1	WNT5B regulates myogenesis and fiber type conversion by affecting mRNA stability
2	Danyang Fan ^{1,2,3#} , Yilong Yao ^{1,2,3#} , Chao Yan ^{1,2,3#} , Fanqinyu Li ^{2,3} , Yalan Yang ^{1,2,3} , Bingkun Xie ⁴ , Zhonglin
3	Tang ^{1,2,3,4*}
4	1 Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics
5	Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
6	2 Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute, Chinese Academy of
7	Agricultural Sciences, Foshan 528226, China;
8	3 Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at
9	Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China;
10	4 Guangxi Key Laboratory of Livestock Genetic Improvement, Guangxi Institute of Animal Sciences,
11	Nanning, 530001, China.
12	
13	
14	[#] These authors equally contribute to this work.
15	*To whom correspondence should be addressed: <u>tangzhonglin@caas.cn</u> .
16	Corresponding Address: Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural
17	Sciences, Pengfei Road 7, Da Peng New District, Shenzhen, Guangdong Province, China.
18	
19	
20	
21	
22	
23	
24	
25	
26	

- 32 (A) RNA-seq analysis of the expression level of *WNT11* changes at 27 different developmental time points.
- 33 (B) qRT-PCR analysis of *WNT5B* expression in the cytoplasm and nucleus of Tongcheng pig myoblasts.

