Supplementary Content
Integrative Single-Cell and Spatial Transcriptomics Analysis Reveals ECM-
remodeling Cancer-associated Fibroblast-Derived POSTN as a Key Mediator in

Pancreatic Ductal Adenocarcinoma Progression

Supplementary Methods
1. Immunocytochemistry

BxPC-3 and PANC-1 cells were seeded in confocal 24-well plates (Nest, 801006)
and cultured until reaching approximately 60% confluence. The cells were then fixed
with cold acetone (—20°C) for 15 minutes. After blocking with 3% (w/v) BSA for 1 h
at room temperature, the cells were incubated with primary antibodies anti-integrin
avpB5 (Sigma, MAB1961, 1:500) at 4 °C overnight. After be washed three times with
PBS, the cells were incubated with the corresponding FITC-labeled secondary antibody
(ZSGB-BIO, ZF-0312) at room temperature for 1 h. Finally, the nuclei were stained
with DAPI (Sigma-Aldrich, St. Louis, MO, USA). Fluorescence images were captured
using a laser scanning confocal microscope (Leica, TCS SP8 X).

2. Enzyme-linked immunosorbent assay (ELISA)

The concentration of POSTN protein (Periostin) in the CAF-tumor indirect co-
culture system was detected using ELISA assays. When BxPC-3 cells cultured in a 10-
cm dishes reached approximately 70% confluence, 40% CAF-0ePOSTN conditioned
medium (CM) or CAF-NC CM was added, and the cells were indirectly co-cultured for
24 h. Similarly, when PANC-1 cells in a 10-cm dishes reached approximately 70%
confluence, 40% pCAF-shPOSTN CM or pCAF-NC CM was added for indirect co-
culture for 24 h. Subsequently, 1 mL of the cell culture supernatant was collected,
centrifuged, and subjected to ELISA analysis. POSTN levels were measured using a
human POSTN ELISA kit (SEH339Hu, Cloud-Clone Corp.), according to the
manufacturer’s instructions. Absorbance values were detected at 450 nm using a

microplate reader.



Supplementary Tables

Table S1 Clinical characteristics of samples integrated in the discovery cohort.
Table S2 Data sources of samples in the validation cohort.

Table S3 Data sources of spatial transcriptomics samples included in the study.
Table S4 Clinical characteristics of the patients in PUCH-PDAC cohort (n =173).
Table S5 Key reagents and corresponding source used in the study

Table S6 The proportion of major cell types in all each individual samples in the
discovery cohort.

Table S7 The top 30 marker genes of fibroblast subclusters in the discovery cohort.
Table S8 Transcription factor activities of each fibroblast subclusters.

Table S9 Gene list for the epithelial meta-programs.

Table S10 Top GO enrichment terms for meta-programs (MP1-MP14) extracted
from the epithelial cells in the discovery cohort.

Table S11 The top 30 marker genes of epithelial subclusters in discovery cohort.
Table S12 Differentially expressed genes in fibroblasts based on SOX11 expression
in the discovery cohort.

TableS13 Differentially expressed genes in ductal epithelium based on CAF-

Derived POSTN expression levels in the CRA001160 dataset.

Supplementary Figures

Figure S1. Quality control and preprocessing of sScRNA-seq data in the discovery
cohort.
Figure. S2. Quality control and preprocessing of sScRNA-seq data in the validation

cohort.



Figure S3. Heterogeneity analysis of fibroblasts in the validation cohort

Figure S4. Kaplan-Meier survival curves for overall survival of TCGA-PAAD
patients stratified by the relative abundance of ECM-remodeling fibroblasts.
Figure S5. GO enrichment analysis of significantly upregulated marker genes in
each fibroblast subtype in the validation cohort.

Figure S6. The evolutionary trajectories and transcriptional regulatory analysis of
fibroblast subtypes in validation cohort.

Figure S7. SOX11 expression across all samples in the discovery cohort.

Figure S8. Supplementary analytical information on the annotation of epithelial
cell subpopulations.

Figure S9. The selection process identifies POSTN as a potential target for
subsequent validation and investigation.

Figure S10. ELISA assay showing POSTN protein levels in the conditioned
medium of the indirect coculture system of CCC-HPE-2 and BxPC-3 cells (A)
and Primary CAF & PANC-1 cells (B)

Figure S11. Representative images of IHC staining for Integrin 5, B-catenin
(pathway marker), and EMT markers in xenograft tumor sections.

Figure S12. Expression and localization of POSTN and integrin avf5 in PDAC

cells and tissues, and determination of integrin avB5 inhibitor concentrations.



ML s

8000
6000
4000
2000
0
e
S

nFeature_RNA

A

Identity
nCount_RNA

B

1 e T

40000
30000
20000
10000

0

Identity

percent.mt

Identity

percent.HB

M\LtmWMLQHJMLMm »

0
W
)
o

<

|
‘%’;

1

ST
R

%

llai.
R
S8
S

1.00%
0.75%
0.50%
0.25%
&

Identity

orig.ident

gre
588
:

5

1]

...............

