

Supplementary Figure 1. CYPJ is Associated with M1 TAMs in LIHC.

(A) The survival analysis of CYPJ in LIHC was done on the Kaplan-Meier Plotter website. (B) Heatmap of CYPJ expression in the single cell expression of tumors with high CYPJ expression using the TISCH1 website. (C) Analysis of the relationship between immune cell infiltration and CYPJ using the CIBERSORT-ABS algorithm in the BEST website. (D) The survival analysis of CYPJ and macrophage in LIHC was done on the TIMER2.0 website.

Supplementary Figure 2. The Strategy of Bone Marrow Chimera and Flow Cytometry Analysis of Immune Cell Infiltration in Tumors.

(A) Schematic diagram of bone marrow chimerism experiment. After feeding the recipient male mice with neomycin water, the recipient mice were lethally irradiated with 9.5 Gy. Bone marrow cells (5×10^6) harvested from the donor male mice were injected intravenously into irradiated recipients. (B) Gating strategy for TAMs in

tumors. Tumors were directly ground into single cells and resuspended in 3% BSA for staining. Immune cells were labeled with CD45 in tumors, and TAMs were defined by CD11b and F4/80. Then, iNOS⁺ were identified as M1 TAMs, while CD206⁺ were identified as M2 TAMs. (C) Gating strategy for T cells in tumors. Single cells are resuspended in 3% BSA, CD45 labels are used for immune cells, and CD3 labels total T cells. Further, T cells were defined as CD4⁺ T cells and CD8⁺ T cells.

Supplementary Figure 3. CYPJ Promotes Macrophage Polarization to M1 Phenotype.

(A) Expression of CYPJ in WT-BMDM and KO-BMDM under the stimulation of tumor cell conditioned-medium (Hepa1-6 CM). (B) qRT-PCR detects M1(*II1β*, Cd80 and iNos) or M2 (*II10*, Arg1 and Cd206) markers under Hepa1-6 CM stimulation. (C) Flow cytometry analysis of the proportion of M1 (iNOS⁺) and M2 (CD206⁺) macrophages with the stimulation of Hepa1-6 CM. (D) Comparative conservation analysis of the

amino acid sequence of CYPJ between humans and mice. (E) Gating strategy of macrophage polarization after AAV infection. The CD11b indicates BMDMs, and then the iNOS⁺ cells were deemed to be M1 macrophages. (F) qRT-PCR analysis to measure the expression of hCYPA and M1 markers (*Il1β* and *iNos*) in WT-BMDM after AAV infection. MOCK cells served as the negative control. (*p <0.05, ** p <0.01, *** p <0.001, **** p <0.0001, ns=non-significant).

Supplementary Figure 4. Gating Strategy of Phagocytosis Experiments.

(**A**, **B**) Gating strategy of macrophage phagocytosis to Raji (**A**) and K562 (**B**) in WT/KO-BMDM under LPS stimulation. Raji and K562 are labeled with CFSE, and BMDMs are labeled with APC-CD11b. (**C**, **D**) Gating strategy of macrophages phagocytosis to Raji (**C**) and K562 (**D**) cells after AAV infection. Raji and K562 are labeled with CellTraceTM Far Red (APC channel), and BMDMs are labeled with PE-CD11b. (**E**) qRT-PCR detects M1 markers (*II1β, Cd80, Cd86,* and *iNos*) in tumors of Hepa1-6 mixed with WT-BMDM or KO-BMDM. (*p <0.05, ** p <0.01, *** p <0.001, ns=non-significant).

Supplementary Figure 5. Analysis of mIHC in Hepa1-6 Tumors Mixed with WT-

BMDM.

mIHC of Hepa1-6 tumors mixed with WT-BMDM labeled with DAPI (blue), CYPJ (white), CD86 (green), CD163 (red), CD8 (yellow), and EpCAM (cyan). Scale bar, 50 μ m.

Supplementary Figure 6. Analysis of mIHC in Hepa1-6 Tumors Mixed with KO-

BMDM.

mIHC of Hepa1-6 tumors mixed with KO-BMDM labeled with DAPI (blue), CYPJ (white), CD86 (green), CD163 (red), CD8 (yellow), and EpCAM (cyan). Scale bar, 50 μ m.

