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Abstract 

Cancer represents one of the diseases with the highest mortality rate worldwide. The burden of cancer 
continues to increase, not only affecting the health-related quality of life of patients but also causing an 
elevated global financial impact. The complexity and heterogeneity of cancer pose significant challenges in 
research and clinical practice, contributing to increase the failure rate of clinical trials for antitumoral 
drugs. This is partially due to the fact that preclinical models still present important limitations in faithfully 
recapitulating human tumors to serve as reliable indicators of drug effectiveness. Up to now, research and 
development strategies employ expensive animal models (including the so-called “humanized mice”) that 
not only raise ethical concerns, but also frequently fail to accurately predict responses to anticancer drugs 
because they do not faithfully replicate human physiology as well as the patient’s tumor 
microenvironment. On the other side, traditional two-dimensional (2D) cell cultures fail to adequately 
reproduce the structural organization of tumor and the cellular heterogeneity found in vivo. The growing 
necessity to develop more accurate cancer models has increasingly emphasized the importance of 
three-dimensional (3D) in vitro cell cultures, such as cancer-derived spheroids and organoids, as promising 
alternatives to bridge the gap between 2D and animal models. In this review, we provide a brief overview 
focusing on 3D in vitro cell cultures as preclinical models capable of properly reproducing the tissue 
organization, biological composition, and complexity of in vivo tumors in a fine-tuned microenvironment. 
Despite their limitations, these models collectively enhance our understanding of the mechanisms 
underlying cancer and may offer the potential for a more reliable assessment of drug efficacy before 
clinical testing and, consequently, improve therapeutic outcomes for cancer patients. 
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Introduction 
Despite the development of improved 

prevention and early detection methods, as well as 
numerous advances in therapeutic strategies over the 
last decades, cancer remains one of the leading causes 
of death worldwide.1 Cancer is a multifactorial 
disease characterized by high complexity and 
heterogeneity, which makes experimental 
reproduction difficult and involves continuous 
therapeutic adaptations in the clinic.2,3 Due to cancer 
heterogeneity, a “one drug fits all” therapeutic 

approach is not feasible, as evidenced by the fact that 
current standard treatments are effective only in a 
subset of the patients’ population. Tumors can exhibit 
intrinsic differences in the genetic background and 
may express different proteins in one patient 
compared to another. This variability highlights the 
urgent need for precision and personalized medicine.4 
To this aim, the production of highly efficient and 
cost-effective drugs emerges as a crucial point in the 
future development of therapeutic approaches. Drug 
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discovery is an arduous, meticulous, and expensive 
process; it is estimated that the cost of innovating and 
developing a new drug in the United States alone is 
more than $600 million, with an average timeline of 
10-15 years.5 Therefore, there is a significant, unmet 
need to develop inexpensive and reliable preclinical 
platforms to accelerate the anticancer drug discovery 
pipeline to improve the outcome of cancer patients.6 

Recapitulative disease models serve as 
important experimental tools, particularly in cancer 
research, where new drugs exhibit higher failure rates 
in clinical trials compared to other fields. In fact, only 
5% of new anticancer compounds receive clinical 
approval, with the majority failing due to issues 
related to toxicity and insufficient effectiveness. This 
limited clinical efficacy can be partly attributed to the 
absence of preclinical models that closely reproduce 
tumor architecture, pathophysiology, and the 
crosstalk between cancer cells and the surrounding 
microenvironment. This represents the major 
shortcoming of the correlation between preclinical in 
vitro and in vivo results and the data obtained during 
the clinical trials.7,8 Therefore, a potential approach to 
mitigate the high attrition of anticancer drugs is to 
employ preclinical models that more closely represent 
in vivo human tumors, thereby obtaining more precise 
indications in terms of drug efficiency.9,10 To date, 
various models and technical approaches have been 
used to investigate and study the mechanisms 
underlying the key hallmarks of cancer.2,11 

The two-dimensional (2D) in vitro cell cultures 
are traditional systems where cells grow as an 
adherent monolayer on a solid and flat plastic surface. 
These models have played a crucial role in setting the 
current knowledge of cancer biology research and 
continue to be widely used due to their high 
availability, easy manipulation, elevated level of 
reproducibility, and cost-effectiveness.3,12 However, 
2D cancer cell cultures represent reductive models 
where cells are cultured under oversimplified and 
unrealistic conditions, thus failing to accurately mimic 
the real physiology of an in vivo tissue. They cannot 
reproduce the complex three-dimensional (3D) 
structure of a tumor or the dynamic interactions 
between cancer cells and the tumor 
microenvironment (TME). Moreover, cancer cells 
cultured as a monolayer on a flat plastic surface 
display significant alterations in crucial cellular 
signaling pathways and changes in their responses to 
stimuli. The 2D models then present further 
limitations: i) they do not preserve the real shape and 
polarization of cancer cells, ii) there is a marked lack 
of tumor cell heterogeneity, iii) they provide equal 
and unrestricted accessibility to essential nutrients, 
oxygen, growth factors, and metabolites, and iv) they 

offer an altered representation of critical cellular 
activities such as proliferation, migration, invasion, 
differentiation, gene and protein expression, response 
to stimuli and drug sensitivity. Furthermore, to 
maintain regular cell growth and ensure the supply of 
essential nutrients, adherent cells must undergo 
periodic trypsinization. This continuous procedure 
could lead to different and unpredictable genetic and 
epigenetic changes over time, consequently impacting 
cells' phenotype and behavior, such as growth and 
their response to both external and internal 
stimuli.8,12-15 Another aspect that limits the 
reproducibility of data in cultured cancer cultures is 
that the same cell line from different laboratories 
presents differences in its genetic and epigenetic 
background as a consequence of the long-term culture 
under different cultivation conditions, which 
ultimately leads to clonal evolution and selection of 
different subclones.16  

