Variables	Patient 1	Patient 2	Patient 3	Patient 4	Patient 5	Patient 6	Patient 7	Patient 8	Patient 9
Sex	Male	Female	Male	Male	Female	Male	Male	Female	Male
Age	26	35	45	47	56	52	63	67	75
Diagnosis	LDH	LDH	LDH&LSS						
Level	L4/5	L4/5	L5/S1	L5/S1	L5/S1	L4/5	L5/S1	L4/5	L4/5
Grades	II	II	II	III	III	III	V	V	V

Table S1. Clinical information of human degenerative disc samples from 9 patients.

LDH, lumbar disc degeneration; LSS, lumbar spinal stenosis.

Antibody	Manufacturer	Catalog No.
COL2	Proteintech	28459-1-AP
p21	Proteintech	28248-1-AP
P16	Proteintech	10883-1-AP
ADAMTS4	Proteintech	11865-1-AP
PI3K	Abmart	T40115
p-PI3K	Abmart	T40116
Akt	Abmart	T55561
p-Akt	Abmart	T40067S
mTOR	Proteintech	66888-1-Ig
p-mTOR	Proteintech	67778-1-Ig
ACE	Proteintech	24743-1-AP
PTEN	Proteintech	22034-1-AP
TRIM63	Abclonal	A3101
TRIM63	Santa Cruz Biotechnology	sc-398608
OGT	Proteintech	66823-1-Ig
ubiquitin	Proteintech	80992-1-RR
O-GlcNAc	Abcam	ab2739
p62	Proteintech	80294-1-RR
LC3B	Abclonal	A19665
p-PTEN	Abclonal	AP1346
PLK1	Abclonal	A21082
β-actin	Abclonal	AC026
GAPDH	Proteintech	60004-1-Ig
Flag	Cell Signaling Technology	14793
Мус	Cell Signaling Technology	2276
НА	Cell Signaling Technology	3724
p-S/T	BD Biosciences	612549
His	Cell Signaling Technology	12689

Table S2. Antibodies used in this study

COL2, Collagen II; ACAN, aggrecan; ADAMTS4, a disintegrin and metallo-proteinase with thrombospondin motif 4; ACE, angiotensin converting enzyme; PTEN, phosphatase and tensin homolog; PI3K/Akt/mTOR, phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin; PLK1, polo-like kinase 1; TRIM63, tripartite motif containing 63; OGT, O-linked N-acetylglucosamine (GlcNAc) transferase.

Table S3. Primer sequences for reverse transcription–polymerase chain reaction.

	Forward primers	Reverse primers
COL2	5'-CAAGAACAGCATTGCCTATCTG-3'	5'-GATAACAGTCTTGCCCCACTTA-3'
MMP13	5'-AGACCCCAACCCTAAACATCC-3'	5'-AAAACAGCTCCGCATCAACC-3'
P16	5'-CACTTCTCACCTCGCTTGTCACA-3'	5'-CCAAGAACCTGCGACCCATGCT-3'
P21	5'-GCCAGATTTGTGGCTCACTTCG-3'	5'-ACGCTTGGCTCGGCTCTGG-3'
ACE	5'- GCCCTGCAGGTGTCTGCAGCATGT-3'	5'-GGATGGCTCTCCCCGCCTTGTCTC-3'
PTEN	5'-CTGCAGAAAGACTTGAAGGCG-3'	5'-GGGAATAGTTACTCCCTTTTTGTC-3'
GAPDH	5'-AGCCACATCGCTCAGACAC-3'	5'-GCCCAATACGACCAAATCC-3'

COL2, collagen type II; MMP13, matrix metalloproteinase 13; ACE, angiotensin-converting enzyme; PTEN, phosphatase and tensin homolog.