Supplementary Figure 7. Mechanisms of CYPJ Regulates Macrophages.

(A, B) Heatmap of markers associated with M1 polarization (A) and chemokines (B) in tumors of Hepa1-6 cells mixed with WT-BMDM (WT_1 and WT_2) or KO-BMDM (KO_1 and KO_2), with expression levels normalized to $log_{10}(count+1)$. (C) WB analysis of AKT in KO-BMDM after AAV infection. (D) qRT-PCR detects M1 markers (*II1β* and *Cd80*) and M2 markers(*Arg1* and *Cd206*) in KO-BMDM after treatment with AKT inhibitor (AKTi) and rAAV virus. (E) WB analysis of AKT treated with AKT inhibitor (AKTi). (*p <0.05, ** p <0.01, *** p <0.001, **** p <0.0001, ns=non-significant).

Supplementary Figure 8. Analysis of mIHC in LIHC Patients.

mIHC of liver cancer tissue, labeled with DAPI (blue), CYPJ (white), CD86 (green), CD163 (red), CD8 (yellow), and EpCAM (cyan), then scanned using the Vectra Polaris Pathology Imaging System. Scale bar, 200 μm.

Supplementary Figure 9. Analysis of mIHC in Liver Cancer and Adjacent Normal

Tissues.

The mIHC detects the expression of CYPJ, CD86 (M1 TAMs), CD163 (M2 TAMs), CD8 (CD8⁺ T cell), and EpCAM (tumor cell) in liver cancer and adjacent normal tissues. Scale bar, 1 mm and 100 μm.

Supplementary Tables

Genes	Forward (5'-3')	Reverse (5'-3')			
	Mouse				
IL1β	TGGACCTTCCAGGATGAGGACA	GTTCATCTCGGAGCCTGTAGTG			
Cd80	CCTCAAGTTTCCATGTCCAAGGC	GAGGAGAGTTGTAACGGCAAGG			
Cd86	ACGTATTGGAAGGAGATTACAGCT	TCTGTCAGCGTTACTATCCCGC			
iNos	CTATGGCCGCTTTGATGTGC	TTGGGATGCTCCATGGTCAC			
1110	CGGGAAGACAATAACTGCACCC	CGGTTAGCAGTATGTTGTCCAGC			
Argl	GTAGACCCTGGGGAACACTAT	ATCACCTTGCCAATCCCCAG			
Cd206	TCATTCCCTCAGCAAGCGAT	GTGGATACTTGCCAGGTCCC			
Сурј	CTGTGAGAGAACACCCAAAACA	TTTTTGGCCCAGATGCTGCTA			
Gapdh	CATCACTGCCACCCAGAAGACTG	ATGCCAGTGAGCTTCCCGTTCAG			
Human					
h <i>CYPJ</i>	TGTAGGTGATATTAAAATTGAAGTCTTC	CTTCTTGCCCCAAATACTGTTG			

Supplementary Table 1. Primer sequences of qRT-PCR

Antibodies	Source	Identifier	Dilution Ratio
Antib	odies for IHC, mIHC, V	WB and IP	
	D		IHC (1:100)
Raddit polycional anti-CD86	Proteinteen	Cat#20903-1-AP	mIHC (1:100)
Mausa managlanal anti CD162	OriCana	Cot#TA 506291	IHC (1:100)
Mouse monocional and-CD105	OnGene	Cat#1A500581	mIHC (1:100)
Mouse monoclonal anti-CD8	Servicebio	Cat#GB12068	mIHC (1:100)
			IHC (1:100)
Rabbit polyclonal anti-CYPJ	Abcam	Cat#ab251870	mIHC (1:100)
			WB (1:1000)
Rabbit polyclonal anti-EpCAM	Proteintech	Cat#21050-1-AP	mIHC (1:200)
Rabbit polyclonal anti-GAPDH	HUABIO	Cat#R1210-1	WB (1:5000)
Rabbit polyclonal anti-β Tubulin	Fdbio	Cat#FD0064-100	WB (1:1000)
Pakhit palyalanal anti mTOP	Cell Signaling	Cat#2082	WP (1.1000)
Rabolt polycional anti-mitok	Technology	Cat#2985	WD (1.1000)
Rabbit polyclonal anti- PI3K	Signalway Antibady	Cot#49194	WP (1.1000)
(P85)	Signarway Antibody	Cal#40104	WB (1.1000)
Mouse polyclopel apti AKT (pop)	Cell Signaling	Cat#2020	WP (1.1000)
wouse porycional and-AK1 (pall)	Technology	Cat#2920	
Rabbit polyclonal anti- Phospho-	Cell Signaling	Cat#4060	WR (1.1000)
AKT (Ser473)	Technology	Cai#4000	WB (1.1000)

