forecast the semi-inhibitory concentration 
(IC50) values—a widely recognized metric indicative 
of the efficacy of chemotherapeutic drugs—for 
everyone within the TCGA cohort. By comparing 
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these IC50 values among different TTCRRS subtypes, 
we aimed to gain insights into the varying 
chemosensitivity patterns associated with TTCRRS. 

Nomogram construction and validation 
To further popularize TTCRRS, we incorporated 

age, grade, stage, and TTCRRS in the TCGA cohort 
using the R package “rms” [49]. Time-dependent 
receiver operating characteristic (time-ROC) analysis 
and C-index assessments were conducted to gauge the 
superior predictive accuracy and discriminatory 
capacity of the nomogram in contrast to other factors. 
This was executed leveraging the R packages 
“timeROC” [50] and “survcomp” [51]. The calibration 
curve and decision curve analysis (DCA) were plotted 
by the “rms” package and “rmda” package [52] to 
reflect the consistency between the predicted endpoint 
events and the authentic outcomes at 1 year, 3 years, 
and 5 years. To assess the reliability of our nomogram, 
we evaluated the performance of the nomogram using 
another independent cohort. 

Analysis of CMAPs and docking of molecules 
 The Connectivity Map (CMAP), an open 

resource, leverages multiple gene expression profiles 
to establish connections among genes, small 
molecules, and diseases [53]. In this process, 
Differential Expression Genes (DEGs) between high-
TTCRRS and low-TTCRRS groups were scrutinized to 
identify molecules associated with our model. 
Subsequently, scores for each drug molecule were 
computed. Following this, molecular docking 
simulations were executed using the Lamarckian 
genetic algorithm to explore the relationship between 
CYP51A1 and these small molecules. The protein 
crystal structure of CYP51A1 was obtained from the 
RCSB Protein Data Bank (https://www.rcsb.org/), 
while the three-dimensional structures of all target 
compounds were sourced from the PubChem 
database (https://pubchem.ncbi.nlm.nih.gov/) in 
MOL2 format. Eventually, the molecular docking was 
performed utilizing AutoDock Vina and the outcomes 
were visualized through the Pymol 2.1 software. 

Culture and transfection of cells  
The 786O cell line, representing human clear cell 

renal cell carcinoma (ccRCC), underwent cultivation 
and maintenance in RPMI-1640 medium (HyClone, 
Logan, UT, USA), complemented with 10% fetal 
bovine serum (FBS, Gibco, Carlsbad, CA, USA) and 1% 
penicillin-streptomycin solution, adhering to standard 
conditions of incubation at 37 °C in a 5% CO2 
atmosphere. In our quest to elucidate the functional 
intricacies of CYP51A1 within ccRCC, we employed 
precise transfection methodologies to finely modulate 
CYP51A1 expression in 786O cells. This encompassed 

transfections with either negative control small 
interfering RNA (si-con) or distinct siRNA variants 
(siRNA-1/siRNA-2/siRNA-3), specifically targeting 
CYP51A1 for precise knockdown. Furthermore, 
cellular transfections incorporated both an empty 
overexpression vector and CYP51A1-overexpression 
plasmids (CYP51A1-OE). The transfection procedures 
meticulously adhered to Lipofectamine 3000 reagent 
(Invitrogen) protocols, meticulously executed for 
optimized efficiency. Through this rigorously 
controlled experimental paradigm, we orchestrated a 
deliberate modulation of CYP51A1 expression levels, 
affording us a comprehensive and nuanced 
exploration into its multifaceted functional 
ramifications within the intricate landscape of ccRCC. 

Extraction of total mRNA and real-time 
quantitative PCR 

The isolation of total RNA sequences was 
achieved through the utilization of TRIzol reagent 
(Invitrogen, Carlsbad, CA) from both transfected and 
control cell samples. qRT-PCR reactions were 
conducted in triplicate using SYBR® Premix Ex Taq™ 
(Takara), following the manufacturer’s recommended 
protocols. The primers specific to CYP51A1 were 
employed in this process, comprising forward primer 
5’-GAAACGCAGACAGTCTCAAGA-3’ and reverse 
primer 5’-ACGCCCATCCTTGTATGTAGC-3’. Post-
qRT-PCR, the relative quantity of CYP51A1 expression 
was determined through the 2−ΔΔCt calculation 
method, normalizing against GAPDH utilized as the 
internal standard. 

Isolation of proteins and western blot analysis  
The extraction of proteins from 786O cells 

involved the use of RIPA lysis buffer (Beyotime 
Biotechnology Shanghai, China), followed by 
concentration utilizing the bicinchoninic acid protein 
assay kit (Beyotime Biotechnology, Shanghai, China). 
For protein analysis, samples underwent separation 
via electrophoresis on 6% or 10% SDS gels and were 
subsequently transferred to methanol-activated 
polyvinylidene fluoride (PVDF) membranes. These 
membranes underwent blocking with 5% bovine 
serum albumin (BSA) for 1 hour at room temperature 
and were then incubated overnight at 4 °C with 
primary antibodies, including anti-CYP51A1 (1:1000, 
AB210792, Abcam), anti-GAPDH primary antibody 
(1:5000, 4000-1-Ig, proteintech), anti-P105/P50 (1:1000, 
13586, Cell Signaling Technology), anti-P65 (1:1000, 
8242, Cell Signaling Technology), and anti-P-P65 
(1:1000, 3033, Cell Signaling Technology). Following 
three washes with TBST, membranes were subjected to 
incubation with secondary antibody goat anti-rabbit 
IgG conjugated with HRP (1:5000, 96714, Cell 
Signaling Technology) at room temperature for 60 
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minutes. Subsequently, after three additional washes 
with TBST for 10 minutes each, the protein bands were 
visualized using ECL-plus™ western blotting 
chemiluminescence kits (BD Biosciences, NJ, USA). 

Assay for Cell Counting Kit-8 (CCK-8) 
A seeding density of 1 × 10^3 786O cells per well 

was maintained in individual wells of 96-well plates. 
To gauge cell proliferation, the CCK-8 assay (Dojindo, 
Kumamoto, Japan) was employed, following the 
manufacturer’s provided protocols, over a span of five 
consecutive days starting from day 1. In essence, 10 μL 
of CCK-8 solution was introduced into each well, 
followed by a 1-hour incubation period. Subsequently, 
the optical density (OD) of each well was measured at 
450 nm using a spectrophotometer. Rigorous triplicate 
experimentation was undertaken to ensure robust 
statistical validation of the results. 

Transwell assay 
A cell suspension containing 2 × 10^4 cells in 200 

μL of FBS-free medium was seeded into the upper 
compartment of Boyden Transwell chambers (8 μm 
pore size, 24-well format; Corning Co., New York, NY, 
USA), which were then placed into a 24-well plate. The 
lower chamber was filled with culture medium 
supplemented with 10% FBS, serving as a 
chemoattractant. Subsequently, cells were allowed to 
migrate for 48 hours at 37 °C. Post-incubation, the cells 
residing on the upper surface of the membrane were 
meticulously wiped off, while those on the lower 
surface were fixed using a 4% paraformaldehyde 
solution. Staining with 0.1% crystal violet facilitated 
visualization and quantification of cells that had 
successfully traversed the membrane, enabling 
assessment of their migratory capacity. 

Assay for wound healing 
ccRCC cells were evaluated for their migration 

ability in a wound-healing assay. The 786O cells were 
seeded into 6-well plates at 90% confluence after 48 h 
of transfection. Incubation and monolayer formation 
were performed on the cells. Using a 200 l Eppendorf 
tip, a wound was created by gently and mechanically 
scratching the cell monolayer. Following 24 hours of 
incubation, observations of the 6-well plates were 
made using a light microscope (400×; Nikon N-E; 
Nikon Corporation, Tokyo, Japan). Changes in scratch 
closure were quantified and compared among 
experimental groups utilizing ImageJ software, 
providing a comprehensive assessment of migration 
dynamics. 

Multiplex immunohistochemistry 
Tissue samples, comprising normal tissues, RCC 

tissues, RCC-TT tissues, alongside associated 

clinicopathologic data from 197 patients, were 
obtained from the Fudan University Cancer Hospital 
and subsequently utilized to construct a tissue 
microarray. To unravel the relationship between the 
Tumor Microenvironment (TME), particularly 
focusing on CD8+ and CD4+ T cells, and the 
expression patterns of CYP51A1, we conducted 
multiplex immunohistochemistry (mIHC) utilizing 
anti-human CD4 (Abcam, ab133616), CD8 (Abcam, 
ab217344), and CYP51A1 (Abcam, AB210792) 
antibodies. This robust approach enabled a 
comprehensive exploration of the intricate interplay 
between immune cell populations and the signaling 
pathways of CYP51A1 within the TME. 