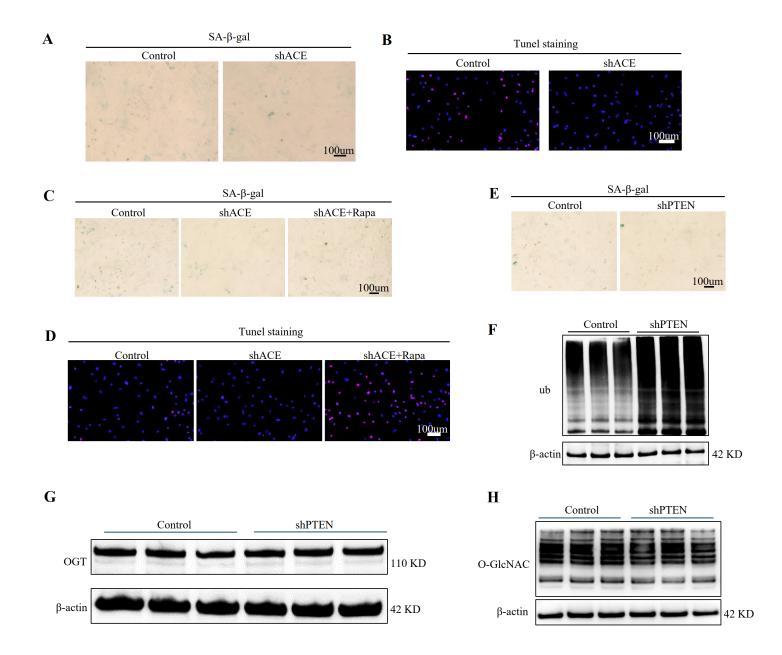


Figure S1 The functional verification of ACE and PTEN. A and B: Representative images of TUNNEL and β -galactosidase staining of NP cells transfected with shACE. Scale bar: 100 µm. C and D: Representative images of TUNNEL and β -galactosidase staining of NP cells transfected with shACE along with the mTOR inhibitor (rapamycin, Rapa, 100 nM) or not. Scale bar: 100 µm. E: Representative images of β -galactosidase staining of NP cells transfected with shPTEN. F, G and H: The proteins ubiquitin (Ub), OGT, and O-GlcNAc levels of NP cells transfected with shPTEN. All experiments were repeated three times. ACE, angiotensin converting enzyme; PTEN, phosphatase and tensin homolog; NP, nucleus pulposus; mTOR, mammalian target of rapamycin; OGT, O-linked N-acetylglucosamine transferase; O-GlcNAc, O-linked β -N-acetylglucosamine.

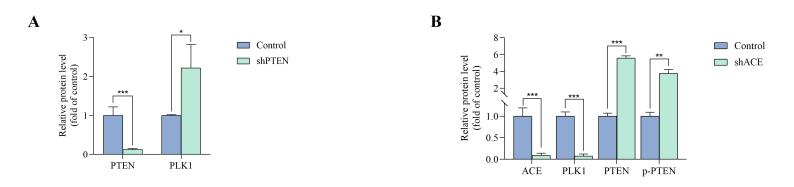


Figure S2 Semi-quantitative analysis of protein after ACE or PTEN knockout. A: NP cells were transduced with the shPTEN for 72 hours. The gray values of protein bands (PLK1 and PTEN) were quantified by ImageJ software (n = 3). B: NP cells were transduced with the shACE for 72 hours. The gray values of protein bands (ACE, PLK1, phosphorylated PTEN, and PTEN) were quantified by ImageJ software. Data was mean \pm SD (n = 3). One-way ANOVA and Tukey's multiple comparisons test were used for statistical analysis (n = 3). *p < 0.05, **p < 0.01 and ***p < 0.001. NP, nucleus pulposus; ACE, angiotensin converting enzyme; PTEN, phosphatase and tensin homolog; PLK1, polo-like kinase 1.

