1 Supplementary material

| 2  | Signature-based repurposed drugs resemble the inhibition of TGFβ-induced NDRG1 as                                                                        |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3  | potential therapeutics for triple-negative breast cancer.                                                                                                |
| 4  |                                                                                                                                                          |
| 5  | Araceli López-Tejada <sup>1,2,3,#</sup> , Jose L. Blaya-Cánovas <sup>2,3,4,#</sup> , Francisca E. Cara <sup>3</sup> , Jesús Calahorra <sup>2,3,4</sup> , |
| 6  | César Ramírez-Tortosa <sup>3,5</sup> , Isabel Blancas <sup>3,6,7</sup> , Violeta Delgado-Almenta <sup>2</sup> , Fabiola Muñoz-                           |
| 7  | Parra <sup>8</sup> , Marta Ávalos-Moreno <sup>2</sup> , Ana Sánchez <sup>2</sup> , Adrián González-González <sup>2</sup> , Juan A.                       |
| 8  | Marchal <sup>3,9,10,11</sup> , Carmen Griñán-Lisón <sup>1,2,3,11,*</sup> , Sergio Granados-Principal <sup>1,2,3,*</sup> .                                |
| 9  |                                                                                                                                                          |
| 10 | <sup>1</sup> Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of                                                     |
| 11 | Granada, Campus de Cartuja s/n, Granada, Spain                                                                                                           |
| 12 | <sup>2</sup> GENYO, Centre for Genomics and Oncological Research, Pfizer/University of                                                                   |
| 13 | Granada/Andalusian Regional Government, Granada, Spain                                                                                                   |
| 14 | <sup>3</sup> Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain                                                                         |
| 15 | <sup>4</sup> UGC de Oncología Médica, Hospital Universitario de Jaén, Jaén, Spain                                                                        |
| 16 | <sup>5</sup> UGC de Anatomía Patológica, Hospital Universitario "San Cecilio", Granada, Spain                                                            |
| 17 | <sup>6</sup> UGC de Oncología, Hospital Universitario "San Cecilio", Granada, Spain                                                                      |
| 18 | <sup>7</sup> Department of Medicine, University of Granada, Granada, Spain                                                                               |
| 19 | <sup>8</sup> UGC de Radiodiagnóstico, Hospital Universitario "San Cecilio", Granada, Spain                                                               |
| 20 | <sup>9</sup> Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research                                                   |
| 21 | (CIBM), University of Granada, Granada, Spain                                                                                                            |
| 22 | <sup>10</sup> Department of Human Anatomy and Embryology, Faculty of Medicine, University of                                                             |
| 23 | Granada, Granada, Spain                                                                                                                                  |
| 24 | <sup>11</sup> Excellence Research Unit "Modeling Nature" (MNat), Centre for Biomedical Research                                                          |
|    |                                                                                                                                                          |

25 (CIBM), University of Granada, Granada, Spain

- 26
- 27 <sup>#</sup>These authors contributed equally.
- 28 \*Corresponding authors: <u>carmengl@go.ugr.es</u> (Carmen Griñán-Lisón), <u>sergiogp@ugr.es</u>
- 29 (Sergio Granados-Principal). Tel.: +34 651557921

## 31 Supplementary Figures



33 Fig. S1. CMap results of ±1.5 log<sub>2</sub> fold-change query. (A) Perturbagen class (PCL) topmost connectivity scores; (B) Compounds with connectivity scores higher than 80, 90, and 96 for 34 General, Summary, and MCF-7 cell line analyses, respectively. CCKR, Cholecystokinin 35 Receptor; GOF, Gain Of Function; GTFs, General Transcription Factors; HB, Homeoboxes; 36 LOF, Loss Of Function; LRRKs, Leucine Rich Repeat Kinases; MAPKs, Mitogen Activated 37 Protein Kinases; MDM, Murine Double Minute; NDUFS, NADH ubiquinone oxidoreductase 38 core subunits; NE, Norepinephrine; PG, Pseudogenes; RS, ribosomal subunit; TNF, Tumor 39 Necrosis Factor; XLMR, X-Linked Mental Retardation. 40