In vivo xenograft assay 
All experimental procedures underwent prior 

approval by the Ethics Review Committee for Animal 
Experimentation at Fudan University. In this study, a 
cohort of 107 786O cells, categorized into si-CYP51A1, 
OE-CYP51A1, or control groups, were suspended in 
100μl of PBS buffer and orthotopically implanted into 
the flanks of nude mice. After a 4-week observation 
period, humane euthanasia was performed on the 
mice, followed by the meticulous dissection and 
subsequent weighing of the in vivo solid tumors to 
enable comprehensive analysis. 

Chromatin immunoprecipitation (CHIP) 
The CHIP assay was executed in accordance with 

the prescribed procedures delineated within the user 
manual for the EZ‐Magna G Chromatin 
Immunoprecipitation kit (Millipore). Quantitative 
assessment of occupancy levels was performed via 
PCR analysis, comparing samples that underwent 
precipitation with a specific antibody against those 
subjected to precipitation with control 
immunoglobulin G (12–371; Millipore). The evaluation 
involved the utilization of specific primers, as outlined 
and specified in the corresponding SFigure 19. 

Statistical analysis 
All data processing, visualizing, and statistical 

analysis were carried out using R 4.2.1 and Python 
3.8.5. Continuous variables were compared using 
Student’s t-test or Wilcoxon rank-sum test and the chi-
squared test was adopted to compare categorical 
variables. Pearson’s correlation was utilized to 
calculate correlations between two continuous 
variables. Samples were divided into two groups 
based on the optimal cut-off value of TTCRRS using 
the R package “survminer”. The Kaplan-Meier 
survival curves were established by the R package 
“survminer” and the difference in prognosis between 
the two groups was estimated by the two-sided log-
rank test. Besides, the ComparedC package was 
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performed to compare the C-indices of different 
clinical variables. The time-dependent AUC of 
survival variables was generated by the timeROC 
package. All the P-values were two-sided, and the 
results were regarded as statistically significant when 
the P-values were less than 0.05. 

Results 
TTCRG somatic alteration landscape  

Our study’s comprehensive design has been 

thoughtfully delineated in Figure 1 for readers’ 
convenience. To elucidate the intricate genomic 
attributes of TTCRGs in RCC, an investigation into the 
SCNA and mutation frequency was undertaken 
utilizing data from 321 KIRC patients in the TCGA 
cohort. In examining these TTCRGs, it was observed 
that approximately 54.52% of patients exhibited DNA 
mutations within TTCRGs, showcasing an overall 
DNA mutation prevalence ranging from 2% to 17% 
(Figure 2A, B).  

 

 
Figure 1. The workflow of our study. 
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Figure 2. The genomic alterations of CRGs in RCC. (A) OncoPrint depicts the mutation profile of the top 20 frequently mutated genes. Each row represents a gene, and each 
column represents a patient. (B) Gene alteration frequency of RCC patients in TCGA cohort. (C) Histogram of the proportion of different SCNA mutation groups in RCC. 
(D-E) RCC patients’ overall survival and relapse-free survival between SCNA altered and unaltered groups. (F) Histogram of the proportion of different SCNA types in RCC. 
(G) The lollipop chart displays the SCNA proportion of CRGs. 

 
Predominant mutation styles of TTCRGs 

included Missense_Mutation, Frame_Shift_Del, 
Nonsense_Mutation, Translation_Start_Site. Notably, 
the top 10 TTCRGs with the highest mutation 
frequencies were TTN (17%), BAP1 (11%), MTOR (7%), 
PTEN (4%), CENPF (3%), ERBB4 (3%), LRP1 (3%), 
NPHP3 (3%), NOTCH (2%), and RALGAPA1 (2%) 

(Figure 2A, Figure S1A). Kaplan-Meier survival 
analysis uncovered those patients with altered SCNA 
faced a poorer prognosis compared to those with 
unaltered SCNA (Figure 2D-E). However, statistical 
significance was not observed between high and low 
mutation groups (Figure S1C-D). Event frequencies 
pertaining to alteration in the top 10 TTCRGs based on 



Int. J. Biol. Sci. 2024, Vol. 20 
 

 
https://www.ijbs.com 

3598 

mutation and SCNA data were depicted in Figure 2C 
and Figure S1B, respectively. Interestingly, within 
TTCRGs, the primary alteration types identified in the 
SCNA dataset were amplification and deep deletion 
(Figure 2F). Moreover, specific TTCRGs displayed 
distinct alteration patterns, with some genes 
showcasing amplification without deep deletions 
(LMAN2, F12, BTNL8, RASGEF1C, FBXW11, STK10, 
LCP2, and DOCK), while others exhibited deep 
deletions without amplifications (ITPR1, BAP1, 
BRPF1, and ROBO2) (Figure 2G). In conclusion, it was 
inferred that dysregulation and unfavorable prognosis 
of TTCRGs in RCC primarily stemmed from SCNA. 

Development, validation, and immune 
landscape of TTC subtypes 

The tumor immune microenvironment 
constitutes a multifaceted ecosystem pivotal in both 
cancer progression and the response to immune 
therapies [54]. In recent years, immunotherapy 
checkpoint inhibitors (ICI) have become a key 
component of treatment for many types of cancer. PD-
1 blockade has significant transformative implications 
for the treatment of advanced ccRCC, and anti-PD-1 
therapy is now a standard care option in both frontline 
and refractory treatment settings. As is well known, 
unlike other solid tumors, RCC is characterized by 
increased infiltration of immune cells and increased 
angiogenesis [55]. In RCC, immune cells may 
experience specific metabolic dysregulation, 
characterized by impaired glucose uptake, glycolysis, 
and mitochondrial function [56]. These metabolic 
impairments restrict immune cell activation and 
cannot be restored by PD-1 axis inhibition [56]. 
Additionally, immune cells infiltrating RCC exhibit 
high heterogeneity in their activation status and 
cytotoxic potential. Therefore, regardless of the overall 
abundance of immune cells, the presence of specific 
subsets (such as stem-like TCF1+ or PD-1+ TIM-3− 
LAG-3− CD8+ T cell subsets) may be crucial for 
eliciting effective anti-tumor responses [57-58]. Renal 
cancer thrombus, as a unique state, may exhibit 
different levels of immune cell infiltration compared to 
primary renal cancer. This could be attributed to 
distinct microenvironments within renal cancer 
thrombi compared to the primary tumor, leading to 
alterations in immune cell response and distribution. 
Thus, to further explore the immune cell infiltration 
between TCC subtypes, we first use some algorithms 
to appropriately subgroup in different cohorts.  

In addition, to ensure the consistency and 
validity of our subtyping methodology, three 
clustering methods (CC, CNMF, and SNF-CC) were 
rigorously utilized to perform this procedure and their 
performance of them was evaluated with the 

following three criteria: (1) The significance of 
differences in survival profiles among subtypes can be 
assessed by a log-rank test of Kaplan-Meier curves; (2) 
Average silhouette width (ASW), which could reflect 
the coherence of clusters, to estimate whether samples 
are more parallel to subtypes; (3) clustering heatmap 
was generated to visualize the clustering effects of 
samples. The consensus clustering CDF curves in the 
three methods both indicated that the best number of 
clusters was 2 (Figure 3B, Figure S2E-H). Our results 
indicated that CNMF presented comprehensive 
advantages where cluster 1 consists of 352 patients and 
cluster 2 has 180 patients. All three clustering 
algorithms could clearly distinguish patients with 
survival information between two clusters (CNMF: P 
value = 1.39e-12, CC: P value = 4.08e-10, SNFCC: P 
value = 2.47e-08) (Figure 3F, Figure S2F-I). Then, for 
the ASW, the CNMF method outperforms the other 
two methods (CNMF = 0.99; CC = 0.66; SNFCC = 0.76). 
The figures, particularly Figure S2A-C, exhibit distinct 
demarcations between color blocks, each representing 
individual patients. Notably, the CC method 
illustrates pronounced block characteristics, while the 
SNFCC method maintains a moderate level of 
similarity within a cluster but tends to lack precision 
in defining boundaries (Figure 3A, Figure S2D-G). 
Remarkably, the two clusters demonstrated significant 
disparities in immune infiltration levels, notably with 
C2 exhibiting higher immune cell infiltration 
compared to C1 (Figure 3C, D). Hence, C1 was 
categorized as “tumor thrombosis immune cold” 
tumors, whereas C2 was deemed “tumor thrombosis 
immune hot” tumors. To ensure the integrity and 
consistency of the clusters, multiple algorithms 
(TIMER, quanTIseq, MCP-counter, xCell, EPIC) and 
diverse cohorts (ICGC, E-MTAB-1980, and CM-025) 
were employed to validate the robustness and stability 
of the ssGSEA results (Figure 3C-F, 4A-F). 
Furthermore, Figure 3G depicted the relationship 
between the two clusters and various clinical features, 
offering further insights into their distinct 
characteristics and potential clinical implications. 