^	ldentity= 95.29%								Б	`			
А	<u>m</u>		V	Ĭ	100	V		Ŷ	WW	_γ_		>	seed sequence
	130		50 170	180	190	ZUU	210	220	230	240		hsa-miR-29a	UAGCACCAUCUGAAAUCGGUUA
		MOUSE_PROTEIN.tx PIG_PROTEIN.txt	MPSLLL MPSppLLL	vvvAALLS: aaaAALLa: aall	SWAQLLID SWAQLLID SWApLpsel	ANSWWSLA ANSWWSLA Asswwsla	LNPVQRPE mNPVQRPE	38 40				mmu-miR-29a	UAGCACCAUCUGAAAUCGGUUA
		HUMAN_PROTEIN.t.	t MFIIGAQP	VCSQLPGL:	SPGQRKLC	OLYQEHMA OLYQEHMS	YIGEGAKT	78 78				ssc-miR-29a	UAGCACCAUCUGAAAUCGGUUA
		PIG_PROTEIN.txt Consensus	MFIIGAQP mfiigaqp	VCSQLPGL vcsqlpgl	SPGQRKLCO	QLYQEHMA qlyqehm	YIGEGArT yigega t	80				rno-miR-29a	UAGCACCAUCUGAAAUCGGUUA
		HUMAN_PROTEIN.tx MOUSE_PROTEIN.tx PIG_PROTEIN.txt Consensus	t GIKECOHO t GIRECOHO GIKECOHO gi ecqhq	FRORRWNC: FRORRWNC: FRORRWNC: frqrrwnc:	STADNASVI STVDNtSVI STVgNASVI st n svi	FGRVMQIG FGRVMQIG FGRVvQIG fgrv qig	SRETAFTH SRETAFTY SRETAFTY sretaft	118 118 120				cfa-miR-29a	UA <mark>GCACCA</mark> UCUGAAAUCGGUUA
		HUMAN_PROTEIN.t; MOUSE_PROTEIN.t; PIG_PROTEIN.txt Consensus	t AVSAAGVVI t AVSAAGVVI xVSAAGVVI	NAISRACRI NAISRACRI NAISRACRI	EGELSTCGC EGELSTCGC EGELSTCGC	CSRTARPK CSRaARPK CSRxARPK	DLPRDWLW DLPRDWLW DLPRDWLW dlprdwlw	158 158 160				hsa-miR-29b	UAGCACCAUUUGAAAUCAGUGU
		HUMAN_PROTEIN.to MOUSE_PROTEIN.to	t GGCGDNVE	YGYRFAKE YGYRFAKE	FVDAREREN	KNFAKGSE KNFAKGSE	EQGRVLMN EQGRaLMN	198 198				mmu-miR-29b	UA <mark>GCACCA</mark> UUUGAAAUCAGUGU
		PIG_PROTEIN.txt Consensus	GGCGDNVE ggcgdnve	YGYRFAKE ygyrfake	FVDARERE fvdarere)	KNFAKGSE knfakgse	EQGRVLMN eqgr 1mn	200				ssc-miR-29b	UAGCACCAUUUGAAAUCAGUGU
		HUMAN_PROTEIN.t> MOUSE_PROTEIN.t> PIG_PROTEIN.txt	LQNNEAGRI LQNNEAGRI	RAVYKMAD' RAVYKMAD' RAVYKMAD'	VACKCHGVS VACKCHGVS VACKCHGVS	SGSCSLKT SGSCSLKT SGSCSLKT	CWLQLAEF CWLQLAEF CWLQLAEF	238 238 240				rno-miR-29b	UAGCACCAUUUGAAAUCAGUGU
		HUMAN_PROTEIN.t>	lqnneagr: t RKVGDRLK	EKYDSAAA	WACKChgvs	LELVNSRF	CW1q1aef TQPTPEDL	278				cfa-miR-29b	UAGCACCAUUUGAAAUCAGUGU
		PIG_PROTEIN.txt Consensus	RKVGDRLKI RKVGDqLKI rkvgd lk	EKYDSAAA EKYDSAAA ekydsaaa	MRITRIGKI mr tr g l	LELVNSRF	nQPTPEDL qptpedl	280				haa-miD-90a	
		HUMAN_PROTEIN.t>	t VYVDPSPD	YCLRNEST YCLRNETT	GSLGTQGRI GSLGTQGRI	LCNKTSEG	MDGCELMC MDGCELMC	318 318				nsa-mik-29c	
		Consensus	vyvdpspd	yclrne to	gslgtqgrl	lonktseg	mdgc 1mc	320				mmu-m1R-29c	UAGCACCAUUUGAAAUCGGUUA
		HUMAN_PROTEIN.to MOUSE_PROTEIN.to PIG_PROTEIN.txt	t CGRGYNQFI t CGRGYdrFi CGRGYdQFi	KSVQVERCI KSVQVERCI KSVQVERCI	HCKFHWCCH HCrFHWCCH HCKFHWCCH	FVRCKKCT FVRCKKCT FVRCKKCT	EIVDQYIC EvVDQYvC EvVDQfvC	358 358 360				ssc-miR-29c	UAGCACCAUUUGAAAUCGGUUA
		Consensus HUMAN_PROTEIN.t:	cgrgy fi	ksvqverc	hc fhwcci	fvrckkct	e vdq c	359				rno-miR-29c	UAGCACCAUUUGAAAUCGGUUA
		PIG_PROTEIN.txt Consensus	K K k					359 361				cfa-miR-29c	UAGCACCAUUUGAAAUCGGUUA

- 44
- 45 Figure S2. Analysis of *WNT5B* 3'UTR and miR-29a/b/c sequences in different species.
- 46 (A) Conservation analysis of the *WNT5B* across different species.
- 47 (B) Conservation analysis of the miR-29a/b/c across different species.

- 50 (A-C) The results of CCK-8 (A), cell cycle (B) and cell proliferation status (C) of C2C12 myoblasts after
- 51 transfection with pcDNA3.1 and pcDNA3.1-*WNT5B* vectors. Scale bar, 50 μm.
- 52 (D-E) mRNA (D) and protein (E) expression levels of proliferation marker genes in C2C12 myoblasts after
- 53 *WNT5B* overexpression.
- 54 (F-H) The results of CCK-8 (F), cell cycle (G) and cell proliferation status (H) of in C2C12 myoblasts after
- 55 transfection with siRNA-NC and siRNA-*WNT5B*. Scale bar, 50 μm.
- 56 (I-J) mRNA (I) and protein (J) expression levels of proliferation marker genes in C2C12 myoblasts after
- 57 *WNT5B* knockdown.
- 58 Data are presented as mean ± SEM and analyzed for statistical differences between groups using unpaired
- two-tailed t-tests. *p < 0.05, **p < 0.01, ***p < 0.001, ns means no significant differences.