Fig. S2. (A) Representative dot plots of Annexin V/PI FACS analysis: viable cells (Annexin V
and PI negative cells); early apoptotic cells (Annexin V positive and PI negative cells); late
apoptotic cells (Annexin V and PI positive); and necrotic cells (Annexin V negative and PI
positive), in MDA-MB-231, SUM159 and BT549 cell lines after 24-hour treatments; (B)
Representative dot plots of Annexin V/PI FACS analysis in BT549 cell line after 48-hour
treatments.



Fig. S3. (A) Representative dot plots of flow cytometric analysis of aldefluor-positive (ALDH)
population and DEAB control after 72-hour treatments in MDA-MB-231, SUM159, and BT549

- 52 cell lines. (B) Representative dot plots of flow cytometric analysis of CD44<sup>high</sup>/CD24<sup>-</sup>
- 53 population in MDA-MB-231, SUM159, and BT549 cell lines after 72-hour treatments.



56 Fig. S4. Dot plots of side population flow cytometry after 72-hour treatments in MDA-MB-231





Fig. S5. (A) Representative images of primary and (B) secondary generations of
mammospheres of MDA-MB-231, SUM159, and BT549 cell lines.



Fig. S6. (A) Representative images of soft agar colony formation of MDA-MB-231 and
SUM159 cell lines. (B) Representative images of tumor cell migration after 24-hour treatments
in MDA-MB-231, SUM159, and BT549 cell lines.



Fig. S7. (A) Western blot and densitometric analysis of p-NDRG1 (Thr346) and total NDRG1
after 24 and 72-hour treatments in MDA-MB-231 and SUM159 cell lines. (B) Western blot and
densitometric analysis of p-AKT (Ser473) and total AKT after 72-h treatments in MDA-MB231 and after 24-h SUM159 cell lines.



74

75 Fig. S8. (A) Representative confocal images (original optical objective: 10x) of p-AKT (green) and Ki67 (red) in UGR01 PDxOs after 72-hour treatments. Scale bar 100 µm. (B) IC50 of 76 Docetaxel (D) in the UGR01 PDxOs model after 72-hour treatments. Results were normalized 77 to the vehicle control (n=5). (C) Flow cytometric analysis of total apoptotic population after 78 24-hour treatments in MDA-MB-231 and SUM159 cell lines (n=3). Data are presented as mean 79  $\pm$  SD. Statistically significant differences with the vehicle: \* P < 0.05, \*\* P < 0.01, \*\*\* P < 80 0.001, \*\*\*\* P < 0.0001. Statistically significant differences with docetaxel: + P < 0.05, ++ P < 81 0.01, +++ P < 0.001. Statistically significant differences with E: # P < 0.05, ## P < 0.01. 82 Statistically significant differences with O: \$ P < 0.001, \$ P < 0.0001. Statistically 83 significant differences with V: && P < 0.01. 84

## 86 Supplementary Tables

- **Table S1.** Transcriptomic profile from NDRG1 knockdown in TGFβ1-treated MDA-MB-231
- cells compared to stimulation with TGF $\beta$ 1 used for the clue.io query.