The stability and robustness of the subtypes (C1 
and C2) were further verified by assessing the 
landscape of immune cell infiltration across different 
cohorts (ICGC, E-MTAB-1980, CM-025). This 
assessment involved the utilization of MCP-counter 
results to define the composition of the Tumor 
Microenvironment (TME) in RCC. The TME 
composition was characterized using MCP-counter Z-
scores, and the expression levels of predictors 
associated with the functional orientation in the 
immune TME were compared between the two 
subtypes.  
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Figure 3. Consensus nonnegative matrix factorization of TTCRGs in RCC. (A) The consensus score matrix of all samples in the TCGA cohort for k = 2. A higher consensus 
score between two samples indicates they are more likely to be assigned to the same cluster in different iterations. (B) The CDF curves of the consensus matrix for each k (2-
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9) using the CNMF algorithm. (C) The heatmap shows the infiltration abundance of 28 immune cells calculated by ssGSEA between two clusters. Some clinical characteristics 
(TTC cluster, age, gender, stage and grade) were utilized as patient annotations. (D) The violin plot displays the distribution of 28 immune cell infiltration between two TTC 
clusters. (E) The box plot reveals the distribution of immune score inferred by the ESTIMATE algorithm between two TTC clusters. (F) Kaplan-Meier curve for OS between 
two TTC clusters in the TCGA cohort. (G) The alluvial diagram shows the changes in TTC clusters, grade, stage and status. **** means P < 0.0001. 

 
This comparison was conducted using 

Benjamini–Hochberg correction of two-sided Kruskal–
Wallis tests’ P-values. This rigorous analysis aimed to 
elucidate and validate the consistency of immune cell 
infiltration patterns across diverse cohorts and 
reaffirm the distinctions observed between the 
identified subtypes. Consistent with the observation 
from the TCGA results, the TME composition and 
immune infiltrates differ significantly between the two 
subtypes (C2 cluster, was characterized by the high 
expression of immune cells and immune-checkpoint-
related genes) (Figure S3A-C). Analogously, tumor 
microenvironment deconvolution revealed that 
immunocyte infiltration was notably higher in C2 than 
C1 subtype (Figure S3D). Intriguingly, we also found 
DNA methylation of tumor-infiltrating lymphocytes 
(MeTILs) was also higher in C2 subtype compared 
with C1 subtypes, as depicted in the immune profile 
heatmap. 

In a detailed investigation of pathway 
enrichment analysis between the two TTC clusters 
within the TCGA cohort, GSVA procedures revealed 
distinct expression patterns across 20 signaling 
pathways sourced from the KEGG database. Cluster 2 
notably exhibited pronounced enrichment in cancer 
cell signal regulatory pathways such as the JAK-STAT 
signaling pathway, VEGF signaling pathway, MAPK 
signaling pathway, and p53 signaling pathway. 
Additionally, immune and inflammatory pathways 
including the T-cell receptor signaling pathway, B-cell 
receptor signaling pathway, nod-like receptor 
signaling pathway, and toll-like receptor signaling 
pathway showcased heightened enrichment in Cluster 
2 (Figure S4A). Furthermore, GSEA analyses were 
conducted to delve deeper into the biological and 
clinical variances between the C1 and C2 clusters. 
These analyses revealed that DEGs between the 
clusters significantly manifested in pathways such as 
the IL-17 signaling pathway, NF-kappa B signaling 
pathway, Complement and coagulation cascades, and 
p53 signaling pathway (Figure S4B). Utilizing MeSH 
terms as the reference gene set in GSEA, DEGs were 
notably enriched in categories like Immunoglobulin G, 
Inflammation, Interleukin-10 receptor alpha subunit, 
and Immunologic receptors (Figure S4C, D). 
Subsequently, an exploration into the correlation 
between distinct clusters and histocompatibility and 
T-cell stimulators was undertaken. The findings 
unveiled higher expression levels of T-cell stimulators 
within the C2 cluster, whereas an inverse trend was 
observed in the major histocompatibility complex 

between the two clusters (Figure S4E, F). These 
intricate observations shed light on potential 
mechanisms underlying the differential biological and 
clinical characteristics between the identified clusters. 

Subsequently, our exploration extended to 
evaluating potential associations between TTC 
subtypes and various pivotal indicators, including the 
TMB score, immune checkpoint molecules, TIDE 
score, and responsiveness to chemotherapeutic drugs. 
Notably, the expression levels of PD-1, PD-L1, CTLA4, 
LAG3, TIGIT, and HAVCR2 were markedly higher in 
the C2 subtype compared to the C1 subtype. 
Additionally, both the TMB score and TIDE score were 
notably elevated in the C2 subtype. These differences 
in gene expression between the two TTC subtypes 
were statistically significant according to the Wilcoxon 
test (P < 0.05) (Figure S5A-C). Moreover, when 
scrutinizing the response to specific chemotherapeutic 
drugs, distinct trends were observed. Patients in the 
C2 subtype exhibited significantly increased estimated 
IC50 values for Sorafenib, Gemcitabine, Vinorelbine, 
and Vorinostat (P < 0.05). Conversely, a reverse trend 
was observed for Gefitinib, Sunitinib, Cisplatin, and 
Vinblastine, where the estimated IC50 values were 
notably lower in C2 subtype patients compared to 
those in the C1 subtype (P < 0.05) (Figure S5D). These 
findings underscore the potential influence of TTC 
subtypes on immune characteristics and response to 
specific chemotherapeutic agents, offering insights 
into personalized therapeutic strategies. 

TTCRGs generated from WGCNA 
In our Weighted Gene Co-expression Network 

Analysis (WGCNA), we determined the soft threshold 
β as 18, resulting in a scale-free R2 of 0.78 within the 
GSE48000 cohort. This parameter choice facilitated the 
construction of a scale-free network (Figure S6B). The 
sample dendrogram and trait heatmap of the VTE 
cohort were exhibited in Figure S6A. Subsequently, we 
identified a total of 14 gene modules represented by 
different colors within the GSE48000 cohorts, enabling 
cluster analysis (Figure S6C, D). Further scrutiny led 
to the selection of blue modules, demonstrating the 
highest correlation in the module-trait relationships, 
aiming to uncover genes associated with 
hypercoagulability (Figure S7A). Through scatterplots 
within the blue and cyan modules, we observed a high 
correlation coefficient of 0.64 between gene 
significance (GS) and module membership (MM), 
signifying the robustness and superior quality of our 
model construction (Figure S7B, P < 1e-200). 
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Figure 4. Validation of our TTC clusters criteria. (|A) Five other algorithms (TIMER, quanTIseq, MCP-counter, xCell and EPIC) further verified the robustness and stability of 
our ssGSEA results. (B-C) The box plot reveals the distribution of stromal scores and ESTIMATE scores inferred by the ESTIMATE algorithm between two TTC clusters. (D-
F) Kaplan-Meier curve for OS between two TTC clusters in the other 3 independent cohorts (ICGC, E-MTAB-1980, CM-025). **** means P < 0.0001. 
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Conducting Wilcoxon test comparisons on genes 
within these pivotal modules in GSE48000, we 
identified statistically significant differences between 
normal patients and VTE patients (P = 0.00054 for 
GSE48000), signifying potential implications of these 
genes in the hypercoagulable state (Figure S7C). These 
findings signify a potential association between 
specific gene modules and the hypercoagulability 
observed in VTE patients, shedding light on 
underlying molecular mechanisms. 