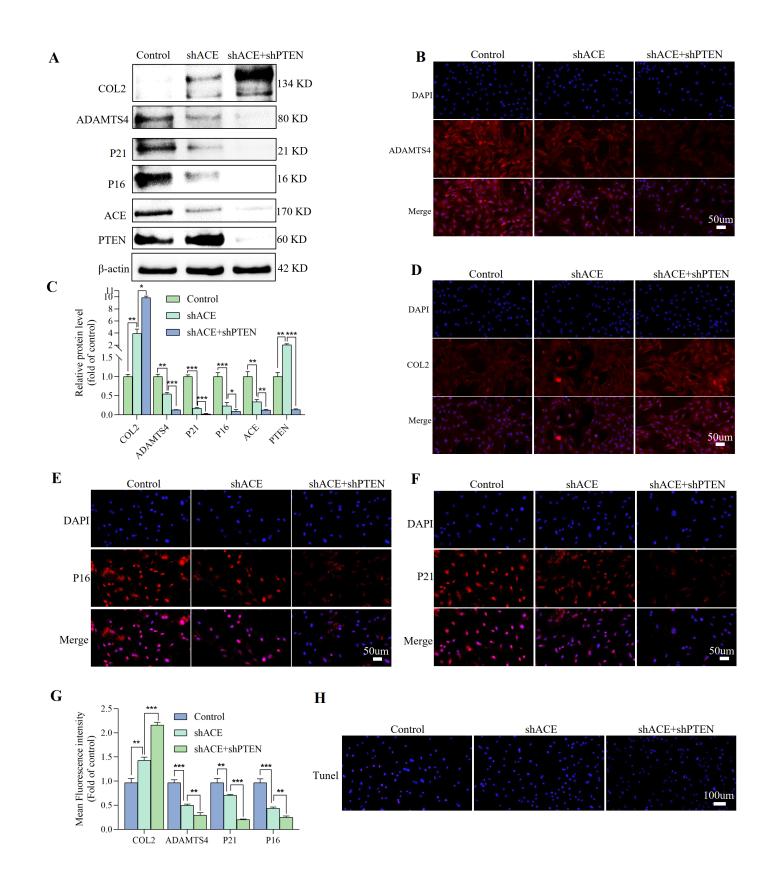


Figure S3 The combined knock-down effect of PTEN and ACE. NP cells underwent transduction with the shACE or combination of shACE and shPTEN for a duration of 72 hours. A and C: Degeneration and senescence-associated proteins COL2, ADAMTS4, p21, and p16 were assessed via western blot analysis, and the relative band density was measured (n = 3). B,D-G: Subsequently, the NP cells were marked with degeneration indicator antibodies (COL2 and ADAMTS4) and senescence antibodies (P21 and P16), exhibiting typical fluorescence pictures. The relative mean optical density was measured (n = 3). Scale bar: 50 μ m. H: TUNNEL staining of NP cells was subjected to the indicated shRNA transduction. Scale bar: 100 μ m. All experiments were repeated three times. The data are pre-sented as the mean \pm SD values. One-way ANOVA and Tukey's multiple comparisons test were used for statistical analysis. *p < 0.05, **p < 0.01, ***p < 0.001. NP, nucleus pulposus; ACE, angiotensin converting enzyme; PTEN, phosphatase and tensin homolog; COL2, Collagen II; ADAMTS4, a disintegrin and metalloproteinase with thrombospondin motif 4.