Another widely employed tool in cancer 
research is represented by animal models, which act 
as an important link between in vitro studies and 
clinical experimentation.17 These models enable a 
deeper understanding of the complex nature of cancer 
biology and the implementation of novel strategies in 
terms of prevention, diagnosis, and treatment.18 
Unlike 2D cell cultures, they effectively recapitulate 
the tissue structural organization and provide a 
system-level analysis.19 Specifically, mouse models 
represent the most commonly utilized in vivo systems 
due to their low cost, short gestation period, ease of 
genetic manipulation and the possibility to grow 
cancer cells from patients, generating patient-derived 
tumor xenografts (PDTXs). PDTXs can recreate the 
histological and molecular features, as well as the 
inter/intratumor heterogeneity of a patient’s tumor, 
thus allowing the investigation of anticancer drug 
effectiveness. However, these models present several 
limitations ascribed to their dependence on 
immunodeficient hosts and the expensive costs 
related to their maintenance, long-term engraftment 
process, and molecular profiling. In addition, certain 
biological shortcomings hinder the efficacy and 
predictive value of murine models, as well as other 
types of in vivo studies. Genomic and 
pathophysiological differences between animals and 
humans allow the study of cancer hallmarks under 
conditions similar, but not identical, to those of 
patients. For instance, in the case of PDTXs, tumor 
engraftment might not occur, or metastatic patterns 
might not be faithfully replicated as in humans. 
Furthermore, the murine and human TMEs 
significantly differ, and mice also tend to substitute 
the exogenous tumor stroma and immune cells with 
their own. To overcome these limitations, humanized 
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mice models consisting in severely immunodeficient 
mice (usually NOD-SCID) in which both patient’s 
derived tumor cells and immune cells are 
co-engrafted could be employed. 20,21 One important 
drawback of these models is the lack of an adequate 
innate and MHC-dependent immune response and 
the inability to reconstruct a TME with a broad range 
of cytokines and stromal cells that can faithfully 
resemble that in the native patient’s derived tumor. 
21,22 This has relevance in terms of cancer stem cell 
renewal, angiogenesis, metastasization and tumor 
dormancy, all features that influence the natural 
growth and progression of the tumor and that impact 
the response to the therapy, thus affecting the 
translational value of immune-oncological research 
and drug testing in such animals. 21 Additionally, 
factors such as the gender, the number of animals 
enrolled in the study, their age, and the level of stress 
to which they are exposed can vary between 
laboratories and may significantly influence the 
outcome of the experiments.8,19,23 Considering these 
factors, the evaluation of drug effectiveness and 
toxicity in preclinical animal testing is not a foolproof 
indicator of its effects when translated to human 
clinical trials and raises ethical concerns as well.24 It is 
a fact that despite the preclinical test with these rodent 
models, more than 90% of drugs are revealed to be 
toxic to patients. 25  

The application of 3Rs’ principle (e.g., 
Replacement, Reduction, Refinement) in research 
studies promotes a decrease or elimination in the use 
of laboratory animals, suggesting the need to develop 
and use new and more innovative models to 
overcome these limitations.8,15,26 In agreement, under 
recent legislation, the FDA (United States Food and 
Drug Administration) no longer requires animal 
testing to approve new drugs. Over the past decade, a 
pioneering approach to modeling cancer that 
incorporates the most recent advances in the fields of 
cancer research, pharmacology, tissue engineering, 
biomaterials, and nanotechnologies has progressively 
emerged. 3D in vitro cancer models are preclinical 
models that can accurately replicate the tumor-tissue 
architecture, biological composition, and dynamic 
complexity of in vivo tumors in a fine-tuned 
microenvironment. This facilitates a deeper 
comprehension of the mechanisms underlying tumor 
aetiology, growth, invasion, and metastasis, as well as 
the evaluation of drug efficacy before clinical testing.27 
The growing need for more accurate cancer models 
highlights the relevance of these 3D cell culture 
techniques as a promising alternative for bridging the 
gap between 2D cell cultures and animal models 
(Figure 1). In fact, several 3D culture models have 
been developed and employed over the years.28,29  

The focus of the present review is on the two 
widely employed 3D models in cancer research, 
namely spheroids and organoids, excluding the 
description of the methods by which they can be 
generated.  

Tumor Spheroids 
Spheroids, first described by Sutherland and 

colleagues in the early 1970s, represent one of the 
most consolidated 3D culture methods for studying 
cancer biology. They are closely packed clusters of 
cells that faithfully reproduce several important 
properties of in vivo tumors, including structural 
organization, cellular heterogeneity, cell signaling 
pathways, deposition of the extracellular matrix 
(ECM), cell-cell and cell-ECM communications, 
growth kinetics, genomic and proteomic expression 
profiles, and pharmacological resistance.30,31  

Spherical cancer models can be classified into 
different types based on cellular origin and methods 
of preparation, as widely described in the study 
published by Weiswald and colleagues.32 Among the 
reported models, multicellular tumor spheroids 
(MCTSs) emerge as the most extensively 
characterized and widely employed for recapitulating 
a variety of solid tumors, including breast, cervical, 
colon, lung, pancreatic, prostate, and adrenal cancers 
33-39, among many others. MCTSs are self-assembling 
cellular aggregates consisting of primary cells or cell 
lines and mimic the physiological architecture of the 
tumor mass in vivo with its metabolic and proliferative 
gradients, acting as a clinically significant model for 
drug resistance studies. Moreover, the cell clonality, 
ease of maintenance, and simplicity of genetic 
manipulation make the 3D model the most suitable 
approach for high-throughput anticancer drug 
screening.40-42  

MCTSs formation can be easily obtained in 
non-adherent conditions (like ultra-low attachment 
plates, continuous agitation and/or centrifugation) or 
in the presence of an exogenous scaffold.43 Depending 
on ECM composition and cadherin types and 
concentration (which vary for different cell types), 
spheroids assembly requires cell-cell adhesion and/or 
cell-ECM interactions that are orchestrated from 
homophilic cadherin-cadherin binding, integrins- 
ECM interactions, and cytoskeletal proteins 
remodeling. 44 In scaffold-based approaches, cells can 
proliferate dispersed in, or they can adhere to, 
ECM-mimicking acellular hydrogels.45,46 The scaffold 
can influence the mechanical and biochemical signals, 
facilitates cell-cell and cell-ECM interactions, and 
mimics the hypoxic and nutrient deprivation 
conditions of the native TME. 47 These models are 
particularly suitable for those tumors characterized by 
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abundant ECM deposition and strictly dependent on 
it for their growth in vivo, like breast 48, pancreatic 49, 
lung 50 and liver cancers 51, for culturing primary 
patient-derived cancer cells, and for drug screening 
purposes. 52,53 In contrast, scaffold-free techniques 
mainly consist of culturing the cells under conditions 
that promote strong cell-to-cell interactions, facilita-
ting cancer cell aggregation and ECM deposition. This 
method represents an excellent in vitro system for 
studies on tumor-specific processes like angiogenesis, 
invasion and metastasis. 54 Additionally, scaffold-free 
approach is a suitable platform to model the 
transcoelomic growth of peritoneal tumors (e.g., 
ovarian and colorectal cancers). 54-57  

Tumor spheroids can be distinguished as 
homotypic, when composed exclusively of tumor 
cells, or heterotypic, when tumor cells are co-cultured 
with stromal cells, such as fibroblasts, endothelial 
cells, and immune cells.31,58 Remarkably, heterotypic 
spheroids allow to dissect the dynamic interactions 

between cancer cells and the cellular components of 
the TME, which play a crucial role in cancer 
metabolism and response to therapy. For instance, a 
heterotypic spheroid model (combined of 
pheochromocytoma cells and primary 
cancer-associated fibroblasts (CAFs)) was used to test 
the differential response of wild-type and 
SDHB/SDHD knock-down pheochromocytoma cells 
to the pro-migratory factors released by CAFs.59 To be 
noted, the 3D heterotypic spheroids displayed 
increased tumorigenic potential in terms of migratory 
capabilities compared to that of 3D homotypic cancer 
spheroids. 60 Giustarini and colleagues used 3D 
heterotypic tumor spheroids made of pancreatic 
ductal adenocarcinoma (PDAC) cells, endothelial 
cells, pancreatic stellate cells (PSC), and monocytes, 
which resembled some critical features of patients’ 
PDAC immune microenvironment (e.g., 
immunosuppressive phenotype), for testing chemo- 
and immuno-therapeutics. 37 