Integrative construction of a TTCRRS using 
machine-learning 

Our study embarked on the development of a 
prognostic TTCRRS by initially performing univariate 
Cox regression analysis for Overall Survival (OS), 
which led to the identification of 45 crucial TTCRGs 
within the TCGA cohort (Figure S7D). Subsequently, 
these 45 TTCRGs were integrated into a machine 
learning-based framework that employed 101 random 
combinations with 10 algorithms based on a Leave-
One-Out Cross-Validation (LOOCV) methodology 
within the TCGA-KIRC cohort. This process aimed to 
derive the most robust TTCRRS, optimizing for the 
highest C-index across multiple validation cohorts 
(CM-025, EMTAB-1980, GSE167573, ICGC) (Figure 
5A). Evidently, the optimal model, yielding a superior 
C-index of 0.631 across all validation cohorts, emerged 
through the combination of the LASSO and GBM 
algorithms (Figure 5A) and the coefficients of GBM 
was displayed in Table S2. The LASSO regression 
method identified the optimal sparseness parameter λ, 
minimizing the partial likelihood deviance through 
10-fold cross-validation with 1000 repeats (Figure 5B). 
Subsequently, the GBM algorithm was leveraged to 
determine hyperparameter values essential for 
constructing a high-performance TTCRRS, leading to 
the identification of a final set of 10 TTCRGs (Figure 
5C). To stratify patients based on risk, the 
corresponding equation is as following: 

� exp (gene) × coef(gene)
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔_𝑛𝑛

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔_1

 

This facilitated the segregation of patients into 
high- and low-risk groups using the optimal cutoff 
value in all cohorts (Figure S8A-F). Remarkably, the 
high-risk group consistently exhibited poorer Overall 
Survival (OS) compared to the low-risk group across 
multiple cohorts, including the TCGA-KIRC cohort, 
four validation cohorts, and the Meta-cohort (a 
combination of all samples) (all P < 0.05) (Figure 5D-I). 
These findings underscore the predictive potential and 
clinical relevance of the derived TTCRRS in stratifying 

RCC patients based on survival outcomes. 
The predictive accuracy of our TTCRRS model 

was assessed through the average Area Under the 
Curve (AUC) values for 1-year, 3-year, and 5-year 
Overall Survival (OS) across diverse cohorts. In the 
TCGA-KIRC cohort, the average AUC values were 
0.749, 0.718, and 0.737 for 1-year, 3-year, and 5-year 
OS, respectively. Conversely, the ICGC cohort 
displayed lower values at 0.522, 0.646, and 0.646 for 
the same OS intervals. The CM-025 cohort yielded 
AUC values of 0.664, 0.617, and 0.617, while the E-
MTAB-1980 cohort showed values of 0.704, 0.792, and 
0.792. In the GSE167573 cohort, the AUC values were 
0.693, 0.884, and 0.884, whereas the Meta-cohort 
presented values of 0.671, 0.635, and 0.635 (Figure 
S9A). Concurrently, the Harrell’s C-index was 
calculated across these cohorts, demonstrating values 
of 0.702 (95%CI: 0.611-0.780), 0.664 (95%CI: 0.459-
0.821), 0.596 (95%CI: 0.511-0.675), 0.753 (95%CI: 0.519-
0.896), 0.784 (95%CI: 0.378-0.956), and 0.614 (95%CI: 
0.558-0.667) in the respective cohorts (Figure S9B). 
Moreover, comparisons were made with the C-index 
of clinical characteristics displayed in Figure S9C. 
These indices collectively emphasize the stability and 
robustness of TTCRRS as a predictor across multiple 
independent cohorts, suggesting its potential clinical 
utility as a reliable prognostic tool. 

Comparison of TTCRRS in RCC 

In recent years, advancements in next-generation 
sequencing technologies have led to the discovery of 
numerous gene expression-based signatures using 
machine learning approaches. In our study, we 
compiled a comprehensive comparison involving 129 
signatures from published literature spanning the last 
three decades (Table S3). These signatures were 
intricately linked to various biological processes, 
encompassing immune infiltration, DNA methylation, 
metabolism, autophagy, tumor microenvironment, 
epithelial-mesenchymal transition, pyroptosis, 
hypoxia, glycolysis, immunotherapy response, 
telomere biology, ferroptosis, and necroptosis. 
Through univariate Cox regression analyses across all 
datasets for each signature from the published 
literature, our model, the TTCRRS, consistently 
demonstrated a significant correlation with prognosis 
in all datasets (Figure 5J). This comprehensive 
assessment further validates the robustness and 
reliability of our model in predicting patient outcomes. 
Furthermore, when comparing the Harrell’s C-index 
of TTCRRS with other models, our TTCRRS 
consistently outperformed most of the other models 
across all cohorts (Figure 6) (Table S4).  
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Figure 5. Development and validation of our TTCRRS by machine-learning integrative procedure. (A) 101 random combinations of 10 machine-learning algorithms by a 10-
fold cross-validation framework. The C-index of each model was further calculated across all validation cohorts (ICGC, GSE167573, CM-025 and E-MTAB-1980). (B) The 
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LASSO regression lambda filter. The optimal λ was generated when the partial likelihood of deviance reached the minimum value and the corresponding LASSO coefficients of 
each TTCRG were also obtained. (C) The coefficients of the top 10 TTCRGs were further filtered via the GBM machine-learning algorithm. (D-I) Kaplan-Meier curves of OS 
between patients with high-TTCRRS signature and low-TTCRRS signature in the TCGA-KIRC cohort, CM-025 cohort, E-MTAB-1980 cohort, GSE167573 cohort, ICGC and 
Meta-cohort. (J) Univariate Cox regression analysis of TTCRRS signature and other 129 signatures in multiple cohorts. 

 
Figure 6. C-indexes of TTCRRS and 129 published signatures in training cohorts (TCGA-KIRC, GSE167573, ICGC, E-MTAB-1980, CM-025, Meta cohort) and test cohorts 
(FUSCC and CPATC cohort). 

 
This observation underscores the superior 

performance of the TTCRRS in prognostication when 
compared to numerous established models from 
existing literature, highlighting its potential as a highly 
effective prognostic tool across diverse datasets. 

TTCRRS validated in proteomics cohorts 
To further test the performance of our model in 

protein expression, we used two proteomics databases 
(CPTAC and FUSCC cohorts) to calculate TTCRRS. 
Kaplan-Meier analysis in CPTAC and FUSCC cohorts 
showed that patients with the low TTCRRS subtype 
had a much better prognosis than those with the high 
TTCRRS subtype (Figure 7A, E, F). The AUCs of the 
TTCRRS for OS were 0.661 at 3 years, 0.694 at 4 years, 
and 0.86 at 5 years for the CPTAC cohort (Figure 7B). 
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Consistently, the AUCs of the TTCRRS for the FUSCC 
cohort (in-house cohort) were 0.578 at 3 years, 0.645 at 
5 years, and 0.57 at 8 years with OS prognosis (Figure 
7G), and 0.607 at 3 years, 0.64 at 5 years, and 0.625 at 8 
years with PFS prognosis (Figure 7H). Similarly, the C-
index for OS in the CPTAC cohort reached 0.649 
(0.391-0.843) (Figure 7C), and in the FUSCC cohort, the 
C-index of OS and PFS was 0.600 (0.446-0.738) and 
0.614 (0.490-0.725) (Figure 7K-L). In addition, we 
conducted multivariate Cox regression analyses to 
determine whether the TTCRRS was a clinically 
independent prognostic factor for RCC patients in 
proteomics cohorts. The results in the forest plot were 
visualized in (Figure 7D, I, J) implied that the TTCRRS 
could be served as an independent factor based on the 
expression of protein data. Collectively, although 
there was some degree of the predictive power of 
TTCRRS in proteomics data, obviously, our model had 
a superior accuracy in transcriptomic data. 