| Gene Stable ID  | Gene name  | log <sub>2</sub> FoldChange | p-value    | p-adjusted | Included           |
|-----------------|------------|-----------------------------|------------|------------|--------------------|
| ENSG0000077984  | CST7       | 2,891200479                 | 4,0778E-08 | 9,8694E-07 | Valid              |
| ENSG00000127884 | ECHS1      | 2,452566431                 | 3,477E-66  | 2,9033E-63 | Valid              |
| ENSG00000172667 | ZMAT3      | 2,298752408                 | 7,1603E-41 | 2,6157E-38 | Valid              |
| ENSG00000134602 | STK26      | 2,233857126                 | 7,9786E-09 | 2,1998E-07 | Valid              |
| ENSG00000187068 | C3orf70    | 2,206731586                 | 3,1769E-05 | 0,00040063 | Invalid            |
| ENSG00000272916 | AC022400.6 | 2,171647427                 | 5,9098E-06 | 9,0072E-05 | Invalid            |
| ENSG00000269028 | MTRNR2L12  | 2,160385347                 | 0,0042228  | 0,02434151 | Invalid            |
| ENSG00000171241 | SHCBP1     | 2,039301485                 | 4,0875E-54 | 2,2754E-51 | Valid              |
| ENSG00000167081 | РВХ3       | 2,029327334                 | 8,833E-31  | 1,8774E-28 | Valid              |
| ENSG0000006576  | PHTF2      | 1,949970154                 | 8,5491E-38 | 2,701E-35  | Valid              |
| ENSG00000114125 | RNF7       | 1,939075104                 | 3,4133E-34 | 9,0685E-32 | Valid              |
| ENSG00000177432 | NAP1L5     | 1,913948912                 | 0,00011559 | 0,00121963 | Valid but not used |
| ENSG00000184992 | BRI3BP     | 1,861301075                 | 1,1925E-23 | 1,7872E-21 | Valid but not used |
| ENSG00000163734 | CXCL3      | 1,804699297                 | 1,5057E-05 | 0,0002083  | Valid              |
| ENSG00000186517 | ARHGAP30   | 1,791681042                 | 0,00036863 | 0,00327951 | Valid but not used |
| ENSG00000197296 | FITM2      | 1,79166835                  | 2,1074E-13 | 1,1959E-11 | Valid but not used |
| ENSG00000180758 | GPR157     | 1,727575436                 | 2,2153E-13 | 1,2421E-11 | Valid              |
| ENSG0000064666  | CNN2       | 1,718786337                 | 1,3853E-43 | 5,7836E-41 | Valid              |
| ENSG00000163378 | EOGT       | 1,684725681                 | 4,2987E-26 | 7,1788E-24 | Valid              |
| ENSG00000108468 | CBX1       | 1,670397289                 | 1,8655E-44 | 9,0863E-42 | Valid              |
| ENSG0000095752  | IL11       | 1,668333067                 | 2,5895E-85 | 4,3245E-82 | Valid              |
| ENSG00000197111 | PCBP2      | 1,662640882                 | 1,141E-43  | 4,94E-41   | Valid              |
| ENSG00000114450 | GNB4       | 1,654412255                 | 1,3032E-31 | 2,9872E-29 | Valid but not used |
| ENSG00000185787 | MORF4L1    | 1,634487115                 | 2,8458E-70 | 2,7723E-67 | Valid              |
| ENSG00000188167 | ТМРРЕ      | 1,633461654                 | 2,1789E-10 | 7,8372E-09 | Valid but not used |