 

 
Figure 1. 3D In Vitro Models: Bridging 2D Cell Cultures and Animal Models. This image illustrates how 3D in vitro models bridge the gap between traditional 2D cell 
cultures and in vivo animal models. Unlike 2D cultures, which lack three-dimensional interactions and spatial organization, 3D cellular systems more accurately replicate the 
complex architecture and properties of tumor tissues. This realistic microenvironment enables precise studies of tumor biology and drug responses. In contrast to in vivo models, 
which may be limited by species-specific differences, 3D models can be tailored to closely mimic human tissues, enhancing their translational relevance and predictive accuracy. 
Ethically, 3D models offer advantages by reducing reliance on animal testing, adhering to the principles of the 3Rs (Replacement, Reduction, Refinement), and providing a more 
humane alternative for research. Various approaches can be used to develop 3D tumor models, including scaffold-free, scaffold-based, 3D-bioprinting, and microfluidic methods 
(created with Biorender).  
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The employment of microfluidic systems or 
3D-bioprinting technologies enable the development 
of even more sophisticated 3D cancer models, 
generating systems with complex architecture, 
physiological microenvironmental conditions, 
vasculature-like perfusion, precise control over 
chemical gradient flows, and mechanical forces.15,40,61 
These techniques are also applicable for establishing 
organoids. 

Tumor spheroids with a diameter exceeding 500 
µm accurately reproduce avascular tumors or 
micrometastases, displaying a stratified structure 
with cells having various phenotypic, functional, and 
metabolic behaviors. Specifically, these spheroids 
present a well-organized spatial architecture that 
comprises an outer proliferative layer, an 
intermediate zone composed of quiescent and 
senescent cells, and an inner apoptotic and necrotic 
core resulting from the altered distribution of 
nutrients and oxygen (Figure 2). Typically, the 
diffusion gradient is confined to a range of 150-200 
µm. 62 Indeed, the progression towards the spheroid 
core leads to a reduction of oxygen, nutrients, and pH 
levels, together with an increase of carbon dioxide, 
lactate, and waste products.2,3,63,64 Tumor cells can 
adapt to hypoxic conditions, by shifting from 
oxidative phosphorylation to anaerobic glycolysis and 
converting pyruvate into lactate to obtain energy. As a 
result, the release of lactate increases the acidification 
of the spheroid's inner regions.65,66  

The structural organization and physiological 
characteristics of tumor spheroids strongly influence 
the response to therapy, the cell signaling pathways, 
and the profiles of gene and protein expression.31 
Recently, our group demonstrated that the expression 
of the lysosomal protease cathepsin D (CD) is 
differentially modulated between 2D and 3D cell 
culturing, and this reflects on the survival efficiency of 
neuroblastoma (NB) cells. 67 Interestingly, 
CD-overexpressing NB cells were favored to grow in 
suspension (3D), while the CD knocked-down cells 
were favored for the growth in 2D, and when cells 
were switched from 2D to 3D and back to 2D culture 
conditions the surviving clones adjusted the 
expression of CD accordingly. 67 This example 
highlights how the culture condition influences the 
gene and protein expression.  

Tumor spheroids can be exploited also to study 
in vitro the phenotypical changes and cancer cell 
behavior in relation to microbiota/host interactions. 
For instance, 3D colorectal cancer spheroids allowed 
to study how pro-inflammatory cytokines and 
probiotics impacted on cell proliferation and 
migration. 68,69 

The hypoxic environment within tumor 

spheroids can induce chemo-radio resistance through 
various mechanisms. Firstly, hypoxic conditions 
cause an increase in hypoxia‐inducible factors (HIFs) 
levels. Consistently, the expression of HIF-1α protein 
was detected in HeLa spheroids but not in the 2D 
culture counterpart.70 HIFs can induce the 
upregulation of the multidrug resistance (MDR1) 
gene, which encodes P-glycoprotein (P-gp), a cell 
membrane protein that actively pumps drugs or other 
molecules outside the cell. One study observed that 
the expression of HIF-1 in MCF-7 breast cancer 
spheroids caused an upregulation of P-gp, which, in 
turn, reduced the accumulation of doxorubicin within 
the spheroids; in contrast, no significant changes in 
HIF-1 and P-gp expression were observed in 
2D-cultured cells.71 Furthermore, HIF-1 can regulate 
the expression of the vascular endothelial growth 
factor (VEGF), which is highly expressed within the 
hypoxic regions of spheroids where it contributes to 
drug resistance mechanisms.72,73 A375 melanoma 
spheroids were shown to exhibit higher expression of 
HIF-1 and VEGF compared to the same cells cultured 
as monolayers, and this variation affected the 
sensitivity of the cells to vemurafenib.73 It is known 
that hypoxia can impair the effectiveness of 
radiotherapy because DNA lesions, derived from 
reactive oxygen species (ROS) generated during water 
radiolysis, react with oxygen to generate stable DNA 
peroxides. This phenomenon contributes to 
pronounced radio resistance in tumor cells located in 
the inner part of the spheroid.74,75 Lastly, the hypoxic 
conditions within the spheroid are deleterious for 
drugs that cause cell membrane and DNA damage 
through the generation of ROS, such as doxorubicin 
38,76,77 and cisplatin. 78 Moreover, drugs targeting 
highly proliferative cells (including carboplatin, 
cisplatin, doxorubicin, oxaliplatin, methotrexate, and 
paclitaxel) present limited efficacy against senescent 
and necrotic cells located in the inner regions of the 
spheroids.79 For instance, compared to 2D cell 
cultures, dense spheroids of BT-549, BT-474, and 
T-47D breast cancer cells showed increased resistance 
to doxorubicin and paclitaxel associated with elevated 
levels of hypoxia, high proportion of G0 dormant 
cells, and reduced expression of PARP and caspase-3. 
33 In addition, low pH affects the efficacy of several 
anticancer compounds, such as doxorubicin, 
vinblastine, methotrexate, and anthraquinone, by 
impairing intracellular uptake.80-82 

Finally, the strong E-cadherin-driven 
interactions between cancer cells and the secretion of 
ECM proteins (collagen, fibronectin, laminin, elastin, 
tenascin) determine an increase of spheroid density, 
forming a physical barrier that hampers the transport 
of therapeutic agents into the spheroid mass. 
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Simultaneously, the elevated interstitial fluid pressure 
hinders the intake and distribution of antitumoral 
compounds.10,83,84 Several studies reviewed by Nunes 
et al. have shown that E-cadherin expression is more 
pronounced in spheroid cultures than in 2D cell 
cultures.10 Additionally, to confirm the role of 
E-cadherin on drug resistance in spheroids, an 
anti-E-cadherin monoclonal antibody (SHE78-7) was 
utilized to inhibit its function. The study shows that 
the administration of SHE78-7 increases the 
intracellular accumulation of chemotherapeutics 
(5-fluorouracil, etoposide, paclitaxel, and vinblastine) 
in HT-29 human colorectal cancer spheroids.85  