Implications of TTCRRS for immunotherapy, 
chemotherapy, and biological mechanisms 

Accumulating evidence has revealed that cancer 
immunotherapy has made striking progress, and 
revolutionized the paradigms of cancer therapy, 
which has been recognized as a promising therapeutic 
frontier [59-63]. Herein, we further assessed the 
predictive value of TTCRRS for immunotherapy 
response. However, published cohorts of RCC patients 
who received immunotherapy were limited. Instead, 
the urothelial cancer cohort (IMvigor210) that received 
anti-PD-L1 therapy, the malignant melanoma cohort 
(GSE91061) that received anti-PD-1 and anti-CTLA4 
therapy, the pre-treatment melanomas cohort 
(GSE78220) undergoing anti-PD-1 checkpoint 
inhibition therapy, the advanced non-small cell lung 
carcinoma cohort (GSE135222) that treated with anti-
PD-1/PD-L1, and the metastatic melanoma cohort 
(GSE35640) that received antigen-specific cancer 
immunotherapy were enrolled. The Sankey plot 
displayed the correlation of TTCRRS, cluster, and 
survival status. The high-risk group possesses a higher 
proportion of patients with mortality outcomes than 
those alive (Figure 8A). With the same formula, 
patients in these cohorts were also stratified into high 
or low risk subtypes in the light of the optimal cutoff 
generated from the training and validation cohorts, 
respectively. Kaplan-Meier analysis demonstrated 
that patients with the high-risk subtype had a much 
worse prognosis than those with the low-risk subtype 
in the IMvigor210 cohort (Figure 8C), the GSE91061 
cohort (Figure 8F), the GSE78220 cohort (Figure 8I) 
and the GSE135222 cohort (Figure 8L) (all P < 0.05). 
Meanwhile, the AUCs of our model for survival 
prognosis were 0.601 at 9 months, 0.615 at 12 months, 

and 0.61 months at 18 months for the IMvigor210 
cohort (Figure 8D), 0.814 at 12 months, 0.792 at 24 
months, and 0.851 at 36 months for the GSE91061 
cohort (Figure 8G), 0.792 at 12 months, 0.732 at 18 
months, and 0.726 at 24 months for the GSE78220 
cohort (Figure 8J), 0.771 at 3 months, 0.714 at 6 months, 
and 0.734 at 9 months (Figure 8M). For each cohort 
with response to immunotherapy, attention must be 
paid to the boxplots, which can be seen that the 
TTCRRS values were significantly elevated in patients 
with SD or PD when compared with those with CR or 
PR (P = 0.002 for IMvigor210 cohort, P = 0.005 for 
GSE91061cohort, P =0.014 for GSE78220 cohort) 
(Figure 9E, H, K). Of note, patients in the GSE35640 
cohort with low risk were more likely to respond to 
antigen-specific cancer immunotherapy (Figure 8N). 
The predictive value of the TTCRRS values to 
immunotherapy was also verified by the waterfall 
plots in the IMvigor210 cohort (Figure 9B). By 
comparing the IC50 values between two TCCRRS 
subtypes, we realized that patients in high-risk 
subtype were sensitive to Gefitinib (P=4.1e-08), 
Sunitinib (P<2e-16) and Vinblastine (P < 2e-16), 
whereas the low-risk subtype was sensitive to 
Gemitabine (P=1.4e-05), Sorafenib (P=5.3e-10) and 
Vinorelbine (P=1.2e-06) (Figure S10). 

We then investigate the differences in the 
immune characteristics between the high and low risk 
subtypes. Cell infiltration analysis showed a 
remarkably positive correlation between TTCRRS and 
immune infiltration abundance in both the TCGA-
RCC and Meta-cohort (Figure 9A, B, Figure S11A). As 
a labeled molecule in killer T cells, there was a 
predominant association between CD8A and PD-1, 
PD-L1 and CTLA4 in the TCGA cohort and Meta 
cohort (TCGA cohort: r = 0.89 with PD-1, r = 0.37 with 
PD-L1, r = 0.71 with CTLA4, all P value < 2.2e-16; Meta 
cohort: r = 0.95 with PD-1, r = 0.47 with PD-L1, r = 0.64 
with CTLA4, all P value < 2.2e-16) (Figure 9F, Figure 
S11B). Likewise, the scatter plot of TTCRRS and CD8A, 
PD-1, CTLA4 also illustrated a positive correlation 
(CD8A: r = 0.13, P = 2.51e-03; CTLA4: r = 0.26, P = 1.26e-
09; PD-1: r = 0.24, P = 1.78e-08) (Figure S12A, C, D). 
Interestingly, a negative correlation between TTCRRS 
and PD-L1 was found in Figure S12B (r = -0.12, P = 
5.07e-03). We also investigated some signatures that 
can activate immune responses [64-69], the expression 
levels of CXCR3, CCL5, LAG3, IFNG, TIGIT and 
ZNF683 were higher in the high-risk subtype 
compared with the low-risk subtype (all P < 0.05) 
(Figure S12E-J). Of note, strong positive associations 
were also found between TTCRRS values and these 
signatures indicated that the increased TTCRRS values 
were correlated with the increased antitumor immune 
response (Figure S12K-P). 
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Figure 7. Validation of TTCRRS signatures in the protein cohorts (CPTAC and FUSCC cohort). (A) Kaplan-Meier curve of OS between high TTCRRS and low TTCRRS in 
the CPTAC cohort. (B) Time-dependent ROC analysis for predicting OS at 1, 3 and 5 years in the CPTAC cohort. (C) The predictive performance of TTCRRS when compared 
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with traditional clinical variables to predict OS at the protein level is based on the CPTAC cohort. (D) The forest plot illustrates the Multivariate Cox regression analysis of 
OS in the CPTAC cohort. (E-F) Kaplan-Meier curve of OS and PFS between high TTCRRS and low TTCRRS in our in-house cohort. (G-H) Time-dependent ROC analysis for 
predicting OS and PFS at 3, 5 and 8 years in our in-house cohort. (I-J) The forest plot illustrates the Multivariate Cox regression analysis of OS and PFS in our in-house cohort. 
(K-L) The predictive performance of TTCRRS when compared with traditional clinical variables to predict OS and PFS at the protein level is based on our in-house cohort. 

 
Meanwhile, the distribution of tumor immune 

cell infiltrations by these two TTCRRS subtypes was 
visualized in the boxplot (Figure 9C, Figure S11C). The 
high-risk subtype had significantly higher proportions 
of activated dendritic cell, natural killer cell, CD4 T 
cell, CD8 T cell, B cell et al. To better understand 
immune cell infiltration between two subtypes, we 
collected 181 immune cell signatures from diverse 
research through an extensive literature search [70-74] 
(Table S5). Similarly, we also found that high-risk 
patients tended to have more immune cell signatures, 
which is consistent with the above results (Figure S13-
16). Above funding implied that patients with high-
risk owned more backup resources for 
immunotherapy. 

GSVA was performed to elucidate which 
pathways were enriched and depleted between two 
subtypes. (Figure 9D, Figure S11D) highlighted those 
related genes highly expressed in the high-risk 
subtype showed significant enrichment in multiple 
cancer-related pathways such as IL6-JAK-STAT3 
signaling, Wnt-β-catenin signaling, Kras signaling and 
IL2-STAT5 signaling based on the TCGA cohort and 
Meta cohort. Subsequently, some immunotherapy-
predicted pathways were performed to investigate the 
correlations between TTCRRS and the predicted 
immune checkpoint blockade (ICB) response 
signatures. According to the results of the TCGA 
cohort and Meta cohort, we found TTCRRS was 
positively correlated with the enrichment scores for 
most immunotherapy-predicted positive signatures 
(Figure 9E, Figure S11E). As expected, the association 
between TTCRRS and enrichment pathways based on 
GSVA algorithm was also visualized in (Figure 9E, 
Figure S11E).  

TTCRRS for nomogram construction 
To provide doctors with a quantitative tool to 

predict the prognosis of RCC patients with tumor 
thrombosis, a nomogram that integrated TTCRRS and 
other clinical information was constructed and 
validated in the training cohort (TCGA dataset) and 
validation cohort (Meta dataset). Then, a TTCRRS for 
patients was calculated to predict an individual’s 1-, 3-
, and 5- overall survival based on the nomogram. It is 
noteworthy that the TTCRRS was found to contribute 
the most risk points when compared with other 
clinical characteristics (Figure 10A, E). The AUC of our 
nomogram model in the training cohort and validation 
cohort for predicting 1-, 3- and 5-year were 0.877, 
0.829, 0.808, 0.742, 0.812, 0.818, respectively (Figure 

10B, F). The C-indices of TTCRRS in the two cohorts 
both showed the optimum performance of the 
nomogram (TCGA cohort: 0.792, 95%CI: 0.766-0.827; 
Meta cohort: 0.780, 95%CI: 0.717-0.844). Besides, the 
calibration curves of the training cohort and validation 
cohort were illustrated in (Figure 10C, G). The 
calibration curves fitted well with the ideal curves (the 
idealized 45° line) in the training cohort and validation 
cohort, especially for the calibration curves of 5-year 
overall survival. Furthermore, the nomogram 
displayed a higher net benefit for decision curves than 
other clinical factors to predict the overall survival 
probability (Figure 10D, H). 