Supplementary Table 2. The information on antibodies

			WB (1:1000)	
Mouse anti-Myc	Proteintech	Cat#16286-1-AP	IP (1 μg /mL)	
Maura anti Ele a	Size Aldrich	C-4#E1904	WB (1:1000)	
Mouse and-riag	Sigma-Aldrich	Cat#F1804	IP (1 µg/mL)	
Manual CER	Proteintech	Cat#66002-1-AP	WB (1:1000)	
Mouse anti-GFP			IP (1 µg/mL)	
Mouse IgG	Santa Cruz	Cat#sc-2025	IP (1 μg/mL)	
Antibodies for Flow Cytometry				
FITC anti-mouse CD45	Biolegend	Cat#103108	1:200	
PE anti-mouse CD11b	Biolegend	Cat#101207	1:200	
APC anti-mouse CD11b	sungene	Cat#M10117-11A	1:200	
APC anti-mouse F4/80	Biolegend	Cat#123116	1:200	
BUV737 anti-mouse iNOS	Invitrogen	Cat#367-5920-82	1:100	
PE-cy7 anti-mouse CD206	Biolegend	Cat#141719	1:100	
PE anti-mouse CD3	Biolegend	Cat#100206	1:200	
APC anti-mouse CD4	Elabscience	Cat#E-AB-1097E	1:200	
PE-cy7 anti-mouse CD8	Biolegend	Cat#100722	1:200	

Original count value					
Group	Hepa1-6+KO-BMDM	Hepa1-6+KO-BMDM	Hepa1-6+WT-BMDM	Hepa1-6+WT-BMDM	
Gene	KO_1	КО_2	WT_1	WT_2	
Marco	27	14	153	284	
Tlr2	87	111	505	579	
Π1β	149	125	674	805	
Cd86	84	73	768	577	
Cd80	36	24	173	161	
Tnf	34	14	223	146	
Cxcl2	74	59	147	333	
Nos2	128	71	1636	2749	
Normalized to log10(count+1)					
Group	Group Hepa1-6+KO-BMDM Hepa1-6+KO-BMDM Hepa1-6+WT-BMDM Hepa1-6+WT-BMI				
Gene	KO_1	КО_2	WT_1	WT_2	
Marco	1.447158031	1.176091259	2.187520721	2.45484486	
Tlr2	1.944482672	2.049218023	2.704150517	2.763427994	
II1β	2.176091259	2.100370545	2.829303773	2.906335042	
Cd86	1.929418926	1.86923172	2.88592634	2.761927838	
Cd80	1.568201724	1.397940009	2.240549248	2.209515015	
Tnf	1.544068044	1.176091259	2.350248018	2.167317335	
Cxcl2	1.875061263	1.77815125	2.170261715	2.523746467	
Nos2	2.11058971	1.857332496	3.214048679	3.439332694	