The different gene and protein expression 
between 2D and 3D models provides an explanation 
for the distinct behaviors observed in 3D-cultured 
cells regarding growth, proliferation, migration, 
invasion, and drug sensitivity, when compared to 
cells grown in 2D.46 For instance, in a monolayer, 
several genes that promote growth and proliferation 
are frequently upregulated in comparison with their 
corresponding tissue origins, while genes that restrain 
these phenotypes tend to be suppressed. Therefore, 
cells grown in 2D cultures generally display a higher 
rate of proliferation in contrast to cells cultivated in 
3D models. Although cells lose many of their original 
features when extracted from the primary tumor and 
cultured in a 2D system, the reintroduction of these 
cells into an in vivo-like environment largely restores 
the original features in terms of morphology, 
proliferation, and gene/protein expression.86,87 
Differences in gene and protein expression profiles 
between 2D and 3D cultures have been reported for 
various types of cancers, including melanoma 88, 
colorectal cancer 89, mesothelioma 90, liver 
hepatocellular carcinoma 91 , and neuroblastoma 67. 
Ghosh and colleagues performed a comparative 
analysis of the expression patterns of 179 genes 
responsible for encoding chemokines, pro-angiogenic 
factors, and cell-adhesion molecules in both 2D and 
3D models of melanoma cells. They detected 
significant upregulation of several genes that play 
important roles in promoting the progression, 
invasion, and metastasis of skin cancer in the 3D 
spheroids.88  

miRNAs, which are key regulators of gene 
expression, can also be modulated in 3D models.92 
Extracellular vesicles (EVs) released from 3D 
spheroids display differences in terms of secretion 
dynamics and molecular components (RNA and 
DNA) compared with EVs derived from 2D 
monolayers.93 In this context, miRNA expression 
profiles of EVs derived from 3D cultures of HeLa 
cervical cancer cells closely resembled those of 
circulating EVs isolated from the plasma of cervical 

cancer patients, with a high similarity of about 96%, in 
contrast to the miRNA expression patterns of EVs 
obtained from 2D cultured HeLa cells. Furthermore, 
culture and growth conditions had no impact on the 
genomic information carried by EVs, as demonstrated 
by DNA sequencing analysis.93 In addition, 3D 
models were useful for investigating 
miRNA-mediated regulatory mechanisms in ovarian 
cancer. Yoshimura and colleagues studied the effect of 
miR-99a-5p, a microRNA overexpressed in epithelial 
ovarian carcinoma (EOC), on peritoneal 
dissemination. They utilized human peritoneal 
mesothelial cells (HPMCs) treated with EOC-derived 
exosomes. Results revealed that upregulation of 
miR-99a-5p in HPMCs promoted EOC invasion by 
inducing upregulation of fibronectin and vitronectin, 
suggesting its potential utility as an EOC biomarker in 
serum and as a potential therapeutic target.94 3D 
ovarian cancer spheroids, mimicking peritoneal 
metastases dissemination, have been employed in our 
laboratories to study autophagy-dependent cancer 
cell dormancy and how this was interrupted by 
IL-6-mediated upregulation of the oncomiRNA 
miR-1305.95 Furthermore, the expression of miRNAs 
in 3D cultures compared to 2D cultures has been 
investigated in different breast cancer cell lines. 
Nguyen and colleagues examined the miRNA 
expression profile in 3D cultures versus 2D cultures in 
the breast cancer cell lines MCF-7 (non-invasive) and 
MDA-MB-231 (invasive). They found that 49 miRNAs 
exhibited differential expression in the MCF-7 cell line 
when cultured in 3D compared to 2D, while in the 
MDA-MB-231 cell line 28 miRNAs displayed 
differential levels.96  

Finally, differences in crucial cellular signaling 
pathways may exist between 2D- and 3D-cultured 
cells. Compared to their 2D counterparts, colon cancer 
cell lines cultured in a 3D environment exhibit a 
reduced activation of the AKT/mTOR/S6K pathway, 
which plays an important role in carcinogenesis, 
cancer cell migration, and resistance to therapies.97 
Similarly, 3D cultures of ER+/Her2+ breast cancer cells 
were less responsive to hormonal and anti-HER2 
treatments compared to 2D cultures due to a shift 
from the AKT to the MAPK pathway.98  

Recently we have proposed a variant of 
heterotypic/homotypic spheroids made of a mixture 
of subclones of cancer cells genetically engineered to 
express different levels of a protein as an in vitro 
model that could bona fide represent the genetic 
changes occurring during clonal evolution. 67 The 
model allowed to determine which clone, among the 
ones hyper-expressing or silenced for cathepsin D, 
would overtake the other depending on the culture 
condition.   
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Figure 2. Spatial Organization of Homotypic and Heterotypic Tumor Spheroids. This schematic representation illustrates the 3D architecture of both homotypic 
and heterotypic tumor spheroids. The homotypic spheroid is comprised of a single cancer cell type, while the heterotypic spheroid includes multiple cell types, reflecting the 
complex nature of the tumor microenvironment. Both spheroids exhibit distinct regions: the outer proliferative zone, the intermediate quiescent (dormant) zone, and the central 
necrotic core. The figure also highlights the gradient distribution of essential factors such as nutrients, oxygen, lactate, carbon dioxide, and waste products across these zones, 
providing insights into the varying conditions within different regions of the spheroid (created with BioRender). 

 

Tumor Organoids 
Organoids are miniaturized replicas of tissues or 

organs, originating from stem cells with the ability to 
differentiate and self-assemble into in vitro 3D 
structures, faithfully mimicking the morphology and 
functionality of their in vivo counterparts.99-100 
Organoids can be derived from various types of stem 
cells, including induced pluripotent stem cells 
(iPSCs), adult stem cells (ASCs), or embryonic stem 
cells (ESCs).14,101 Like spheroids, organoids are 
cultured in the presence of an ECM-mimicking 
scaffold that provides mechanical support to the 
cells.29 Clevers and his group pioneered the 
development of organoids by using single mouse 
intestinal ASCs under specific culture conditions that 
could reproduce the in vivo stem cell niche, thereby 
inducing the proliferation and differentiation of the 
intestinal crypt epithelium.102 

Organoid cultures have been established for 
several healthy and cancer tissues, such as colon, 
breast, liver, lung, pancreas, prostate, ovary, among 
others. 3,103,104 The employment of patient-derived 
tumor samples has led to the creation of the 
well-known model commonly referred to as 
“tumoroid”. 3,103,104  