Identification of hub gene and TF, CMAP 
analysis and molecular docking 

In the realm of predictive modeling, machine 
learning methods have gained significant attention 
due to their ability to handle diverse features. To gain 
a deeper understanding of the features employed by 
our predictive model, we utilized SHAP (Shapley 
Additive Explanation) values, a Python-based “model 
interpretation” package, that can be used to interpret 
the output of a machine-learning model and quantify 
the contribution of each feature to the model’s 
prediction results. To this end, we determined the 
optimal features for 10 machine-learning algorithms 
(Adaboost, Catboost, Decision Tree, GDBT, LGBM, 
Linear regression, Random Forest, Ridge regression, 
SVM and XGBoost) and ranking approaches. Figure 
S17A-J and Table S6 showed the accuracy of 10 
machine-learning algorithms. Among them, SVM 
emerged as the best algorithm for our TTCRRS model, 
exhibiting excellent prediction performance. When 
examining the ten TTCRGs, the SHAP values derived 
from the model interpretation using the ten machine 
learning algorithms demonstrated that all these 
features had a positive impact on the predictions. 
Notably, CYP51A1 emerged as the feature with the 
most substantial contribution to the predictive model 
(Figure 11A-J). Using supervised clustering based on 
the SHAP value, samples with the same model output 
were clustered together, for example, samples with a 
global effect on CYP51A1 were pooled together 
(Figure 11K). Figure 11L showed the resulting feature-
baseda SHAP summary plot and the top score with the 
highest SHAP feature importance was CYP51A1. In 
the SHAP decision plot (Figure 11M), CYP51A1 
possessed the lowest error rate in the predictive 
model. 
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Figure 8. Immune landscape of the TTCRRS signatures. (A) Sankey plot visualized the relationships among the TTC clusters, TTCRRS and survival status. (B) Waterfall plot 
illustrates the distribution of TTCRRS for patients exhibiting different immunotherapeutic responses in the IMvigor210 cohort. (C, F, I) Kaplan-Meier curve analysis of OS 
between high TTCRRS and low TTCRRS in the IMvigor210, GSE91061, and GSE78220 cohorts. (D, G, J) Time-dependent ROC analysis for predicting OS in the IMvigor210, 
GSE91061, and GSE78220 cohorts. (E, H, K, N) Boxplot displays the TTCRRS signature in patients with different immunotherapy responses in the IMvigor210, GSE91061, 
GSE78220, and GSE35640 cohorts. (L) Kaplan-Meier curve analysis of PFS between high TTCRRS and low TTCRRS in the GSE135222 cohort. (M) Time-dependent ROC 
analysis for predicting PFS in the GSE135222 cohort. Significance: * < 0.05, ** < 0.01, *** < 0.001. 
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Figure 9. Function annotation of the TTCRRS signature based on the TCGA cohort. (A) The relationship between TTCRRS and 28 immune cell infiltrations. (B) Chorogram 
plot depicts the Pearson r value between TTCRRS and immune cell infiltrations in TCGA and Meta cohorts. (C) Violin plot shows the relationship between 28 immune cell 
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infiltrations and the TTCRRS subtype. (D) Difference in pathway activities scored per patient by GSVA between high- and low-TTCRRS. Shown are t values from a linear model. 
(E) Butterfly plot illustrates the correlation between the TTCRRS and metabolic pathways, the enrichment pathways based on GSVA of GO and KEGG terms. (F) Scatterplots 
between CD8A and PD0-1, PD-L1, and CTLA4 with the TTCRRS were shown in the TCGA-KIRC. 

 
As a part of our effort to identify potential small 

molecules related to our TTCRRS, we performed a 
CMAP analysis. Then, the Table S7 below lists ten 
small-molecule drugs with highly significant 
correlations. Next, ten machine-learning algorithms 
docked these 10 compounds with the top scores for 
SHAP features (CYP51A1) (Table S8). Based on their 
binding energy of -5 kcal/mol, both compounds 
showed a high affinity for CYP51A1. In addition, the 
top five high-affinity compounds combined with 
CYP51A1 were also visualized in 3-D (Figure S19A). 

To examine transcription factors that might affect 
CYP51A1 gene transcription in further detail, we 
examined factors of potential molecular networks that 
may affect CYP51A1 expression (Figure S18A). 
Subsequently, we figured out whether some 
significant correlation exists between these TFs and 
CYP51A1. Most TFs exhibited a strong correlation 
with CYP51A1 (BRD4: r = 0.37, P < 2.2e-16; SMAD2: r 
= 0.58, P < 2.2e-16; POLR2A: r = 0.59, P < 2.2e-16; 
CHD7: r = 0.44, P < 2.2e-16; SUZ12: r = 0.62, P < 2.2e-
16; TRRAP: r = 0.68, P < 2.2e-16 (Figure S19B). After 
that, to investigate the biological function of CYP51A1, 
the single-cell database “CancerSEA” was adopted. 
Functional relevance analysis revealed a positive 
correlation between CYP51A1 expression and hypoxia 
(r = 0.56, P < 0.001) (Figure S18B, C). 

CYP51A1 regulates the proliferation and 
migration properties of RCC in vitro and in 
vivo 

 Subsequently, we explored the expression 
pattern of CYP51A1 across different tissues. We found 
the expression of CYP51A1 was downregulated in 
tumor tissues compared with normal tissues (P = 3.5e-
07) (Figure 12A). These findings were consistent at the 
protein level as well, as demonstrated in the FUSCC 
cohort (P = 0.0037) (Figure 12D). Furthermore, when 
comparing the expression levels of CYP51A1 among 
normal tissues, primary RCC (pRCC), and metastatic 
RCC (mRCC) samples, we observed that CYP51A1 
exhibited the highest expression in normal tissues, 
followed by pRCC and mRCC (Figure 12B). Of note, 
within tumor samples, the expression level of 
CYP51A1 in mRCC was relatively diminished 
compared to pRCC (GSE105261: P=0.0016; GSE73121: 
P=7.9e-10) (Figure 12B, C). The meticulous analysis of 
CYP51A1 expression modulation in 786O cells 
following transfection with siRNA or overexpression 
plasmids underscores its significant impact on cellular 
behavior. The evident decrease in both CYP51A1 

mRNA and protein levels post-siRNA transfection 
establishes a clear relationship between CYP51A1 
knockdown and reduced gene expression. Conversely, 
the marked upregulation of CYP51A1 mRNA and 
protein in the overexpression-transfected group 
highlights the effectiveness of this technique in 
altering the cellular abundance of CYP51A1 (Figure 
12E, F). The functional implications of these alterations 
were further explored through a CCK-8 assay, 
revealing a substantial increase in cell proliferation 
upon CYP51A1 downregulation and a contrasting 
decrease in cell proliferation upon CYP51A1 
overexpression when compared to control group cells 
(P < 0.0001) (Figure 12G, H). These findings vividly 
demonstrate the pivotal role of CYP51A1 in 
modulating cell proliferation, emphasizing its 
potential as a regulator of cellular behavior in RCC. 

When compared with the control group, tumors 
in the si-CYP51A1 group grew significantly faster (P < 
0.01) and their tumor wet weights increased 
significantly (P < 0.01) (Figure 13A-D). Additionally, 
in comparison to the OE-vector group, both tumor 
volume (P<0.05) and weight (P<0.05) were notably 
reduced in the OE-CYP51A1 group (Figure 13E-H). 
Moreover, transwell assays exhibited a significant 
increase in the migration capacity of 786O cell lines 
upon CYP51A1 depletion, whereas CYP51A1 
overexpression led to decreased migration ability 
(Figure 12I). Further supporting these findings, the 
wound healing assay indicated significantly reduced 
scratch closure in the CYP51A1-overexpression- 
transfected group compared to the normal control 
group after 24 hours (P < 0.0001) (Figure 12J). These 
comprehensive results emphasize the multi-faceted 
influence of CYP51A1 on RCC, portraying its 
involvement in tumor growth, migration, and wound 
healing dynamics. CHIP assays were conducted to 
determine whether SMAD2 binds to the same region 
of the CYP51A1 promoter as CYP51A1, concluding 
that SMAD2 may serve as TF to regulate CYP51A1. 
Figure 13J–L shows a remarkable enrichment of this 
promoter fragment with specific antibodies against 
SMAD2, but not isotype IgG (PCR amplification with 
primers shown here) (Figure 13J). In addition, we also 
detected changes in signaling pathways downstream 
(NF-κB signaling pathway) of CYP51A1. Compared 
with the OE-Vector group, the protein expression of 
P105/P50, P65 and P-P65 was decreased in the OE-
CYP51A1 group. Additionally, this elucidates that 
CYP51A1 can suppress tumor proliferation by 
modulating the NF-KB pathway (Figure 13I).  
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Figure 10. Nomogram development and validation based on TTCRRS. (A, E) Nomogram for predicting probabilities of RCC patients with 1-, 3-, and 5-year OS outcomes in 
the training (TCGA) and validation cohorts (Meta-cohort). (B, F) Time-dependent ROC curve at 1, 3 and 5 years in the training cohort and validation cohort. (C, G) The 
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calibration plots for predicting RCC patients with 1, 3, and 5-year OS in the training and validation cohorts. The nomogram’s ideal performance is shown by the dashed lines. 
(D, H) The decision curve analysis of nomogram and other clinical factors for 1, 3, and 5-year risk. Black line represents the hypothesis that no patient died after 1-, 3-, and 5-
years. 