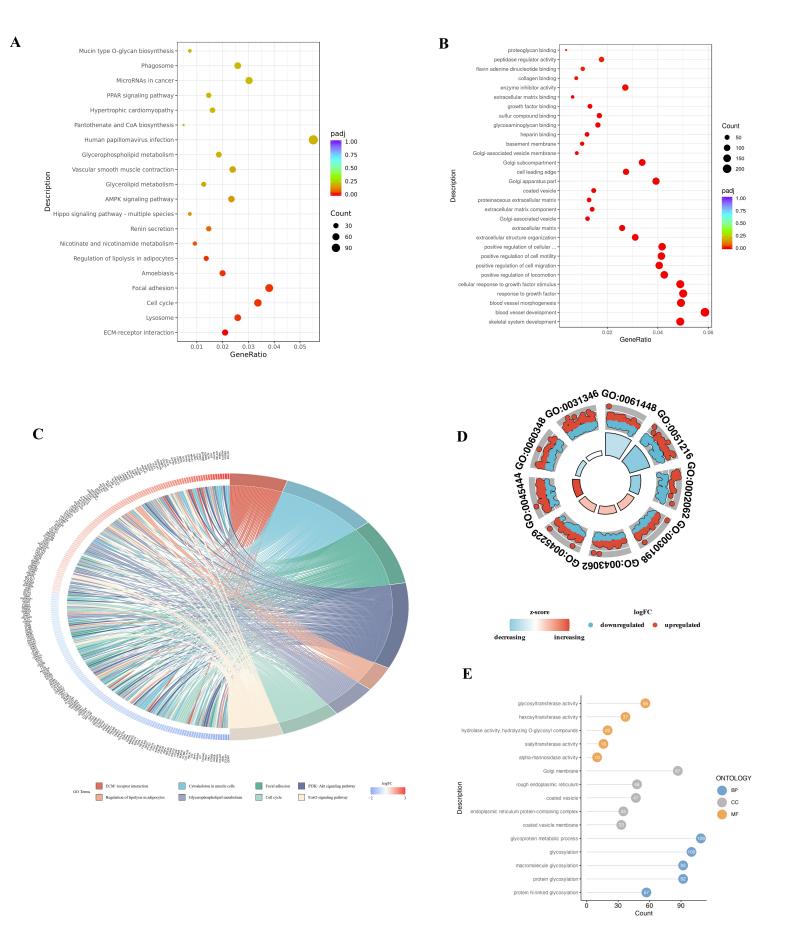


Figure S4 GO and KEGG pathway enrichment analysis. A and B: Dot or Bubble charts of the KEGG and GO enrichment terms. C: Chordal graph of the DEGs to KEGG pathways. The width of the chordal represents the log2FC value. D: GO enrichment circle dia-gram ($p \le 0.05$). E: Lollipop chart of the GO enrichment terms. KEGG, Kyoto encyclopedia of genes and genomes; GO, Gene ontology.

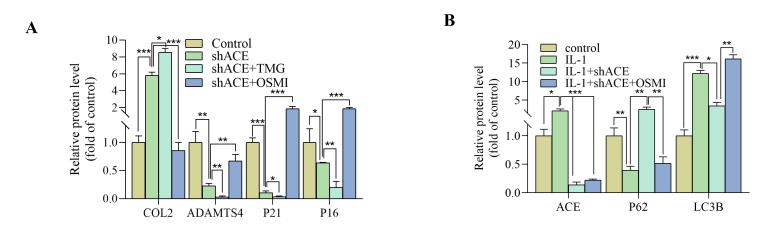


Figure S5 Quantification of the effect of glycosylation regulated by ACE on ER autophagy. A: Forty-eight hours after shACE transfection, NP cells were treated with the TMG (10 μ M) or OSMI (25 μ M) thirty-six hours. The gray values of pro-tein bands (COL2, ADAMTS4, p21, and p16) were quantified by ImageJ software (n = 3). B: The NP cells treated with IL-1 (10 ng/ml) were transfected with shACE. The NP cells transfected with shACE were treated with OSMI (25 μ M) or not. The gray values of pro-tein bands (P62 and LC3B) were quantified by ImageJ software (n = 3). Data was mean \pm SD (n = 3). One-way ANOVA and Tukey's multiple comparisons test were used for statistical analysis. *p < 0.05, **p < 0.01 and ****p < 0.001. NP, nucleus pulposus; ACE, angiotensin converting enzyme; ER, endoplasmic reticulum; TMG, Thiamet G; OSMI, O-GlcNAc transferase inhibitor; COL2, Collagen II; ADAMTS4, a disintegrin and metallo-proteinase with thrombospondin motif 4.