Tumoroids include different cellular 
subpopulations with specific genetic alterations, 
thereby maintaining the cancer heterogeneity 

normally found in vivo. They also retain the genetic 
signature of the host patient, making them a 
predictive platform for studying patient response to 
treatment, guiding the decision-making processes, 
and improving the effectiveness and efficiency of 
clinical studies.101 Tumoroids can be developed by 
engineering healthy organoids using genetic editing 
technologies such as CRISPR-Cas9, allowing a deep 
investigation into the onset and progression of tumors 
as well as testing new therapeutic tools.105 An 
engineered gastric cancer organoid model with and 
without AT-rich interactive domain 1A (ARID1A) 
mutations has been employed to address the 
context-dependent role for ARID1A in early 
neoplastic transformation and to identify 
genotype-dependent therapeutic vulnerabilities. 106 
Even more complex models of human colon 
organoids, recreating the sequence with up to five 
different oncogenic mutations in APC, KRAS, TP53, 
SMAD4 and PI3K catalytic subunit-α (PIK3CA), has 
been utilized for testing drug response. 107,108  

Disease modelling in animals is limited by 
interspecies differences, a limit that can be overcome 
by human-derived organoids. Additional advantages 
of organoid cultures include their ability to be 
expanded in vitro and maintained genetically and 
phenotypically stable over prolonged periods. 
Moreover, they can undergo genetic modifications 
and cryopreservation, facilitating the establishment of 
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an organoid biobank for preclinical studies, 
encompassing various cancer types directly derived 
from patients.103,104,109,110 Furthermore, the generation 
and maintenance of organoids represent significantly 
more efficient and economically advantageous 
processes, compared to PDTX models.111  

Overall, these characteristics consolidate 
organoids as an optimal model for personalized 
cancer medicine.  

The ability to model healthy and cancerous 
tissues simultaneously from the same patient stands 
out as an important advantage of organoids, 
providing an effective tool for drug screening. This 
model aids in the identification of compounds that 
selectively target cancer cells over healthy ones, 
allowing the selection of less toxic substances and, 
consequently, reducing the risk of side effects.103,112 
Additionally, the development of organoids from 
different tumor regions of the same patient enables 
the reproduction of the tumor heterogeneity paving 
the way for a personalized therapy.42 In 2015, van de 
Wetering and colleagues established the first 
organoid biobank originating from colorectal cancer 
patients. The biobank included 20 primary tumors 
together with organoid cultures derived from 
adjacent normal tissues. By performing a 
high-throughput automated drug screening, they 
evaluated several different compounds, including 
conventional chemotherapeutics and novel targeted 
inhibitors, on the complete organoid panel. 
Subsequently, the drug sensitivity data were 
correlated with the genomic features of cancers to 
identify molecular signatures and clinically relevant 
biomarkers associated with treatment responses.113 In 
another study, Pauli and collaborators generated 
tumoroids and corresponding PDTX models from 
patients affected by different malignancies. Their 
comparative study revealed histopathological 
similarities between the latter models and their 
parental tumors, further validated through 
whole-exome sequencing.114 The analysis 
demonstrated that tumoroids preserved the genomic 
alterations of the tissue of origin during prolonged 
culture. Furthermore, genome sequencing of 
numerous tumor samples showed that 85.8% of cases 
had non-targetable somatic alterations in cancer 
genes, 9.6% could be affected by off-label drugs, and 
only 0.4% of identified somatic alterations were 
susceptible to FDA-approved drugs.114 These findings 
highlight the potential of reliable cancer models in 
unveiling new therapeutic options. Screening of 160 
drugs, including FDA-approved chemotherapeutics 
and targeted compounds, showed comparable drug 
responses between tumoroids and PDTX models.114 
Moreover, to comprehensively encompass the 

diversity of breast cancer, a biobank comprising over 
100 organoids derived from both primary and 
metastatic breast cancers has been established.115 
These tumoroids faithfully mimic the typical 
morphology and histopathology of breast cancer 
while largely conserving the hormone receptor and 
Her2 status of the parental tumors. This facilitated in 
vitro drug screening that corresponded to patient 
responses.115 Finally, among the various successfully 
developed biobanks, two organoid platforms have 
been established, derived from multiple stages and 
subtypes of ovarian cancer, accurately reflecting intra- 
and inter-patient heterogeneity. The pharmacological 
analysis conducted on these organoids included both 
chemotherapeutics (platinum/taxanes) and targeted 
agents (PI3K/AKT/mTOR inhibitors or PARP 
inhibitors), revealing significant differences in drug 
sensitivity that strongly correlated with clinical 
responses.116,117 

Organoids faithfully replicate the genomic and 
transcriptomic profiles of the patient, aiding in the 
identification of potential prognostic biomarkers. In a 
study, bladder cancer organoids exhibited high 
concordance with the mutational profiles of the 
parental tumors, including mutations in genes such as 
TP53, RB1, FGFR3, or epigenetic regulators, like 
ARID1A, KMT2C, KMT2D, and KDM6A.118 In another 
study, early cultures of liver tumoroids (less than 2 
months) maintained approximately 92% of each 
patient’s genetic variants, with over 80% of the genetic 
variants retained even in more advanced organoid 
cultures (beyond 4 months).119 Additionally, a 
comparison of the transcriptomes of all primary liver 
cancer organoids with those derived from healthy 
livers resulted in the identification of novel prognostic 
markers. Specifically, this analysis revealed that the 
overexpression of C19ORF48, DTYMK, or UBE2S in 
hepatocellular carcinoma and the overexpression of 
C1QBP in cholangiocytes were associated with an 
unfavorable prognosis.119 Another study highlighted 
a high concordance, even after long-term culture, in 
terms of genomic and transcriptomic profiles between 
gastric tumoroids, encompassing different subtypes, 
and the corresponding in vivo tumor tissues.120 In 
addition to the genomic signature, tumoroids 
faithfully conserve the specific epigenomic features of 
the modeled tumor type.111 The analysis of the DNA 
methylation profile in colon organoids cultured in 
vitro for a prolonged period (12-14 months) revealed 
the occurrence of spontaneous promoter 
hyper-methylation, reminiscent of an aging-like 
process.121 This epigenetic modification resulted in the 
silencing of pivotal genes in the Wnt signaling 
pathway, subsequently leading to a progenitor-like 
cellular state susceptible to neoplastic transformation 
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through the BrafV600E mutation. In contrast, the 
absence of such promoter hyper-methylation in 
short-term cultured organoids resulted in 
significantly greater resistance to BrafV600E-induced 
transformation.121 Indeed, the transformation of 
long-term cultured organoids took only two weeks, 
while five months were required for the younger 
organoids. It is noteworthy that the 
CRISPR/Cas9-mediated editing of important genes in 
the Wnt signaling pathway, targeted by DNA 
hypermethylation, successfully reproduces the 
aging-like spontaneous epigenetic silencing.121  

