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Supplementary methods: 

Data collection  

We procured single-cell transcriptomic datasets GSE151530, GSE166635, and GSE149614 

from the Gene Expression Omnibus repository (GEO, https://www.ncbi.nlm.nih.gov/geo). At the 

bulk transcriptomic level, mRNA expression profiles, and clinical data of HCC patients were 

retrieved from The Cancer Genome Atlas Liver Hepatocellular Carcinoma (LIHC) project via the 

UCSC Xena platform(http://xena.ucsc.edu/), GSE124751 from the GEO, HCCDB18 from 

HCCDB (http://lifeome.net:809/#/download). Additionally, pertinent metadata were extracted 

from the original research.  

ScRNA-seq data processing 

With its default settings, the Seurat workflow version 5.0 was utilized to analyze scRNA-seq 

data. Initial quality control steps were taken to filter out cells with a low gene detection count 

(fewer than 500 genes) and an elevated mitochondrial gene expression rate (over 30%). Following 

the quality control phase, scTransform was applied for data normalization, accounting for 

mitochondrial gene expression levels, Unique Molecular Identifiers (UMIs), and gene detection 

counts. Principal Component Analysis (PCA) was conducted utilizing the RunPCA function to 

achieve dimensionality reduction in the dataset. Subsequently, Uniform Manifold Approximation 

and Projection (UMAP) was employed through the RunUMAP function to further enhance data 

visualization by reducing dimensionality. Clustering analysis was performed using the 

FindClusters function, with a resolution parameter set at 0.2, and the Louvain method was applied 

to optimize modularity. To identify cell types, we compiled a set of lineage-specific markers to 

distinguish the primary cell populations. These included CD3E, CD3D, CD2, and IL7R for T/NK 

cells; CD163, CD68, C1QB, and AIF1 for Kupffer cells; CD79A and IGHG1 for B cells; MGP, 

MYL9, IGFBP7, ACTA2, and COL1A1 for hepatic stellate cells; PODXL, VWA1, PLVAP, and 

CD34 for tumor liver vascular endothelial cells; TTR, TF, KRT18, KRT8, and EFNA1 for 

malignant cells; and CPA3, TPSAB1, and TPSB2 for mast cells. The AddModuleScore function 

within Seurat was leveraged to compute proliferation[1], metastasis[2], extracellular matrix (ECM) 

modeling[3], and collagen formation[4] scores for subcluster cells. We calculated cell cycle phase 

scores utilizing the CellCycleScoring function in conjunction with a carefully curated list of 

canonical markers derived from Seurat. This classification allowed us to categorize cells into G1, 

S, or G2M phases based on their cell cycle status. 

Single-cell metabolic analysis 

ScFEA is a metabolic flux relative rate evaluation software based on the Flux Balance 

algorithm[5]. It can evaluate the changes of enzymes and transporters through scRNA-seq data 

expression changes, combined with flux balance constraint probability. According to the human 

KEGG metabolic map[6], key metabolic modules were obtained. Establish flux balance constraint 

probability model, neural networks optimization solver and multi-layer neural networks model to 

obtain complex cascade information from transcriptome to metabolome. Define a loss function to 

infer the cellular metabolic flux of scRNA-seq data. The t-test and Cohen's formula were used to 

determine the statistical significance of metabolic differences between groups and to assess the 

degree of differences. 

 

https://www.ncbi.nlm.nih.gov/geo
http://xena.ucsc.edu/


Single-cell rank-based gene set enrichment analysis 

 We analyzed the hallmark pathways' activity within malignant cell subpopulations using 

irGSEA[7]. This software consolidates multiple enrichment analysis techniques on scRNA-seq 

levels. The integrated methods encompass AUCell[8], VISION[9], GSVA[10], singscore[11], 

ssGSEA[12], JASMINE[13], and viper (https://github.com/alevax/pyviper). The robust rank 

aggregation algorithm[14] was applied to pinpoint gene sets consistently enriched across these 

various analytical approaches. Thereby, irGSEA provided a comprehensive view of the activity of 

crucial pathways within the malignant cell subpopulations. 

InferCNV for scRNA-seq data analysis 

InferCNV tool (https://github.com/broadinstitute/inferCNV) calculated large-scale copy 

number variations (CNVs) from scRNA-seq data. T/NK cells (immune cells) served as spiked-in 

controls (reference). We utilized the InfercnvObject function to compile a raw scRNA-seq counts 

matrix, a scRNA-seq annotation file, and a file detailing the positions of genes and chromosomes 

(https://www.gencodegenes.org/). The InferCNV analysis was executed with a stringent cutoff 

value set at 0.1 to ensure the reliability of the inferred CNVs.  