 
Figure 11. Hub gene identification via 10 machine-learning algorithms. (A-J) Feature importance ranking within our TTCRRS signature using 10 machine-learning algorithms 
(AdaBoost, CatBoost, Decision Tree, GDBT, LGBM, Linear regression, random forest, Ridge regression, SVM and XGBoost). (K) A heatmap plot of the SHAP values for the 
top 10 features in the training cohort. (L) The summary plot shows how a feature’s effect on the output changes with its own value. For each feature, high values are shown in 
red and low values are in blue. For example, it appears that CYP51A1 is positively and negatively correlated with the log odds of TTCRRS. Features are ordered on the y-axis 
by their average SHAP importance value across the three classes. (M) SHAP decision plot for TTCRRS shows how the model’s prediction was made for a single observation. 
Each line represents the log odds for a single class. The features are on the y-axis and sorted by the average SHAP value for that observation. The lines intercept the top x-axis 
at their final log odds value. The maximum log odds value class is used as the model’s output. 
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Figure 12. CYP51A1 inhibits the proliferation and migration capacities of ccRCC cells. (A) CYP51A1 expression profiling of 101 pairs of ccRCC patients based on the 
GSE40435 cohort. (B) CYP51A1 expression of normal, primary ccRCC and metastatic ccRCC patients based on the transcriptome profiling GSE105261 cohort. (C) CYP51A1 
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expression profiling of PDX-pRCC and PDX-mRCC based on the GSE73121 cohort. (D) The difference in CYP51A1 protein levels between normal and tumor tissues. (E-F) 
Western blotting and RT-qPCR assay of CYP51A1 expression in transfected 786O cell lines. (G-H) CCK-8 assays showed the effect of CYP51A1 knockdown (g) and 
overexpression (h) on the proliferation of 786O cells. (I) Representative images of the migration assays performed using 786O cells. Scale bars, 100 μm. (J) In vitro scratch 
migration assay in transfected 786O cell lines. (K) The expression of CYP51A1, CD4 and CD8 molecules in tissue detected by multiplex immunohistochemistry. (L-N) The 
quantification of CYP51A1, CD4 and CD8 signals. (O) The correlation of CYP51A1 and CD8 molecules. Significance: * < 0.05, ** < 0.01, **** < 0.0001. 

 
 
To elucidate the role of CYP51A1 in immune 

escape within the tumor microenvironment, we 
conducted multiplex immunohistochemistry on RCC, 
RCC-TT, and para-tumor tissues to assess CYP51A1 
expression across various cell types in these tissues. 
Our observations revealed significantly lower 
CYP51A1 expression in both RCC and RCC-TT tissues 
compared to adjacent tissues. Interestingly, no 
substantial difference was noted in CYP51A1 
expression between RCC and RCC-TT tissues (Figure 
12K, L). In contrast, quantification of immunofluo-
rescence signals demonstrated that RCC-TT tissues 
exhibited the highest infiltration of CD4/CD8+ T cells, 
while adjacent tissues displayed the lowest 
CD4/CD8+ T cell infiltration (Figure 12M, N). 
Moreover, Figure 12O illustrates a strong correlation 
between CYP51A1 expression and CD8. Notably, as 
depicted in Figure 12K, CYP51A1 was co-expressed 
with both CD4 and CD8 molecules, suggesting a close 
association between CYP51A1 expression and the 
infiltration of CD4+ and CD8+ T cells. These findings 
collectively underscore the pivotal role of CYP51A1 as 
a mediator in fostering immune activation within the 
RCC microenvironment. 

Discussion 
 Over the last decades, compelling 

epidemiological evidence has unequivocally 
demonstrated a relentless upswing, approximately 2% 
per annum, in the incidence and mortality rates of 
renal cancer worldwide [1,75,76]. In addition, it is 
well-established that tumor patients frequently 
encounter a constellation of aberrant coagulation 
complications such as hyper-thrombotic activity or 
coagulation disorders, with the relationship between 
VTE and cancer long recognized [77]. Notably, studies 
consistently report that the risk of VTE development 
in cancer patients is approximately 4- to 7-fold higher 
than in individuals without cancer [78-80]. Further 
investigations have revealed that within the subset of 
renal cell carcinoma (RCC) patients exhibiting a 
hypercoagulable state, approximately 15% manifest 
the invasion of tumor thrombus (TT) into the inferior 
vena cava (IVC), with a minute proportion 
progressing to the extent of TT extension into the right 
cardiac chambers [5,81]. Remarkably, among these 
cases, nearly 44% demonstrate vein thrombus 

extension, while the fortuitous occurrence of thrombus 
extension into the right atrium is observed in only 1-
4% of cases [82,83]. Significantly, the degree of TT 
invasion serves as a pivotal determinant of both the 
stage classification and the subsequent prognosis of 
cancer. Specifically, the Mayo clinical classification 
categorizes TT extension into four distinct levels: level 
I TT, which involves extension into the renal vein and 
its branches (stage pT3a); level II TT, characterized by 
invasion into the IVC up to the hepatic veins (pT3b); 
level III TT, approximating the diaphragm (pT3b); and 
level IV TT, representing migration into the heart 
(pT3c) [84]. However, to the best of our knowledge, 
despite these developments, the current clinical 
approach for treatment decision-making and the 
formulation of surveillance strategies in RCC 
predominantly relies on the well-established 
American Joint Committee on Cancer (AJCC) TNM 
staging system. It is worth noting that although the 
Mayo clinical classification of TT extension can be 
applied to RCC patients with TT, certain limitations 
persist in accurately predicting clinical outcomes 
within the same stage owing to the 
inherenteterogeneity of the disease. 

In the era of precision medicine, the treatment 
landscape for RCC has undergone a remarkable 
transformation with the advent of molecular targeted 
therapies and immunotherapies. The existing staging 
system and Mayo clinical classification of TT fall short 
of meeting the pressing need for clinicians to 
accurately assess prognosis and predict treatment 
response in RCC patients with TT. Consequently, 
there is an urgent demand for an improved and 
personalized assessment framework that can be 
readily implemented in clinical practice, enabling the 
identification of patients at high risk of refractory 
disease and poor survival outcomes. While several 
transcriptional signatures associated with tumor 
metastasis and thrombosis have been designed in the 
past [85-87], there remains a dearth of comprehensive 
bioinformatic and machine-learning analyses aimed at 
enhancing accuracy and applicability across a broad 
patient population. To bridge this critical research gap, 
our study endeavors to elucidate the intricate 
relationship between TTCRGs and both prognosis and 
therapeutic benefits, thus paving the way for more 
precise and effective management strategies in RCC 
patients with TT. 
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Figure 13. The regulatory mechanisms upstream and downstream of CYP51A1. (A-H) Significant difference in volumes and wet weights of tumor xenografts under different 
groups. (I) Western blotting analysis of NF-κB signaling pathway of CYP51A1. (J) The binding site was predicted in bold sequences using matinspector software (Genomatix, 
Munich, Germany). (K) The binding site was amplified by the same specific primers using PCR in the ChIP assay. (L) The quantitative data of CHIP assay. (M) Western blotting 
analysis of CYP51A1 in 5 pairs of renal cancer tumor samples and adjacent normal samples. The data are analyzed by Student’s t‐test (two‐tailed) and presented as mean ± SD. 
**P < 0.01, ***P < 0.001, and ****P < 0.0001. 
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In this study, to obtain the pathways of RCC-TT 
and coagulation as entirely as possible, two data 
sources, the global landscape data of somatic 
alterations of the Chinese RCC-TT population in Ma’s 
research combined with coagulation-related pathways 
(hsa04610: Complement and coagulation cascades and 
hsa04610: Platelet activation) retrieved from the KEGG 
pathway database, were applied to define TTCRGs. 
Interestingly, we found that TTCRGs harbored high 
frequencies of copy number alterations with a poor 
prognosis. Notably, these copy number alterations 
were also responsible for the expression imbalance of 
TTCRGs. Specifically, genes such as LAMN2, F12, and 
BTNL8 were found to be highly amplified rather than 
deeply deleted, and their overexpression was closely 
linked to worse prognosis, suggesting their potential 
as driver genes in RCC development. By employing 
the CNMF clustering method, we stratified RCC 
patients into two distinct clusters. Further analysis of 
associated clinical characteristics revealed that cluster 
2, characterized by a poor survival rate, consisted of 
more advanced and malignant RCC cases compared to 
cluster 1. Consistent with these findings, GSEA and 
GSVA analyses demonstrated that cluster 2 was 
significantly enriched in immune signaling pathways, 
including the T cell receptor signaling pathway, B cell 
receptor signaling pathway, primary immuno-
deficiency, and immunogenic receptors. These results 
were in line with the conclusions drawn from different 
clustering algorithms applied to cluster 2, further 
supporting the association of this cluster with 
immune-related processes in RCC-TT. 