Organoids also stand out as a valuable in vitro 
platform for exploring the expression profile and the 
functional role of miRNAs. In a study that examined 
the role of miRNAs associated with the early stages of 
tumorigenesis in murine intestinal tumor organoids, 
microarray analyses revealed a pronounced 
downregulation of specific miRNAs, such as miR-194 
and miR-215, in intestinal tumor organoids compared 
to those derived from normal intestinal epithelium. 
Specifically, the enforced expression of miR-194 
resulted in the inhibition of a key positive regulator of 
the cell cycle, E2F3, thereby suppressing the growth of 
intestinal tumor organoids.122 Furthermore, the forced 
expression of miR-215 was able to suppress the cancer 
stem cell signature by decreasing the levels of 
intestinal stem cell markers, including LGR5.122  

Another possible application of organoids is the 
study of host/pathogen interactions. Clevers and his 
group has implemented a 3D model to assess the 
oncogenic potential of Helicobacter pylori in human 
and murine gastric organoids. This platform can be 
adapted to other tumors and different bacteria, 
viruses or parasites, thus allowing in vitro 
investigation of infection-induced changes in primary 
cells. 123 Rao and co-workers reported a 3D organoid 
platform to assess the effects of HBV infection on liver 
tumorigenesis. Liver organoids retain in vivo features 
and are able to support the complete HBV replication 
cycle, thus paving the way for design novel 
HBV-target therapies. 124 Another study by Toyohara 
and colleagues established squamocolumnar junction 
organoids to study the molecular mechanisms 
involved in HPV18-related cervical carcinogenesis. 
This model allows to identify novel genes involved in 
HPV18 early promoter activities, which might serve 
as therapeutic targets in HPV18-infected cervical 
lesions. 125 

Although organoids have gained considerable 
importance in both basic and translational cancer 
research, there are still technical and scientific 
challenges that need to be addressed to fully exploit 
their potential. Firstly, pronounced variability exists 
in the success rates of organoid culture, both across 

different cancer subtypes and within distinct samples 
of the same tumor type. Organoids modeling, 
particularly for specific tumor types, can pose 
intricate challenges. Secondly, different studies on 
cancer organoids introduce substantial technical 
variability due to the use of non-standardized and 
inadequately defined culture protocols, including 
variation in the source of tumor tissue, culture 
medium formulations, and the use of animal-derived 
3D matrices. This variability, in turn, translates into an 
inaccurate representation of the biological 
heterogeneity of cancer, potentially affecting drug 
development and the identification of biomarkers. 
Thirdly, the initial growth of non-malignant epithelial 
cells, identified and confirmed solely through 
genomic sequencing, must be considered. Lastly, 
tumoroids fail to capture the TME, as they often 
exclusively include cancer cells and lack other 
essential cell types such as fibroblasts, immune cells, 
and endothelial cells. These cells regulate biological 
processes like cell proliferation, ECM production, 
vascularity, angiogenesis, and anti-tumor immunity, 
driving drug response and tumor aggressiveness. 
However, this limitation could be overcome through 
the establishment of a co-culture system.3,40,101,111,126 
Colorectal cancer organoids, when cultured in 
isolation, display a deficiency in gene expression 
associated with cell-to-cell communication with the 
TME, a crucial feature present in the cancer tissues of 
origin. However, upon co-culturing colorectal cancer 
organoids with CAFs, a patient-dependent 
re-expression is observed in various genes originally 
present in the tumor tissue and recognized for their 
oncogenic functions. This serves as compelling 
evidence that the microenvironment actively 
contributes to the regulation of processes involved in 
tumor progression, such as differential gene 
expression.127  

Another important point to consider is the 
difficulties to completely reproduce within the 
tumoroid the complex dynamic of the immune 
environment. This is relevant in view of the 
importance that immunotherapy has nowadays. 128 
However, attempts in this sense are being made by 
co-culturing organoids with peripheral blood 
mononuclear cells (PBMCs) or immune cells from 
lymph nodes and CAFs to create a TME in which 
tumor cells are embedded in cytokines and all types of 
immune cells. 129  

Moving forward, there are several opportunities 
to develop more sophisticated models that can better 
mimic in vivo conditions. Tumor organoids have been 
integrated with advanced technologies such as 
3D-bioprinting and/or microfluidic chip systems. The 
combination of microfluidic devices with organoids 
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results in “organoids-on-a-chip”, offering a unique 
approach to investigate tumor-stroma interactions 
and their systemic effects. On other hand, combining 
3D-bioprinting with organoids ensures the proper 
spatial arrangement of cells within intricate 3D 
constructs and preserves the hierarchical architecture 
of the TME, and enhances model reproducibility.15  

Exploring the Potential of Microfluidics 
in Clinical Research and Medicine 

Undoubtedly the 3D in vitro culture systems 
helped to bridge the gap between traditional 2D cell 
cultures and animal models by exploiting the 
strengths of the two approaches. While 3D models 
strike a balance between ease of manipulation and 
closer representation of in vivo physiology, they still 
fall short of completely replicating the in vivo scenario. 
This limitation is attributed to the absence of native 
physiological stimuli that cells experience in their 
living microenvironment. 

Within 3D tissues, a network of arteries, veins, 
and capillaries ensures continuous perfusion of 
oxygen and nutrients, as well as of drugs, throughout 
entire organs. The spatial organization plays a crucial 
role, exposing cell populations to varying gradients of 
substances that significantly influence the phenotypic 
and metabolic behavior of the tissues.46,130 Fluid flow 
is thus considered the part and the parcel of the tissue 

architecture. The fluidic system, influenced by vessel 
type, tissue structure, and organism size, generates 
physiological shear stress impacting the morphology, 
viability, proliferation, differentiation, and gene 
expression of a cell and its interactions with other cell 
populations. These effects are observed not only 
under normal conditions but also in pathological 
states.131-133 Immune cells exploit the systemic 
circulation to identify the regions of the organism 
affected by inflammation or damage, with their 
extravasation typically occurring in the vessel walls 
experiencing higher shear stress.134 Additionally, 
shear stress plays a pivotal role in regulating cancer 
invasion and metastasis spread. On one hand, cancer 
cells utilize systemic circulation to disseminate and 
colonize distant organs, especially during intra- and 
extravasation processes. On the other hand, the shear 
forces within the vessels may hamper the survival of 
invading cancer cells, hindering their successful 
metastasis.131,135 

This evidence highlights the importance of the 
fluid dynamics in the biological systems. Therefore, to 
address the above-mentioned limitations of 3D static 
conditions, while adhering to the 3Rs’ principles, 
microfluidic devices have recently gained widespread 
application in clinical research.136 This promising 
solution involves integrating 3D models with 
microfluidics, giving rise to the concept of an 
"organ-on-a-chip” (Figure 4). This system provides a 

 

 
Figure 3. Organization of Tumor Organoids. Schematic representation of in vitro heterotypic organoids (refer as tumoroids) formation. Tumoroids are simplified versions 
of the patient-derived tumor mass containing stem cells that drive the self-organization in the 3D architectures capable of recapitulating several aspects of the complexity and 
functionality of the corresponding in vivo tissue (created with BioRender). 
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practical platform for simulating in vivo body fluid 
perfusion, enabling to mimic the blood flow in organs 
through externally controlled microfluidics, facilita-
ting the recreation of biochemical gradients and 
mechanical cues.137 They enable the reconstruction of 
3D living tissues under micro physiological 
fluid-dynamic conditions, facilitated by a peristaltic 
pump that replicates the speed, direction, and shear 
stress of fluid flow. This technology recapitulates 
diverse flows and tissue complexity 132,138, enhancing 
the reproducibility of tissue conditions, extending cell 
lifespan, accelerating drug testing without involving 
animal models, and achieving reliable human disease 
models for basic research. 