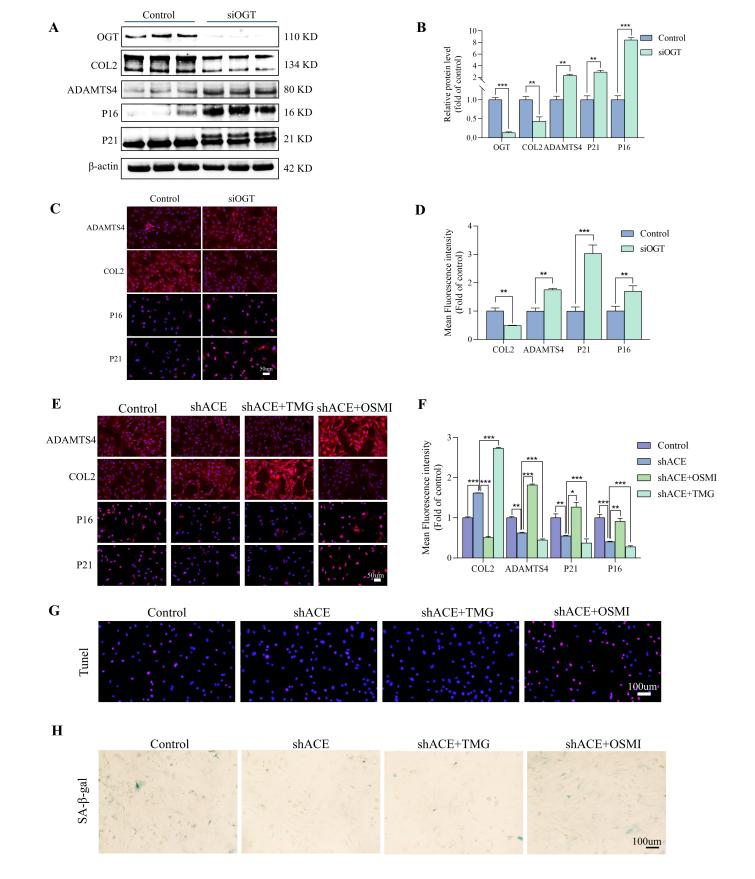


Figure S6 The functional verification of OGT and the effect of glycosylation regulated by ACE on ER autophagy. A-D: NP cells were transduced with OGT siRNA for 72 hours. Degeneration and senescence-associated proteins COL2, ADAMTS4, p21, and p16 were evaluated using western blot analysis and immunofluorescence labeling. Fluorescence intensity and band density were assessed by semiquantitative analysis (n = 3). Scale bar: 50 μ m. E and F: Forty-eight hours after shACE transfection, NP cells were treated with the TMG (10 μ M) or OSMI (25 μ M) thirty-six hours. Degeneration and senescence-associated proteins COL2, ADAMTS4, p21, and p16 were evaluated using immunofluorescence labeling. Fluorescence intensity was assessed by semiquantitative analysis(n = 3). Scale bar: 50 μ m. G and H: TUNNEL and β -galactosidase staining of NP cells with above treatments. Scale bar: 100 μ m. All experiments were repeated three times. All data are expressed as the mean \pm SD. One-way ANOVA and Tukey's multiple comparisons test were used for statistical analysis. *p < 0.05, **p < 0.01, ***p < 0.001. NP, nucleus pulposus; ACE, angiotensin converting enzyme; COL2, Collagen II; TMG, Thiamet G; OSMI, O-GlcNAc transferase inhibitor; ADAMTS4, a disintegrin and metallo-proteinase with thrombospondin motif 4; OGT, O-GlcNAc Transferase.