Single-cell trajectory construction 

The cell trajectory was established using Monocle3 (https://cole-trapnell-

lab.github.io/monocle3/). For pseudotime analysis, we used the UMAP coordinates to plot a graph 

that delineates the path of cell progression. This graph was then employed to order malignant cells 

along the pseudotime axis using the ordercells function within Monocle3. After ordering the cells, 

we plotted both the cells and the most differentially expressed stemness-related genes in 

pseudotime, adhering to the default parameters to visualize their expression patterns and dynamics 

across different stages of cell development. Furthermore, CytoTRACE 

(https://cytotrace.stanford.edu/) was utilized to assess the stemness and differentiation potential 

across various tumor cell subpopulations. 

Bulk-seq data analysis 

For the bulk-level analysis, we first filtered out samples that lacked survival information from 

the cohort. Subsequently, a survival analysis was conducted utilizing the Kaplan-Meier method. 

Univariate and multivariate Cox regression analyses were performed to identify independent risk 

factors that influence prognosis. These analyses were executed using the survival R package 

(https://github.com/therneau/survival).  

 

 Tumor potential immune therapy susceptibility analysis 

 TIDE is a computational tool[15, 16] designed to forecast the probability of cancer patients 

responding to immunotherapies (PD-1/CTLA4 checkpoint inhibitors) based on analysis of bulk 

sequencing data. 

 

Cellchat analysis 

 Cell-cell signaling networks were systematically reconstructed using the CellChat 

algorithm[17], a computational framework designed for deconvolving microenvironmental 

crosstalk from single-cell transcriptomic data. The receptors related to SRGN pathway were 

manually obtained from previous studies[18-24] and added to the CellChat database. 

https://github.com/therneau/survival


Supplementary figures: 

 

Supplementary Figure 1. Data quality control and filtering. (A) Clinical characteristics of the 

analyzed samples. (B) Violin plots showing the distribution of detected genes (nFeature RNA), 

total UMIs (nCount RNA), mitochondrial gene expression (percent MT), and ribosomal gene 

expression (percent rb) across samples. (C) Density plots illustrating the distribution of detected 

genes, UMIs, and MitoRatio per sample, with red lines indicating quality control thresholds. 

 

 

Supplementary Figure 2. Survival analysis between SRGN-high and SRGN-low patients. (A) 

SRGN level in the patients’ serum was positively correlated overall survival. (B) SRGN 

expression is an independent survival outcome indicator for HCC patients.  

 

 

 

 



 

Supplementary Figure 3. MTS assays show that the cell viability of the SRGN-knockdown 

groups (SK-Hep-1 KD 1#, SK-Hep-1 KD 2#) is lower than that of the non-knockdown group 

(SK-Hep-1 NC), and the Hep 3B SRGN-overexpression group has higher cell viability than 

the Hep 3B vector group. 

 

 

Supplementary Figure 4. Exogenous recombinant SRGN concentration-dependent 

enhancement of HCC Cell Migration and invasion via autocrine. (A) Quantifying wound 

closure area (%) in SK-Hep-1 KD2# cells treated with conditioned medium containing graded 

exogenous recombinant SRGN concentrations (50, 200, 500 ng/mL). (B) Phase-contrast images of 

wound healing assays at 0h, 24h, and 48h. (C) Quantifying invaded cells in Transwell chambers 

after 24 h exposure to SRGN-enriched conditioned medium. (D) Crystal violet-stained Transwell 

membranes demonstrating invasion capacity. (E) Immunoblot analysis of N-cadherin and vimentin 

level when HCC cells exposed to SRGN dose gradients. *p<0.05. 

 



 

Supplementary Figure 5. In vivo, fluorescence imaging quantifies the burden and 

dissemination of HCC metastatic tumors in the lungs of the control group (NC) and the 

SRGN knockdown group (KD 2#) and anatomical sampling photos of lung tissue. 

 



 

Supplementary Figure 6. Cell cycle phase distribution analysis between SRGN-high and 

SRGN-low tumor subclusters. (A) Pre-quality control of the GSE166635 cohort. (B) Post-

quality control filtering (mitochondrial genes <5%). (C) UMAP dimensionality reduction with 

Leiden algorithm-derived clusters (resolution=0.5). (D) Dot plot of lineage-defining markers 

(AMBP, TF, TTR, APOA1, APOH, and ALB) for malignant subcluster identification. (E) Heatmap 

of SRGN expression across malignant subclusters UMAP, highlighting subcluster 8 as SRGN-

high tumor cells. (F) Cell cycle phase projection (G1/S/G2M), stratified by SRGN expression. (G) 

A stacked bar plot comparing phase distribution showed more cells in G1 and G2M phases in 

SRGN-high tumor cells than in SRGN-low tumor cells. 