Organ-on-a-chip technologies enable the 
comprehensive study of various aspects of cancer 
physiology. This includes the recreation of the TME, 
investigation of cancer-stroma and -immune crosstalk 
139, analysis of cell migration and metastasis, screening 
of anticancer drugs, prediction of therapy responses, 
and exploration of the transport of anticancer 
nanomedicines in tumor tissues 140. As an example, 
creating 3D SKOV-3 cell-laden alginate hydrogels as 
models for ovarian tumors under fluid dynamic 
conditions provides a more precise representation of 
the 3D TME and improves the prediction of in vivo 
drug efficacy compared to static in vitro models and 
xenograft mouse models.130  After a week of treating 
3D hydrogels with 10 μM cisplatin, cell viability 
exceeded 80% under static conditions but declined by 
up to 50% in dynamic culture, which reflected the 
different cisplatin diffusion rate in the two conditions. 
Notably, in a xenograft model, the drug efficacy test 
demonstrated around 44% tumor regression after 5 
weeks, aligning with predictions from shorter-term 
fluid-dynamic in vitro tests.130  

The immune-organ-on-a-chip replicates the 
infiltration of circulating immune cells into a 3D 
tumor model, offering dual access to both tumor and 
circulating compartments. This enables the 
monitoring and quantification of changes in the TME, 
including soluble molecules, cell death, and tumor 
cell invasion. Within the microfluidic device, 
circulating NK cells undergo a spontaneous 
extravasation process, retaining their ability to 
interact with matrix-embedded neuroblastoma cells, 
thereby exhibiting a cytotoxic effect that leads to 
tumor cell apoptosis.141 

Microfluidic devices are also employed in 
studying the metastatic dissemination of tumor cells, 
particularly for isolating circulating tumor cells 
(CTCs). The detection of CTCs serves as a predictive 
measure for tumor staging. CTC isolation utilizes 
label-free filtering methods 142,143 or label-based 
approaches involving specific antibodies.144 

Researchers have replicated a 3D circulation system 
with different patterns of wall shear stress to 
investigate its effects on the behavior of circulating 
metastatic breast cancer cells injected into the device. 
131  

Organ-on-a-chip devices could also facilitate the 
intricate dynamics of multi-organ metabolism when 
interconnected in various organs-on-a-chip, as well as 
the pharmacokinetics 145, including the mechanism of 
action and toxic effects of drugs 146. A multi-organ 
chip was used to interconnect ovarian cancer tissues 
with hepatic cellular models, emulating systemic 
cisplatin administration. This setup allowed the 
simultaneous evaluation of drug efficacy and 
hepatotoxic effects in a physiological context. 
Notably, the combination of 3D culture, fluid- 
dynamic conditions, and multi-organ connection 
showcased superior predictive toxicity and efficacy 
results compared to clinical therapy. 147  

In addition, microfluidic-coupled devices 
represent a valuable platform to be exploited in 
precision medicine, particularly for the preclinical 
screening of anticancer nano-drugs and 
nanotheranostic systems. 148 

Advancing Cancer Research through 
3D-Bioprinting for Personalized 
Medicine 

Despite significant progress in 3D co-culture and 
microfluidics, fully capturing the complexity of in vivo 
tumors remains a major challenge. The TME consists 
of a complex array of elements, including the ECM, 
stromal cells, immune cells, soluble mediators, and 
blood vessels. 3D-bioprinting enables the precise 
replication of this intricate architecture by creating 
tissues and organs that faithfully reproduce the 
cellular density, ECM composition, and three- 
dimensional spatial organization of the TME. 15 In 
recent years, 3D-bioprinting has emerged as an 
innovative approach for fabricating complex tissue 
models by producing biomaterials through designed 
structures. These biomaterials possess powerful 
properties such as biocompatibility, controllability, 
printability, and crosslinking, enabling diverse 
applications in regenerative medicine, cancer 
research, drug discovery, toxicology, and basic 
research. 149 For the successful implementation of 
3D-bioprinting technology, the use of bioinks is 
fundamental, as they have recently emerged as 
indispensable for achieving fast and dependable 
3D-bioprinted cell culture systems. 150 Bioinks consist 
of biocompatible hydrogels embedded with various 
forms of living cells, including single cells, cell 
aggregates in spheroids, and cells organized into 
organoids. 150,151 These biopolymeric hydrogels should 
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replicate the structural, physicochemical, and 
biological characteristics of the ECM, enhancing the 
simultaneous attachment and proliferation of various 
cell types. 152 Additionally, bioinks may include 
biomolecules such as growth factors, DNA, miRNA, 
cytokines, and exosomes. 150 By using the bioprinter, 
hydrogels, cells, and biomolecules can be precisely 
layered and arranged to control the spatial placement 
of functional components, enabling the creation of 
customized 3D structures. 153 

The combination of organoids with 3D- 
bioprinting offers a promising avenue for developing 
more advanced and accurate cancer models, focusing 
on clinical applications such as chemotherapeutic 
drug screening and the development of personalized 
treatment regimens for cancer patients. 15,61 

Bioprinted cancer models integrating 
patient-derived cancer cells and stroma components 
to mimic the TME and vascularization offer advanced 
platforms for precision chemotherapy screening 
across various cancers. For example, Han et al. 
developed a bioprinting method to recreate the TME 

by printing a layer of blood vessels using fibroblasts 
and endothelial cells within a biocompatible matrix. 
The glioblastoma tumor spheroids were added, and 
the formation of blood vessel sprouts around the 
spheroids was observed, which increased their size. 
Treatment with the drug temozolomide effectively 
reduced spheroid growth, demonstrating that this 
bioprinted model is a valuable tool for studying 
tumor biology and testing drug efficacy. 154 A high 
throughput bioprinting platform using tunable 3D 
hydrogels proved effective for testing anti-metastatic 
drugs toward cancer cells exhibiting distinct 
migratory and invasive behaviors in dependence of 
the hydrogel stiffness. 155  

Altogether, these models hold promise for 
personalized medicine by closely mimicking in vivo 
conditions and improving treatment strategies. 156 