⁴⁹ Figure S3. The effects of *WNT5B* on the cell proliferation and cell cycle of C2C12 myoblasts *in vitro*

61 Figure S4. In vitro experiments on the effects of WNT5B on cell apoptosis in C2C12 myoblasts

- 62 (A) The results of cell apoptosis of C2C12 myoblasts after *WNT5B* overexpression.
- 63 (B-C) mRNA (B) and protein (C) expression levels of cell apoptosis markers genes in C2C12 myoblasts
- 64 after overexpression of *WNT5B*.
- 65 (D-E) The results of cell apoptosis of C2C12 myoblasts after *WNT5B* knockdown.
- 66 (F-G) mRNA (F) and protein (G) expression levels of cell apoptosis markers genes in C2C12 myoblasts after
- 67 knockdown of *WNT5B*.
- 68 Data are presented as mean ± SEM and analyzed for statistical differences between groups using unpaired
- 69 two-tailed t-tests. *p < 0.05, **p < 0.01, ***p < 0.001, ns means no significant differences.

71 Figure S5. RNAfold tool to analyze the effects of ΔARE1 and ΔARE2 on *WNT5B* mRNA structure

- ___

А

Position 482-488 of WNT5B 3' UTR		GUUCCGUAAGAGGCC <mark>UGGUG</mark> CUC	
hsa-miR-29a-3p	3'	AUUGGCUAAAGUCUACCACGAU	
Position 482-488 of WNT5B 3' UTR	5'	GUUCCGUAAGAGGCCU <mark>GGUG</mark> CUC	
hsa-miR-29b-3p	3'	UUGUGACUAAAGUUUACCACGAU	

Binding sites

В CAGTGTTCCTGCTGTGGTGCAGTGGGTTAAG PIG MOUSE GAAUGGAUGGAUGGTGGTGCAAUAAUCCAAG

77

78	Figure S6. Analysis of WNT5B 3'UTR sequences
79	(A) Prediction of binding sites between the miR-29a/b/c and WNT5B using Target Scan.
80	(B) Amplification of miR-29a/b/c binding sites in the WNT5B 3'UTR.
81	
82	
83	

- 84
- 85
- 86
- 87
- 88
- 89

91 Figure S7. The efficiency of overexpression and knockdown of miR-29/b/c.

- 92 (A-B) The efficiency of overexpression (A) and knockdown (B) of miR-29/b/c in porcine myoblasts.
- 93 (C-D) The efficiency of overexpression (C) and knockdown (D) of miR-29/b/c in C2C12 myoblasts.

96 Figure S8. The effects of miR-29a/b/c overexpression on cell proliferation, cell cycle and cell apoptosis

97 in porcine myoblasts

- 98 (A-C) The results of cell proliferation (A), cell cycle (B), and cell apoptosis (C) after transfection with miR-
- 99 29a/b/c mimics in porcine skeletal muscle cells. Scale bar, 50 μm.
- 100 (D-F) Quantitative results of cell proliferation (D), cell cycle (E), and cell apoptosis (F).
- 101 (G-H) The mRNA expression of cell cycle (G) and cell apoptosis (H) markers expression after miR-29a/b/c
- 102 overexpression in porcine skeletal muscle cells.
- 103 (I) The protein expression of cell cycle and cell apoptosis markers after miR-29a/b/c overexpression in
- 104 porcine skeletal muscle cells.
- 105 Data are presented as mean ± SEM and analyzed for statistical differences between groups using unpaired
- 106 two-tailed t-tests. *p < 0.05, **p < 0.01, ***p < 0.001, ns means no significant differences.