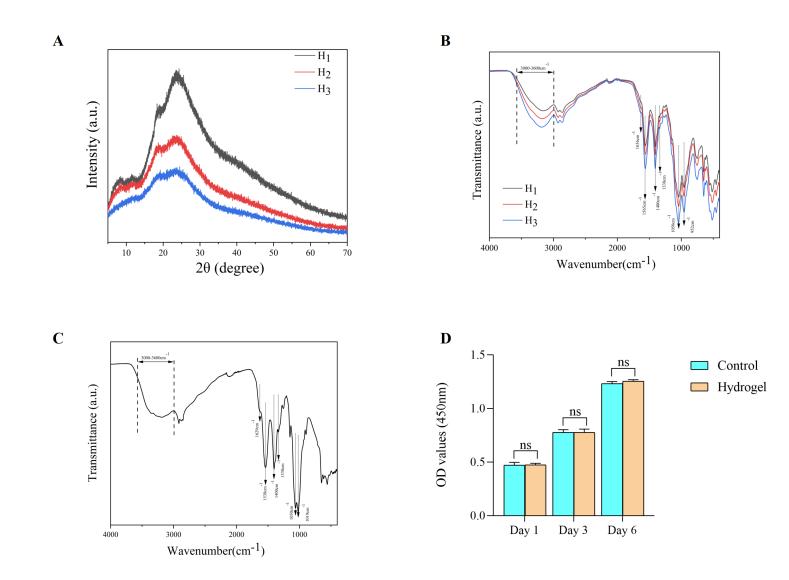


Figure S7 Physical and biological properties of hydrogels. A: XRD patterns of the prepared hydrogels (H1, H2, and H3). In the XRD pattern, all hydrogel samples showed wide peaks of chitosan near 21°. B: ATR-FTIR spectra of the prepared hydrogels (H1, H2, and H3). In the ATR-FTIR spectrum, the stretching vibration absorption bands of chitosan O-H and -NH2 were found at 3000-3600 cm⁻¹, and the intermolecular and intramolecular hydrogen bonding made the bands wider. 1633 cm⁻¹ was the C=O stretching vibration absorption peak, and 1565 cm⁻¹ was the N-H deformation vibration absorption peak. 1400 cm⁻¹ is the bending vibration absorption peak of C-H, 1338 cm⁻¹ is the stretching vibration absorption peak of C-N, and 1050 cm⁻¹ is the stretching vibration absorption peak of C-O. And 952 cm⁻¹ is the stretching vibration absorption peak of PO43⁻. C: ATR-FTIR spectra of chitosan. Compared with CS, it was found that C=O and N-H in composite hydrogel showed obvious redshifts (1629 cm⁻¹ \rightarrow 1633 cm⁻¹, 1538 cm⁻¹ \rightarrow 1565 cm⁻¹), indicating that hydrogen bonds and complexes were formed between CS molecular chain and β -GP. The molecular force between CS and β -GP forms a three-dimensional network, which is the main reason for the formation of gels in addition to the regulation of pH by β -GP. D: CCK-8 cell viability assay of NP cells co-cultured with hydrogel (H1) for 1 day to 6 days. ATR-FTIR, attenuated total reflection Fourier transform Infrared Spectroscopy; XRD, X-ray Diffraction; CS, Chitosan; β -GP, β -Glycerophosphate; NP, nucleus pulposus.

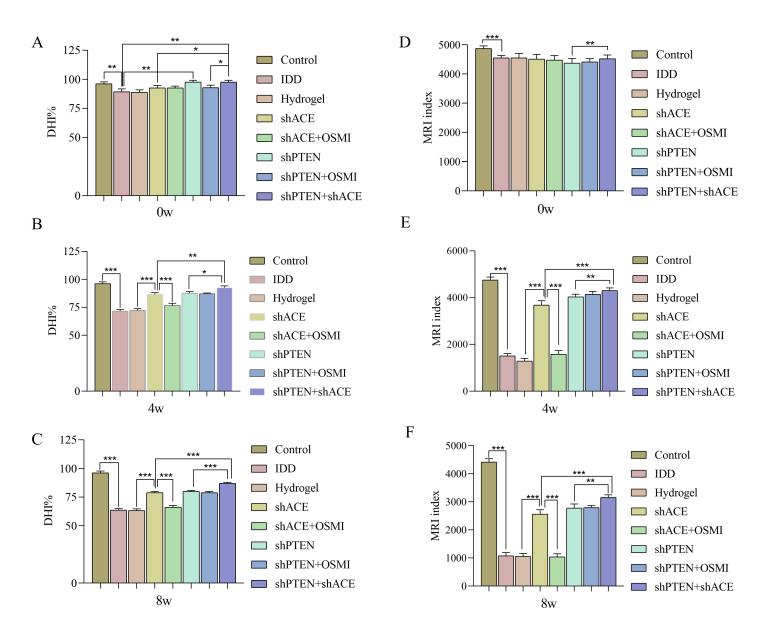


Figure S8 Exponential quantitative calculation of IVD and radiographic evaluations of rat tail. A-C: Diagram represented the disc height changes at 0, 4 and 8 weeks after the intervention. D-F: MRI index changes of each group at 0, 4 and 8 weeks after the intervention. All experiments were repeated ten times. All data are expressed as the mean \pm SD. One-way ANOVA and Tukey's multiple comparisons test were used for statistical analysis. *p < 0.05, **p < 0.01, ***p < 0.001. IVD, intervertebral disc; MRI, magnetic resonance imaging; DHI, disc height index; ACE, angiotensin converting enzyme; PTEN, phosphatase and tensin homolog; OSMI, O-GlcNAc transferase inhibitor; IDD, intervertebral disc degeneration.