Furthermore, the integration of 3D-bioprinting 
with innovative technologies, such as organ-on-a-chip 
systems, is likely to revolutionize cancer research. 
Organ-on-a-chip devices, which mimic the 
physiological functions of human organs as 

 
Figure 4. Microfluidic Devices: Advancing 3D Tissue Models Towards Organ-on-a-Chip Technology. Microfluidic devices have recently gained widespread 
application in clinical research to address the limitations of static 3D conditions while adhering to the principles of the 3Rs. 3D models with microfluidics have led to the 
development of an “organ-on-a-chip concept”. These systems provide a practical platform for simulating in vivo body fluid perfusion, mimicking organ blood flow through 
externally controlled microfluidics. This capability facilitates the recreation of biochemical gradients and mechanical cues essential for tissue function. “Organ-on-a-chip” 
enhances reproducibility of tissue conditions, extends cell lifespan, accelerates drug testing without animal models, and establishes reliable human disease models for basic 
research (created with BioRender). 
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mentioned above, can be combined with bioprinted 
tissues to create highly dynamic and interactive 
cancer models. 157,158 

The continuous evolution of 3D-bioprinting 
technology offers a powerful means to replicate the 
intricate features of the TME, bringing us closer to 
creating more accurate cancer models. This progress 
aligns with the growing demand for prognostic 
preclinical models that identify the most suitable 
treatment regimens for individual patients, ultimately 
enhancing treatment efficacy and minimizing adverse 
effects, and thus advancing the field of precision 
medicine. 

Concluding Remarks 
This review provides a comprehensive overview 

of primary models employed in cancer research, 
including in vitro cell cultures and animal models. 

Particular emphasis is placed on their distinctive 
characteristics, strengths, and limitations. Here, we 
meticulously examined the 3D in vitro cell cultures of 
spheroids and organoids in all their variant 
implementations, including microfluidic and 
bioprinting. We stress how these 3D models may 
represent valid alternatives to the oversimplified and 
unrealistic 2D in vitro models as well as to animal 
models, that cannot accurately replicate the complex 
human conditions. We have thoroughly discussed the 
advantages offered by tumor spheroids and 
organoids in comparison to 2D and animal models, 
particularly in drug screening, differential gene and 
protein expression, epigenetic regulation, cellular 
signaling, and biomarkers identification. 

In our discussion, we highlight the strengths of 
3D models, while acknowledging their limitations as 
summarized in Table 1. 

 

Table 1. Overview of the main advantages and limitations of 3D models discussed in the review. Abbreviations: ECM, extracellular 
matrix; TME, tumor microenvironment. 

Experimental model PROS CONS 
Spheroids Low expensive and time effective (scalable in high 

throughput) 
 
Easy manipulation and high accessibility of cell materials 
 
High reproducibility and long-term growth 
 
Simplicity of genetic manipulation 
 
Possibility of setting up co-cultures for mimicking tumor 
heterogenicity 

Oversimplified static system 
 
Lack of robustness and reliability for translational relevance 
 
Lack of ability to recapitulate in vivo organ features 
 
 

Organoids Faithfully recapitulate the pathophysiology of the disease 
 
Highly predictive platform for studying patient responses 
 
Accurately replicate tissue architecture, functionality and 
dynamic complexity of TME 
 
Simplicity of genetic manipulation 
 
Possibility of setting up co-cultures for mimicking tumor 
heterogenicity 
 
Possibility to model healthy and tumor tissues 
simultaneously from the same patient 
 
Development of biobanks 

Challenging manipulation 
 
Need of ethical approval for patients-derived samples 
 
High expensive 
 
Limited growth (depending on stemness/differentiation ratio)  
 
Limited reproducibility 
 
Oversimplified static system 

Organ-on-chip Combination of advantages of microfluidic devices with 
organoids 
 
Possibility of interconnecting different organoids to recreate 
multi-organ metabolism (multi-organ-on-chip) 

High expensive 
 
Require expertise 
 
Need of ethical approval for patients-derived samples 
 
Difficult to adapt to high throughput 
 
Readout typically limited to end-point analysis 

Microfluidics Replicate physiological TME conditions, vasculature-like 
perfusion, precise control over chemical gradient flows, and 
mechanical forces 
 
Possibility of collecting the fluids for characterization of 
secreted soluble factors and circulating cells 
 
Implementation of a dynamic system 

Low amount of samples available for downstream 
characterizations 
 
Require expertise 
 
High expensive 
 
Difficult to adapt to high throughput 

3D-Bioprinting Faithfully recapitulate complex architecture, precise control 
over chemical gradient flows, and mechanical forces 
(stiffness) of native ECM 
 
Proper spatial arrangement of cells within intricate 3D 

Require disruption of hydrogel/matrix to collect cells 
 
Low amount of samples available for downstream 
characterizations 
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Experimental model PROS CONS 
constructs and preserves the hierarchical architecture of the 
TME 
 
High reproducibility 

Require expertise 
 
High expensive 
 
Difficult to adapt to high throughput 

 

 
Figure 5. Overview of the Current Applications of 3D Models in Cancer Research. Schematic representation of the suitability of each 3D culture system (spheroids, 
organoids, organ-on-chip, microfluidics and 3D-Bioprinting) to study the onset and progression of carcinogenesis, efficacy of anticancer therapies, cell-cell crosstalk in the TME, 
host/pathogen or host/microbiota interplays, expression profiling, and metastatic process (created with Biorender). 

 
The implementation with microfluidics holds 

promising potential in 3D models exploited in clinical 
research. Further investigations are essential to 
uncover new possibilities in microfluidic applications, 
potentially leading to more personalized and precise 
medicine. This evolving field has the capacity to drive 
breakthroughs in diagnostics, drug delivery, and 
tissue engineering, offering innovative solutions to 
complex challenges in diverse medical fields. A brief 
overview of the possible applications and advantages 
of all the 3D models mentioned above are illustrated 
in Figure 5.  

Taken together, 3D models emerge as a pivotal 
tool bridging the gap between 2D in vitro and in vivo 
models. The increasing complexity of 3D cell cultures, 
resulted from the integration of spheroids and 
organoids with microfluidic systems and/or 
3D-bioprinting, brings researchers closer to 
mimicking in vivo conditions. The employment of 3D 
models represents a significant advancement in in 
vitro research, contributing to the development of 
effective antitumor strategies. Their application 

promises a reduction in animal experimentation, 
offering advantages in terms of costs, time efficiency, 
and ethical considerations. Consequently, this 
advancement enhances the robustness and reliability 
of research data, facilitating the seamless translation 
of findings from the experimental phase to clinical 
applications. We are aware that in vitro models, 
although sophisticated and useful for understanding 
biological mechanisms, also present important 
limitations as they cannot reveal organ toxicity or 
provide information on pharmacokinetics, which can 
be derived from animal studies.21 Here we presented 
the bioengineered 3D in vitro models that could serve 
as valid alternative platforms to limit the use of 
animal models for preclinical testing. 
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