 

 

 

 

 



 

Supplementary Figure 7. Immunoblot analysis of cancer stem cell markers modulated by 

SRGN expression. SRGN overexpression in SMMC-7721 and SRGN knockdown (KD) SK-

Hep-1 cells were performed, followed by immunoblotting for cancer stem cell-associated 

markers at 72 h post-transfection.  

 

 

Supplementary Figure 8. Correlation analysis between SRGN and CD44 in HCC. (A)At 

single cell trancriptomic level, SRGN expression positively related with CD44 expression. (B) At 

bulk-seq level, SRGN expression positively related with CD44 expression in the LIHC corhort.  

 

 



 

Supplementary Figure 9. SRGN regulates cell migration through YAP-dependent pathways. 

(A) Representative Transwell migration images. (B) Quantification of migrated cells. (C) Western 

blot analysis of YAP pathway activation. NC: SRGN non-knockdown control group. SRGN 

knockdown comparison group: KD1#, KD2#. YAP5SA rescue group: KD1#R, KD2#R. **: p < 

0.01, ***: p < 0.001. 

 

 

 

 

 

 

 



 

Supplementary Figure 10. Correlation analysis between SRGN and CRISPLD2 in HCC. (A) 

Positive correlation between SRGN and CRISPLD2 expression at the single-cell transcriptomic 

level. (B, C) Positive correlation between SRGN and CRISPLD2 expression in Hep-G2 and 

MHCC-97H cells. (D) Overexpression of CRISPLD2 increases vimentin levels in SRGN-

knockdown SK-Hep-1 cells. (E) Suppression of CRISPLD2 significantly reduces proliferation in 

SK-Hep-1 cells. 

 

Supplementary Figure 11. qPCR for YAP/TEAD1 target genes in SRGN-overexpression and 

SRGN-knockdown HCC cells. 

 



 

Supplementary Figure 12. Potential immune therapy susceptibility comparison between 

patients with high versus low SRGN expression HCC at the bulk-seq level of clinical cohorts. 

TIDE: High values indicate a higher potential of HCC immune evasion and less likely benefit 

from anti-PD1/CTLA1 therapy. IFGN: IFN- γ  signature. T Cell Dysfunction: Scores show 

dysfunction of T cells in patients. FAP+CAF: Correlation of patients and FAP+ CAF. 

 

 

Supplementary Figure 13. Comparative analysis of sorafenib and daurisoline on migration 

inhibition and SRGN expression in MHCC-97H cells. (A) Wound healing assay images at 0h, 

24h and 48h post-treatment. (B) Quantification of migration area. (C) Immunoblotting of SRGN 

protein levels after 48h drug exposure. 



Supplementary tables: 

Primer Sequence 

SRGN  

Forward 5'-CGTCTGAGGACTGACCTTTTTCC-3' 

Reverse 5'-CGTTAGGAAGCCACTCCCAGAT-3' 

CRISPLD2  

Forward 5'-ACGGACGAGATGAATGAGGTGG-3' 

Reverse 5'-GGTGTCACATCTGACGACTTGG-3' 

Supplementary Table 1. Primes sequences used in this study. 

 