; EEEEEEEE
nnnnnnnnnnnnnnnnn
.................
EESEEEECRENRRERE

.................
SRERER & =
H TR
if 33333533333

)

UMAP_1

Tissue_type

Stage_simplified

UMAP_1

UMAP_1

Figure S1. Quality control and preprocessing of SCRNA-seq samples in the discovery cohort.
(A)-(D) Quality control metrics for scRNA-seq samples: nFeature_ RNA (300-8,000),

nCount_RNA
(E-H) The UMAP plot showing the distribution of cells from different samples, datasets, clinical stage, and

(<40,000), mitochondrial transcript percentage (<10%), and hemoglobin transcript percentage (<1%).
tissue type after mitigating the impact of batch effect.
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Figure. S2. Quality Control and Major Cell Type Clustering of SCRNA-seq Data in the Validation Cohort.

(A-C) The UMAP plot showing the distribution of cells from different tissue types, data sources, and
samples after mitigating the impact of batch effect.

(D) The UMAP plot showing the major cell types in validation cohort.

(E) Dot plot illustrating the marker genes utilized for the identification of major cell types.
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Figure S3. Heterogeneity analysis of fibroblasts in the validation cohort.

(A) UMAP plot showing the annotation of fibroblast subclusters in validation cohort, with different colors

representing different subtypes.

(B) Dot plot showing the marker genes utilized for the identification of fibroblast subclusters.

(C) Heatmap showing the expression of the top ten differential expressed genes in the fibroblasts
subclusters identified in validation cohort.

(D) Heatmap showing the pathway activities for each fibroblast subclusters scored by GSVA. Each
column is normalized by z-score to indicate the relative pathway activities.
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Figure S4. Kaplan-Meier survival curves for overall survival of TCGA-PAAD patients
stratified by the relative abundance of ECM-remodeling fibroblasts.

Kaplan-Meier survival analysis for patients with PDAC was performed by dividing TCGA-PAAD bulk
RNA-seq samples into high- and low-infiltration groups of ECM-remodeling fibroblasts based on their
median abundance estimated using the CIBERSORTXx algorithm.
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Figure S5. GO enrichment analysis of significantly upregulated marker genes in each fibroblast

subtype in the validation cohort.
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Figure S6. The evolutionary trajectories and transcriptional regulatory analysis of fibroblast subtypes in
validation cohort. (A-C) Pseudotime analysis of fibroblast colored by pseudotime (A), state (B), and
subtypes (C). (D) Heatmap showing scaled expression of DEGs along the pseudotime trajectory. (E)
Heatmap showing the mean activity of top activated regulons in each fibroblast subtype. (F) Dot plot
ranking the top differentially activated regulons in each fibroblast subtypes based on regulon-specific

Scores.



SOX11 expression in major celltypes
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Figure S7. SOX11 expression across all samples in the discovery cohort, grouped by major cell types.
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Figure S8. Supplementary analytical information on the annotation of epithelial cell
subpopulations. (A) Feature plot of epithelial meta-program gene list scores calculated using
the AddModuleScore function in Seurat (MP9-MP14). Colors indicate score levels, ranging
from no expression (blue) to high expression (red). (B) The malignant and non-malignant
status of epithelial cells inferred by the inferCNV analysis. All the above results are used to
assist in the annotation of epithelial cell subpopulations.



Violin plot displaying the expression of MDK Violin plot displaying the expression of MIF
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Figure S9. The selection process identifies POSTN as a potential target for subsequent validation and
investigation. (A) Violin plot illustrating the expression of the candidate target MDK across all samples in the
discovery cohort, stratified by major cell types. (B) Violin plot illustrating the expression of the candidate
target MIF across all samples in the discovery cohort, stratified by major cell types. (C) Volcano plot
displaying differentially expressed genes in fibroblasts grouped by SOX11 expression, highlighting POSTN
as one of the most upregulated genes in the SOX11-high fibroblasts. (D) Correlation analysis of SOX11 and
POSTN mRNA expression in the TCGA-PAAD dataset. (E) The overexpression efficiency of SOX11 in
primary CAFs was evaluated by Western blot, and SOX11 overexpression significantly upregulated POSTN
expression.
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Figure S10. ELISA assay showing POSTN protein levels in the conditioned medium of the indirect coculture
system of CCC-HPE-2 and BxPC-3 cells (A) and Primary CAF & PANC-1 cells (B)
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Figure S11. Representative images of IHC staining for Integrin g5, B-catenin (pathway marker), and EMT
markers in xenograft tumor sections.
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Figure S12. Expression and localization of POSTN and integrin avp5 in PDAC cells and tissues, and
determination of integrin avp5 inhibitor concentrations

(A-B) Correlation analyses of POSTN and its receptors ITGAV and ITGB5 at the mRNA level in PDAC,
based on TCGA-PAAD RNA-seq dataset (n = 178).

(C) Immunofluorescence staining showing the surface localization of integrin avp5 on BxPC-3 and
PANC-1 cells. Integrin avp5 is predominantly localized on the cell membrane in both cell lines.

(D-E) 1C50 determination of the integrin avp5 inhibitor (HY-16141) in BXPC-3 and PANC-1 cells.
Working concentrations for subsequent experiments were optimized based on IC50 values to reduce the
direct inhibitory effects of the inhibitor.



