1	Supplementary Materials for
2	Regulating the balance between GSDMD-mediated pyroptosis and CHMP4B-dependent
3	cell repair attenuates calcium oxalate kidney stone formation
4	
5	Shushuai Yang ^{1*} , Yuanjiong Qi ^{1*} , Yue Chen ^{1*} , Hailong Kong ¹ , Bin Han ¹ , Zhongsheng Peng ¹ ,
6	Chenglong Xu ¹ , Bohan Wang ^{2#} , Liqun Chen ^{3#} , Shiyong Qi ^{1#}
7	
8	1. Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin
9	Medical University, Tianjin 300211, China
10	2. Department of Urology, The Second Affiliated Hospital, School of Medicine, Zhejiang
11	University, Hangzhou 310000, China
12	3. Medical College, Academy of Medical Engineering and Translational Medicine, Tianjin
13	University, Tianjin 300072, China
14	*These authors contributed equally to this work.
15	[#] Corresponding author: Bohan Wang, E-mail: wangbohan@zju.edu.cn; Liqun Chen, E-mail:
16	chenliqunlab@163.com; Shiyong Qi, E-mail: yongshiqi_qsy@tmu.edu.cn.
17	
18	This file includes:
19	1. Supplementary figures and relative supplementary figure legends (Figure S1 to S8)
20	2. Supplementary Tables (Table S1 to S3)
21	
22	

23 Supplementary figures

25	Figure S1. Pyroptosis and inflammation serve as potential factors for the development of
26	renal stones in both patients and mice. A Gene ontology (GO) enrichment analysis of
27	differentially expressed genes. B Kyoto Encyclopedia of Genes and Genomes (KEGG)
28	enrichment analysis of differentially expressed genes. C Relative mRNA expression of genes
29	related with pyroptosis (NLRP3, Caspase-1, and GSDMD), apoptosis (Caspase-3, Bax, and
30	Bcl2), necroptosis (Ripk1, Mlkl, and Fas), and ferroptosis (Gpx4, Acsl4, and Ncoa4) in mouse
31	kidney tissues from the RNA-Seq data. D The ultrastructure of renal tubular epithelial cells in
32	the control and stone groups was observed by TEM ($n = 3$). The yellow arrows indicate
33	swollen mitochondria. The green arrows indicate autophagy vacuoles. The red arrows indicate
34	cytoplasmic vacuolisation. The blue arrows indicated membrane protrusion. E The viability
35	of HK-2 cells in different groups was measured by CCK8 assay ($n = 5$). F Representative
36	images and statistical graphs for immunohistochemical staining of IL-1 β and IL-18 in kidney
37	tissues from normal people and patients with kidney stones ($n = 4$). G Relative mRNA
38	expression of CD44 was assessed by qRT-PCR in 20 normal people and 20 patients with
39	kidney stones (n = 20). H The linear regression analysis of the relevance between $NLRP3$
40	mRNA expression and <i>CD44</i> mRNA expression ($r = 0.7444$, $P < 0.01$, $n = 20$). I The linear
41	regression analysis of the relevance between GSDMD mRNA expression and CD44 mRNA
42	expression (r = 0.6654, P < 0.01, n = 20). Data are presented as mean \pm SEM. **P < 0.01,
43	*** $P < 0.001$, ns represents non-significant.

46 Figure S2. GSDMD deficiency significantly alleviated renal inflammation and crystal
47 adhesion in the stone model. A Relative mRNA expression of *GSDMD* was assessed by
48 qRT-PCR in different kidney tissues (n = 4). B The knockout efficiency of GSDMD was

49 confirmed by immunohistochemistry (n = 3). C Representative images and statistical graphs 50 for immunohistochemical staining of IL-1 β , IL-18, OPN, CD44, and HAS in kidney tissues 51 from different groups (n = 3). Data are presented as mean ± SEM. **P < 0.01, ***P < 0.001, 52 ns represents non-significant.

Figure S3. GSDMD-mediated pyroptosis was caused by NLRP3 signaling pathway in HK-2 cells. A-C HK-2 cells were transfected with the si-NC or si-NLRP3 for 48 h, the mRNA level of NLRP3 was detected by qRT-PCR (n = 4), and the protein level of NLRP3 was detected by Western blotting (n = 3). D, E Western blot images (D) and quantitative plots

(E) of NLRP3, Casepase-1, GSDMD, GSDMD-N, IL-1 β , and IL-18 expression in HK-2 cells from different groups (n = 3). F-H HK-2 cells were transfected with the si-*NC* or si-*GSDMD* for 48 h, the mRNA level of *GSDMD* was detected by qRT-PCR (n = 4), and the protein level of GSDMD was detected by Western blotting (n = 3). Data are presented as mean ± SEM. **P* < 0.05, ***P* < 0.01, ****P* < 0.001.

Figure S4. NSA treatment significantly alleviated renal inflammation and crystal
 adhesion in the stone model. Representative images and statistical graphs for

68 immunohistochemical staining of IL-1 β , IL-18, OPN, CD44, and HAS in kidney tissues from 69 different groups (n = 3). Data are presented as mean ± SEM. **P < 0.01, ***P < 0.001.

70

72	Figure S5. CHMP4B expression was significantly increased in Ox-treated HK-2 cells. A,
73	B Western blot images (A) and quantitative plots (B) of CHMP4B expression in HK-2 cells
74	after intervention with Ox (n = 3). C-E HK-2 cells were transfected with the oe- NC or
75	oe-CHMP4B for 48 h, the mRNA level of CHMP4B was detected by qRT-PCR, and the
76	protein level of CHMP4B was detected by Western blotting ($n = 3$). F-H HK-2 cells were
77	transfected with the si-NC or si-CHMP4B for 48 h, the mRNA level of CHMP4B was
78	detected by qRT-PCR, and the protein level of CHMP4B was detected by Western blotting (n
79	= 3). I, J The viability of HK-2 cells in different groups was evaluated by a CCK8 assay (n =
80	3). Data are presented as mean \pm SEM. ** $P < 0.01$, *** $P < 0.001$, ns represents
81	non-significant.