Supplementary Table 3. Expression of markers associated with M1 polarization

Original count value				
Group	Hepa1-6+KO-BMDM	Hepa1-6+KO-BMDM	Hepa1-6+WT-BMDM	Hepa1-6+WT-BMDM
Gene	KO_1	KO_2	WT_1	WT_2
Ccl1	2	5	9	38
Ccl2	191	171	398	838
Ccl3	70	57	370	345
Ccl4	36	20	241	210
Ccl5	89	145	888	1528
Ccl6	814	822	3938	4388
Ccl7	90	153	348	689
Ccl8	255	517	1883	1818
Ccl9	343	417	1515	1707
Ccl11	0	52	148	153
Ccl12	90	53	100	142
Ccl17	10	20	14	50
Ccl19	0	0	0	0
Ccl20	1	3	3	7
Ccl21a	0	0	0	0
Ccl21b	0	0	0	1
Ccl21d	0	0	0	0
Ccl22	13	25	108	243
Ccl24	828	486	1222	1039
Ccl25	76	79	55	68
Ccl27a	93	108	50	82
Ccl26	1	0	0	0
Ccl27b	1	0	0	0
Ccl28	1	3	3	0
Cxcl1	62	85	74	79
Cxcl2	74	59	147	333
Cxcl3	1312	1431	897	1310
Cxcl5	343	344	251	290
Cxcl9	998	1179	11987	10800
Cxcl10	438	487	4023	3232
Cxcl11	7	12	34	74
Cxcl12	57	323	1327	1666
Cxcl13	1	4	20	71
Cxcl14	13	128	694	970
Cxcl15	2322	1293	697	479
Cxcl16	350	420	2340	1833
Cxcl17	146	106	132	172
Cx3cl1	740	1021	2403	1563

Supplementary Table 4. Expression of chemokines

Normalized to log10(count+1)				
Group	Hepa1-6+KO-BMDM	Hepa1-6+KO-BMDM	Hepa1-6+WT-BMDM	Hepa1-6+WT-BMDM
Gene	KO_1	KO_2	WT_1	WT_2
Ccl1	0.477121255	0.77815125	1	1.591064607
Ccl2	2.283301229	2.235528447	2.600972896	2.923761961
Ccl3	1.851258349	1.763427994	2.56937391	2.539076099
Ccl4	1.568201724	1.322219295	2.383815366	2.324282455
Ccl5	1.954242509	2.164352856	2.948901761	3.184407485
Ccl6	2.911157609	2.915399835	3.595385981	3.642365581
Ccl7	1.959041392	2.187520721	2.542825427	2.838849091
Ccl8	2.408239965	2.71432976	3.275080898	3.259832699
Ccl9	2.536558443	2.621176282	3.180699201	3.232487866
Ccl11	0	1.72427587	2.173186268	2.187520721
Ccl12	1.959041392	1.73239376	2.004321374	2.155336037
Ccl17	1.041392685	1.322219295	1.176091259	1.707570176
Ccl19	0	0	0	0
Ccl20	0.301029996	0.602059991	0.602059991	0.903089987
Ccl21a	0	0	0	0
Ccl21b	0	0	0	0.301029996
Ccl21d	0	0	0	0
Ccl22	1.146128036	1.414973348	2.037426498	2.387389826
Ccl24	2.918554531	2.687528961	3.087426457	3.017033339
Ccl25	1.886490725	1.903089987	1.748188027	1.838849091
Ccl27a	1.973127854	2.037426498	1.707570176	1.919078092
Ccl26	0.301029996	0	0	0
Ccl27b	0.301029996	0	0	0
Ccl28	0.301029996	0.602059991	0.602059991	0
Cxcl1	1.799340549	1.934498451	1.875061263	1.903089987
Cxcl2	1.875061263	1.77815125	2.170261715	2.523746467
Cxcl3	3.118264726	3.155943018	2.953276337	3.117602692
Cxcl5	2.536558443	2.537819095	2.401400541	2.463892989
Cxcl9	2.999565488	3.071882007	4.078746734	4.033463966
Cxcl10	2.64246452	2.688419822	3.604657972	3.509605705
Cxcl11	0.903089987	1.113943352	1.544068044	1.875061263
Cxcl12	1.763427994	2.51054501	3.123198075	3.2219356
Cxcl13	0.301029996	0.698970004	1.322219295	1.857332496
Cxcl14	1.146128036	2.11058971	2.841984805	2.98721923
Cxcl15	3.36604921	3.111934276	2.843855423	2.681241237
Cxcl16	2.545307116	2.624282096	3.369401414	3.263399331
Cxcl17	2.167317335	2.029383778	2.123851641	2.238046103
Cx3cl1	2.869818208	3.009450896	3.380934463	3.194236749