107

Figure S9. The effects of miR-29a/b/c on cell proliferation, cell cycle and cell apoptosis in C2C12
myoblasts

- 110 (A-B) The results of EdU-staining in cell proliferation after miR-29a/b/c overexpression (A) and knockdown
- 111 (B) in C2C12 myoblasts. Scale bar, 50 μ m.

112	(C-D) Cell cycle results (C) and the mRNA (D) expression of cell proliferation marker gene after miR-
113	29a/b/c overexpression in C2C12 myoblasts.
114	(E-F) Cell cycle results (E) and the mRNA (F) expression of cell proliferation marker gene after miR-29a/b/c
115	knockdown in C2C12 myoblasts.
116	(G-H) Cell apoptosis results (G) and the mRNA (H) expression of cell apoptosis marker gene after miR-
117	29a/b/c overexpression in C2C12 myoblasts.
118	(I-J) Cell apoptosis results (E) and the mRNA (F) expression of cell apoptosis marker gene after miR-29a/b/c
119	knockdown in C2C12 myoblasts.
120	(K-L) The protein expression of Cyclin A2, BAX, and BCL2 after miR-29a/b/c overexpression (K) and
121	knockdown (L) in C2C12 myoblasts.
122	Data are presented as mean \pm SEM and analyzed for statistical differences between groups using unpaired
123	two-tailed t-tests. * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$, ns means no significant differences.
124	
125	
126	
127	
128	
129	
130	
131	
132	
133	
134	

Figure S10. miR29 family targeting *WNT5B* regulates C2C12 myoblast proliferation, cell cycle, and
cell apoptosis

139 (A-C) The results of cell proliferation (A), cell cycle (B), and cell apoptosis (C) after co-transfection with

140 miR-29a/b/c inhibitor and WNT5B siRNA in C2C12 myoblast. Scale bar, 50 μm.

141 (D-F) Quantitative results of cell proliferation (D), cell cycle (E), and cell apoptosis (F).

142 (G-H) The expression of cell cycle (G) and cell apoptosis markers (H) in mRNA level after co-transfection

143 with miR-29a/b/c inhibitor and *WNT5B* siRNA in C2C12 myoblast.

144 Data are presented as mean \pm SEM and analyzed for statistical differences between groups using unpaired

145 two-tailed t-tests. *p < 0.05, **p < 0.01, ***p < 0.001, ns means no significant differences.

147 Supplementary Tables

148 Table S1. Small RNA was used in this manuscript

Name	Target sequence (5'-3')
miR-29c-mimics	UAGCACCAUUUGAAAUCGGUUA
miR-29c-inhibitor	UAACCGAUUUCAAAUGGUGCUA
miR-29b-mimics	UAGCACCAUUUGAAAUCAGUGUU
miR-29b-inhibitor	AACACUGAUUUCAAAUGGUGCUA
miR-29a-mimics	CUAGCACCAUCUGAAAUCGGUUA
miR-29a-inhibitor	UAACCGAUUUCAGAUGGUGCUAG
mimics NC	UUGUACUACAAAAAGUACUG
Inhibitor NC	CAGUACUUUUGUGUAGUACAA
mmu-siRNA-NC	GCGACGAUCUGCCUAAGAU
mmu-siRNA-WNT5B	GGGUGAGUUGCACAGUGAAUC UUCACUGUGCAACUCACCCUG
ssc-siRNA-NC	UGCUCAGACUCGUAACUG
ssc-siRNA-WNT5B	GGUGAGUUGCACAGUGAAUCG AUUCACUGUGCAACUCACCCU