Here, to account for the impact of venous 
thrombus on RCC-TT, the WGCNA algorithm was 
applied to identify TTCRGs. Subsequently, under the 
LOOCV framework, 10 popular feature extraction 
methods 101 kinds of combinations, which had high 
recognition accuracy, could be carried out to construct 
a TTCRRS signature using multiple well-established 
public RCC patients’ cohorts. Notably, among these 
algorithms, LASSO, RSF, CoxBoost, and StepCox 
played a pivotal role in reducing dimensionality and 
screening variables. By employing a random 
combination mode, we were able to simplify and 
streamline the final model, enhancing its translational 
potential. Ultimately, the combination of LASSO and 
GBM, which had the largest average C-index (0.631) in 
the validation cohorts, was defined as the optimal 
model. Kaplan Meier analysis, ROC curve and C-index 
all exhibited our TTCRRS had high accuracy and 
stable performance in several independent cohorts, 
which had the potential to greatly facilitate medical 
practice. Additionally, we expanded our investigation 
by collecting and analyzing 129 published RCC 
signatures, encompassing numerous combinations of 

functional genes. However, it is important to note that 
most of these signatures have not been thoroughly 
validated nor applied in clinical settings for evaluating 
the prognosis of RCC-TT patients [88-90]. Of note, 
most signatures performed better on their own 
training cohorts and a few external cohorts but 
performed weakly on other new cohorts [91,92], which 
might be due to awful generalization ability from 
overfitting. Interestingly, the results of our univariate 
Cox regression analysis characterized that only our 
TTCRRS presents excellent prognostic significance in 
almost all cohorts, indicating it has a superior 
extrapolation possibility. Although our signature is 
not as accurate as the TNM staging system and 
pathological grade, the TTCRRS could be a 
supplementary tool to generalize for clinical 
applications. Nevertheless, it is important to 
acknowledge that the stability and robustness of the 
TTCRRS signature in the proteome were relatively 
weaker compared to its performance in the 
transcriptome, delineating that the TTCRRS signature 
is most likely applicable to transcriptomics. 

Cancer immunotherapy has brought about a 
paradigm shift in the treatment of solid tumors, 
revolutionizing traditional approaches [63,93]. Next, 
we further explored the immune landscape between 
high and low TTCRRS groups. Compared with the 
low-TTCRRS group, the high-TTCRRS group had a 
superior abundance of immune cell infiltrations, such 
as activated CD4+ T cell, activated CD8+ T cell, 
memory CD4+ T cell, memory CD8+ T cell, and these 
effector cells might enhance the anti-tumor immunity, 
bring better immunotherapy effectiveness. And, more 
importantly, we found the expression of some 
signatures in immune pathway activation were 
dramatically elevated in patients with high TTCRRS. 
The field of precision medicine emphasizes the need 
for early identification of patients who are responsive 
to different treatment regimens, tailored to their 
individual needs. Thus, we also selected some 
chemotherapeutic and targeted drugs between high 
and low TTCRRS group patients. To sum up, these 
findings implied that our TTCRRS signatures hold the 
potential to guide the identification of therapy-
sensitive RCC-TT patients who may benefit from first-
line immunotherapy, as well as chemotherapeutic and 
targeted therapies. This has significant implications 
for personalized medicine and underscores the 
importance of leveraging the predictive power of the 
TTCRRS signatures in clinical decision-making. 

To enable clinicians to predict the prognosis of 
RCC-TT patients based on the quantification of the 
TTCRRS signature, we developed a nomogram that 
incorporated both the TTCRRS and subtype 
information. Through rigorous evaluation using ROC 
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curve analysis, calibration curves, and decision curves, 
the nomogram demonstrated excellent predictive 
ability. Afterward, we used 10 machine-learning 
approaches to select the optimal feature subset from 
our TTCRRS signatures. Then, to gain further insights 
into the underlying regulatory mechanisms, we 
analyzed the TFs possibly binding to the promoter 
region of the top features (CYP51A1) selected by the 
machine-learning method with Cistrome DB Kit, 
screening out several TFs (BRD4, SMAD2, CHD7, 
POLR2A, TRRAP), which was positively correlated 
with the expression of CYP51A1. Ultimately, the 
single-cell database CancerSEA was leveraged to 
predict the functional implications of the most 
important feature. We found a positive correlation 
between the high expresson of CYP51A1 with hypoxia 
[94]. 

Functioning as a vital member of the cytochrome 
P450 superfamily of enzymes primarily localized in 
the endoplasmic reticulum of diverse tissues, 
including the liver and adrenal glands, CYP51A1, also 
known as lanosterol 14-alpha demethylase, plays a 
pivotal role in the intricate biosynthesis of cholesterol 
[95]. In addition, according to the druggable genome 
from Ensembl v.73 redefined by Finan et al’s criterion, 
CYP51A1 is a Tier 1 target protein (This tier 
encompasses the targets of approved drugs as well as 
drugs in various stages of clinical development) [96] 
(Table S9). They are also the target protein of small 
molecule and biotherapeutic drugs identified using 
manually curated efficacy target information from 
release 17 of the ChEMBL database [97]. However, to 
the best of our knowledge, the association between 
CYP51A1 and RCC remains a subject that has not 
received extensive scrutiny and comprehension. There 
is an indication that the regulation of CYP51A1 
function may bear considerable implications in the 
therapeutic strategies for oncological pathologies [98]. 
The accumulation of cholesterol represents a pervasive 
hallmark within cancerous tissue, and emerging 
research [99] has unequivocally elucidated its pivotal 
involvement in the pathogenesis of various 
malignancies, including breast, bladder, and colorectal 
cancer, among others. In addition, kidney cancer cells, 
as well as other tumor cells, exhibit an increased 
demand for elevated cholesterol levels to support 
essential processes such as cell membrane biogenesis 
and other functional requisites compared to normal 
cells. Based on our experimental findings, we have 
conjectured that the downregulation of CYP51A1 in 
renal cancer tissues triggers an escalation in 
endogenous cholesterol biosynthesis through the NF-
κB signaling pathway, thereby instigating tumor 
progression. 

Conclusions 
In conclusion, by utilizing advanced 

bioinformatics techniques and innovative machine-
learning methods, we have successfully developed a 
robust and versatile signature based on the expression 
of 10 TTCRGs. This signature holds immense potential 
in evaluating the prognosis and therapeutic benefits 
for RCC-TT patients. By providing valuable insights 
into the molecular characteristics of RCC-TT, the 
TTCRRS signature serves as a valuable supplementary 
tool to optimize the clinical decision-making process 
and guide individualized treatment approaches. 
Specifically, it can aid in optimizing adjuvant 
chemotherapy and anticancer immunotherapy 
strategies for RCC-TT patients, ultimately leading to 
improved treatment outcomes and personalized care. 
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disease; CR: complete response; PR: partial response; 
R: responder; NR: non-responder; time-ROC: Time-
dependent receiver operating characteristic; DCA: 
decision curve analysis; CMAP: The Connectivity 
map; ICB: immune checkpoint blockade; SHAP: 
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Shapley Additive Explanation; TFs: Transcription 
factors; IVC: inferior vena cava. 
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