87 genes. C Heatmap showing the differentially expressed genes that are enriched in cell

Figure S7. Combination NSA treatment with CHMP4B gene amplification displayed
better inhibition of cell death and cell-crystal adhesion caused by Ox *in vitro*. A

96	Cytoskeletal changes in HK-2 cells from different treatment groups ($n = 3$). B Calcein AM/PI
97	staining and quantitative plots of living/dead cells after intervention with Ox in HK-2 cells
98	from different groups (n = 3). C Representative images and quantitative plots of cell-crystal
99	adhesion of HK-2 cells from different treatment groups (n = 3). Data are presented as mean \pm
100	SEM. * <i>P</i> < 0.05, ** <i>P</i> < 0.01, *** <i>P</i> < 0.001.

В

С

А

NSP

GW*AAN-CH

c

GIVARNEN

NSARAAV

GW*NSA MARK

co

GW ASA MARCHINE GW ASA CHINE GW ASA CHINE GW ASA CHINE

ď

103	Figure S8. The combination of NSA treatment and CHMP4B overexpression could
104	protect against Gly-induced renal tubular epithelial cell injury in vivo. A, B The contents
105	of IL-1 β (A) and IL-18 (B) in the serum of each group of mice (n = 4). C Representative
106	images and statistical graphs for immunohistochemical staining of IL-1β, IL-18, OPN, and
107	CD44 in kidney tissues from different groups (n = 3). Data are presented as mean \pm SEM. * <i>P</i>
108	< 0.05, ** <i>P</i> < 0.01, *** <i>P</i> < 0.001.

110 Supplementary Tables

111

112 Table S1. Clinical characteristics of normal individuals and kidney stone patients.

113 Normal ind	iv	rid	lual	S
----------------	----	-----	------	---

No.	Gender	Age
1	F	65
2	F	68
3	F	61
4	М	68
5	М	54
6	F	68
7	М	66
8	М	68
9	М	43
10	М	50

11	F	62
12	М	68
13	М	43
14	М	51
15	F	57
16	F	59
17	F	32
18	М	42
19	М	43
20	М	51

115 Kidney stone patients

No.	Gender	Age	Side	Location	CT value
1	F	54	R	Kidney	1004
2	М	79	L	Ureteral	1213
3	М	68	R	Ureteral	1038
4	М	42	R	Ureteral	1023
5	М	36	L	Kidney	1221
6	М	36	L	Kidney	1284
7	F	32	L	Kidney	1393

8	М	60	L	Kidney	1605
9	F	59	L	Ureteral	1156
10	М	40	L	Kidney	1110
11	М	50	L	Kidney	1257
12	М	33	L	Kidney	1596
13	F	57	L	Kidney	1337
14	М	59	R	Kidney, Ureteral	1667
15	М	36	L	Kidney	1511
16	М	26	L	Ureteral	913
17	М	48	L	Kidney	1035
18	М	55	L	Kidney	1275
19	М	53	R	Kidney	1376
20	F	54	L	Kidney	1282

F = Female; M = Male; R = Right; L = Left.

118 Table S2. Primary and secondary antibodies used in western blot and 119 immunohistochemical analysis.

Antibody	Catalog Number	Manufacturer	Origin
NLRP3	68102-1-Ig	Proteintech	Wuhan, China

Caspase-1	22915-1-AP	Proteintech	Wuhan, China
GSDMD	20770-1-AP	Proteintech	Wuhan, China
GSDMD-N	#DF13758	Affinity Biosciences	Jiangsu, China
CHMP4B	13683-1-AP	Proteintech	Wuhan, China
IL-1β	26048-1-AP	Proteintech	Wuhan, China
IL-18	10663-1-AP	Proteintech	Wuhan, China
OPN	22952-1-AP	Proteintech	Wuhan, China
CD44	60224-1-Ig	Proteintech	Wuhan, China
HAS	15609-1-AP	Proteintech	Wuhan, China
β-actin	81115-1-RR	Proteintech	Wuhan, China
GAPDH	60004-1-Ig	Proteintech	Wuhan, China
HRP, Goat			
Anti-Rabbit	A21020	Abbkine	Wuhan, China
IgG			
HRP, Goat			
Anti-Mouse	A21010	Abbkine	Wuhan, China
IgG			

Table S3. Primer sequences for qRT-PCR.

Primer	Forward primer	Reverse primer
name		

NLRP3	5'-CGTGAGTCCCATTAAGATGG	5'-CCCGACAGTGGATATAGAAC
(Human)	AGT-3'	AGA-3'
GSDMD	5'-GAGTGTGGGCCTAGAGCTGG-3'	5'-GGCTCAGTCCTGATAGCAGT
(Human)		G-3'
CHMP4B	5'-TGCTGGAAATCAGTGGACCC-	5'-CGGGTTTTGATGGTAGGGCT-
(Human)	3'	3'
GAPDH	5'-ATGGTGAAGGTCGGTGTGAA-	5'-TGGAAGATGGTGATGGGCTT-
(Human)	3'	3'
GSDMD	5'-GATCAAGGAGGTAAGCGGCA	5'-CACTCCGGTTCTGGTTCTGG-
(Mouse)	-3'	3'
GAPDH	5'-CCCTTAAGAGGGATGCTGCC-	5'-TACGGCCAAATCCGTTCACA-
(Mouse)	3'	3'