Forward primer (5'-3') Name **Reverse primer (5'-3')** TCTAGATACACTGCAGCTCATGGCA GCTAGCACCAAGGGATATCCACCA WNT5B-ARE TA ACAT CCTTGGCTTTAGTTGCTAGCATGTA GCTAGCAACTAAAGCCAAGGA WNT5B-ARE1 ACCAATAAACCAGCCAG CTGGGGAACCCAACATGTACTTAT TCTAGATACACTGCAGCTCATGGCA WNT5B-ARE2 ATTAGGTGCTCAAAGTGCA ACAT

172 Table S2. Primers for *WNT5B* 3'UTR dual luciferase reporter vector construction in this manuscript

Name	Forward primer (5'-3')	Reverse primer (5'-3')
mmu-WNT5B	CTGCTGACTGACGCCAACT	CCTGATACAACTGACACAGCTTT
mmu-CDK4	GAAGCCAGAGAACATTCTAGTGAC	TCGAGGCCAGTCGTCTTCT
mmu-Cyclin A2	TTACCCGGAGCAAGAAAAC	TCTGGCTGCCTCTTCATG
mmu-Cyclin D	AATGCCAGAGGCGGATGA	AAAATGCCAGAGGCGGATGA
mmu-BAX	GTGATGGCATGGGACATAGCTC	TGGCGTAGACCTTGCGGATAA
mmu-BCL2	GCAGGCAGCTTGAAAGAAAC	GCTGGCCTTTCATGACTCTC
mmu-CASP3	CTGCGGCGGGGGGGGCT	GGTTGGCTGCGTCCACAT
mmu-GAPDH	GGTTGTCTCCTGCGACTTCA	TGGTCCAGGGTTTCTTACTCC
ssc-WNT5B	GGTGGTCCTTGGCCATGA	AGGCTACGTCTGCCATCTTATAC
ssc-CDK4	GCGTAAGAGTCCCCAATGGA	AGACATCCATCAGCCGGACA
ssc-Cyclin A2	TCTATGGCGGAAGTTCTTGCT	CACTGCCCATGCTGGTAGAA
ssc-BAX	GCCCTTTTGCTTCAGGGTTTC	GCCCTTTTGCTTCAGGGTTTC
ssc-BCL2	GGATAACGGAGGCTGGGATG	TTATGGCCCAGATAGGCACC
ssc-CASP3	CTGGCGAAATTCAAAGGAC	AACCATTTCCTCATTTCACATAC
ssc-MYHC	GTTCAGAGAAAGGCATCCCAAA	GAGAGTGACCGACACCACAAGTG
ssc-MYH7	AAGGGCTTGAACGAGGAGTAGA	TTATTCTGCTTCCTCCAAAGGG
ssc-MYH4	ATGAAGAGGAACCACATTA	TTATTGCCTCAGTAGCTTG
ssc-TNNI1	CCCACAGTCTGCAGTCCAC	CCAGCATCAGGCCCTTCAG
ssc-TNNI2	TCCAGGAGCTCTGCAAACAG	GGTTCATGTCCTCCAGCTCC
ssc-TNNT1	CCAAGCCAAGCCGTCCC	CAATACGCTCTTTCAGCGCC
ssc-TNNT3	CATCATCGCCAAGGGTTCTTTCA	TGCCTGGATGGTAGTAGAGCA
ssc-NEAT1	GTCGATGCCCTGAACATG	GTCGATGCCCTGAACATG
ssc-GAPDH	TTATGGCCCAGATAGGCACC	TTATGGCCCAGATAGGCACC
miR-29a	GCGCTAGCACCATCTGAAAT	AGTGCAGGGTCCGAGGTATT
miR-29b	CGCGTAGCACCATTTGAAATC	AGTGCAGGGTCCGAGGTATT
miR-29c	CGCGTAGCACCATTTGAAAT	AGTGCAGGGTCCGAGGTATT

203 Table S3. qRT-PCR Primers used in this manuscript