Library 1: FDA Approved Drugs Library 2:  Traditional Chinese Medicine 

Drug Bank Accession Number Score Generic Name ID Score Generic Name 

DB00762 -9.5 Irinotecan T2912 -9.9 Ergosterol 

DB13879 -9.3 Glecaprevir T3054 -9.1 Daurisoline 

DB00390 -9.3 Digoxin T5S1028 -8.9 3,29-Dibenzoyl Rarounitriol 

DB00941 -9 Hexafluronium T4923 -8.8 7-Dehydrocholesterol 

DB00696 -9 Ergotamine T2775 -8.8 Baicalin 

DB14703 -9 Dexamethasone metasulfobenzoate TN1006 -8.6 Tirucallol 

DB06210 -8.7 Eltrombopag T2S0112 -8.6 Yibeinoside A 

DB12371 -8.6 Siponimod T7600 -8.5 Fucoxanthin 

DB15328 -8.5 Ubrogepant T0478 -8.5 Progesterone 

DB01396 -8.4 Digitoxin T2763 -8.4 Panaxadiol 

DB00471 -8.4 Montelukast T10993 -8.4 δ-Amyrenone 

DB05812 -8.4 Abiraterone T2972 -8.3 Rutaecarpine 

DB00163 -8.4 Vitamin E T3S1775 -8.3 Tectochrysin 

DB00398 -8.4 Sorafenib T3871 -8.2 Sitogluside 

DB12887 -8.3 Tazemetostat T6S1315 -8.2 Oroxylin A 

DB08875 -8.3 Cabozantinib T3S2027 -8.2 Rubusoside 

DB00307 -8.2 Bexarotene TN5031 -8.1 Sitostenone 

DB00378 -8.2 Dydrogesterone T6169 -8.1 Indirubin 

DB11637 -8.2 Delamanid T5S1103 -8.1 Isoliensinine 

DB11363 -8.1 Alectinib    

DB01232 -8.1 Saquinavir    

DB08896 -8.1 Regorafenib       

Library 3:   Experimental Drugs    

Drug Bank Accession Number Score Generic Name or ZINC    

DB02729 -9.5 SD146    

DB02702 -8.9 XV638    

DB02354 -8.9 4-{[1-Methyl-5-(2-Methyl-Benzoimidazol-1-Ylmethyl)-1h-Benzoimidazol-2-Ylmethyl]-Amino}-Benzamidine 

DB07181 -8.7 4'-[(1R)-1-amino-2-(2,5-difluorophenyl)ethyl]biphenyl-3-carboxamide 

DB07728 -8.7 ZINC000016052794 

DB07530 -8.7 ZINC000038911928 

DB03159 -8.6 CRA_8696    

DB06925 -8.6 3-(2-AMINOQUINAZOLIN-6-YL)-4-METHYL-N-[3-(TRIFLUOROMETHYL)PHENYL]BENZAMIDE 

DB02915 -8.6 4-(2,4-Dimethyl-1,3-thiazol-5-yl)-N-[4-(trifluoromethyl)phenyl]-2-pyrimidinamine 

DB03373 -8.6 ZK-806711    

DB08191 -8.5 4-(5-phenyl-1H-pyrrolo[2,3-b]pyridin-3-yl)benzoic acid 



DB08121 -8.5 (2S)-2-(biphenyl-4-yloxy)-3-phenylpropanoic acid 

DB01725 -8.5 2-{2-hydroxy-[1,1'-biphenyl]-3-yl}-1H-1,3-benzodiazole-5-carboximidamide 

DB13484 -8.5 Quinbolone    

DB07837 -8.5 [4-(5-naphthalen-2-yl-1H-pyrrolo[2,3-b]pyridin-3-yl)phenyl]acetic acid 

DB14070 -8.5 HM-30181    

DB07778 -8.4 (S)-famoxadone    

DB04578 -8.3 ZINC000012504428 

DB08591 -8.3 5-(4-METHOXYBIPHENYL-3-YL)-1,2,5-THIADIAZOLIDIN-3-ONE 1,1-DIOXIDE 

DB04204 -8.3 [(4-{4-[4-(Difluoro-Phosphono-Methyl)-Phenyl]-Butyl}-Phenyl)-Difluoro-Methyl]-Phosphonic Acid 

DB14035 -8.2 Englitazone    

DB01443 -8.2 19-Nor-5-androstenedione    

DB07151 -8.2 4-(4-hydroxy-3-methylphenyl)-6-phenylpyrimidin-2(5H)-one 

DB07080 -8.2 TO-901317    

DB08025 -8.2 
N-{2'-[(4-FLUOROPHENYL)AMINO]-4,4'-BIPYRIDIN-2-YL}-4-

METHOXYCYCLOHEXANECARBOXAMIDE 

DB06944 -8.2 N-(3-cyclopropyl-1H-pyrazol-5-yl)-2-(2-naphthyl)acetamide 

DB07827 -8.1 ZINC000003815953 

DB03571 -8.1 3-(5-amino-7-hydroxy-[1,2,3]triazolo[4,5-d]pyrimidin-2-yl)-N-(3,5-dichlorobenzyl)-benzamide 

DB03865 -8.1 6-Chloro-2-(2-Hydroxy-Biphenyl-3-Yl)-1h-Indole-5-Carboxamidine 

DB06997 -8.1 2-(4-fluorophenyl)-N-{[3-fluoro-4-(1H-pyrrolo[2,3-b]pyridin-4-yloxy)phenyl]carbamoyl}acetamide 

DB08036 -8.1 6,7,12,13-tetrahydro-5H-indolo[2,3-a]pyrrolo[3,4-c]carbazol-5-one 

DB07642 -8.1 5-{[1-(2-fluorobenzyl)piperidin-4-yl]methoxy}quinazoline-2,4-diamine 

DB13857 -8.1 Demegestone    

Supplementary Table 2. Drug screening results targeting SRGN protein of HCC. 
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