| ENSG00000274290 | HIST1H2BE  | 1,625233997  | 5,3831E-08 | 1,2769E-06 | Valid but not used |
|-----------------|------------|--------------|------------|------------|--------------------|
| ENSG0000092820  | EZR        | 1,613883538  | 3,4291E-63 | 2,6724E-60 | Valid              |
| ENSG00000179598 | PLD6       | 1,611512464  | 0,00024874 | 0,00234874 | Valid but not used |
| ENSG00000185129 | PURA       | 1,567471598  | 3,9245E-32 | 9,3627E-30 | Valid              |
| ENSG00000123685 | BATF3      | 1,560864209  | 0,00307458 | 0,01900679 | Valid              |
| ENSG00000188706 | ZDHHC9     | 1,558074131  | 1,0907E-10 | 4,0999E-09 | Valid but not used |
| ENSG00000184743 | ATL3       | 1,553878289  | 1,1899E-70 | 1,2645E-67 | Valid but not used |
| ENSG00000170540 | ARL6IP1    | 1,54432197   | 1,4697E-92 | 4,2952E-89 | Valid              |
| ENSG00000152749 | GPR180     | 1,533783667  | 8,9653E-16 | 6,85E-14   | Valid but not used |
| ENSG00000114999 | TTL        | 1,528151806  | 8,4473E-39 | 2,9924E-36 | Valid but not used |
| ENSG00000166471 | TMEM41B    | 1,520338217  | 2,2394E-43 | 9,0272E-41 | Valid              |
| ENSG0000009335  | UBE3C      | 1,517270352  | 1,0684E-87 | 2,0815E-84 | Valid              |
| ENSG00000147676 | MAL2       | -1,519193404 | 1,6147E-11 | 6,8144E-10 | Valid but not used |
| ENSG00000283378 | BX088645.1 | -1,530831953 | 0,00332468 | 0,02025048 | Invalid            |
| ENSG00000109113 | RAB34      | -1,532075162 | 3,6608E-56 | 2,3775E-53 | Valid but not used |
| ENSG00000164100 | NDST3      | -1,537049346 | 0,00205093 | 0,01377895 | Valid              |
| ENSG00000131781 | FMO5       | -1,571411849 | 0,00410901 | 0,02379117 | Valid              |
| ENSG00000112697 | TMEM30A    | -1,579677089 | 1,9091E-71 | 2,2318E-68 | Valid              |
| ENSG00000179546 | HTRID      | -1,584293556 | 7,7899E-05 | 0,00087057 | Valid              |
| ENSG00000167578 | RAB4B      | -1,63264198  | 3,8364E-05 | 0,00047208 | Valid              |
| ENSG00000111731 | C2CD5      | -1,646571795 | 2,743E-22  | 3,6029E-20 | Valid              |
| ENSG00000168702 | LRP1B      | -1,647442934 | 0,00035193 | 0,0031477  | Valid              |
| ENSG0000089127  | OAS1       | -1,659312066 | 0,00128731 | 0,00939957 | Valid              |
| ENSG00000133135 | RNF128     | -1,688883665 | 3,9904E-08 | 9,698E-07  | Valid              |
| ENSG00000142634 | EFHD2      | -1,716628773 | 1,1323E-23 | 1,719E-21  | Valid              |
| ENSG00000165806 | CASP7      | -1,781981672 | 1,2152E-16 | 1,0445E-14 | Valid              |
| ENSG00000170004 | CHD3       | -1,889719302 | 1,1782E-50 | 6,2606E-48 | Valid              |
| ENSG00000132842 | AP3B1      | -1,950059614 | 1,18E-89   | 2,7587E-86 | Valid              |
| ENSG00000128567 | PODXL      | -2,040318675 | 2,1247E-38 | 7,0966E-36 | Valid              |

| ENSG00000164023 | SGMS2      | -2,07587609  | 2,5007E-44 | 1,1693E-41 | Valid but not used |
|-----------------|------------|--------------|------------|------------|--------------------|
| ENSG00000170801 | HTRA3      | -2,228843042 | 0,00011798 | 0,00124358 | Valid but not used |
| ENSG00000169248 | CXCL11     | -2,366645215 | 3,1104E-09 | 9,2051E-08 | Valid              |
| ENSG00000104419 | NDRG1      | -2,79571715  | 1,472E-143 | 1,721E-139 | Valid              |
| ENSG00000138135 | СН25Н      | -2,925202949 | 2,0057E-06 | 3,4129E-05 | Valid              |
| ENSG00000169245 | CXCL10     | -3,09717104  | 6,756E-18  | 6,7502E-16 | Valid              |
| ENSG00000257411 | AC034102.2 | -6,753130759 | 0,00751658 | 0,03882848 | Invalid            |
| ENSG00000256514 | AP003419.1 | -6,985214008 | 4,8665E-05 | 0,00057752 | Invalid            |

Invalid: Not a valid HUGO symbol or Entrez ID, not used in the query.

Valid: Valid HUGO symbol or Entrez ID and part of the BING space, used in the query.

Valid but not used: Valid HUGO symbol or Entrez ID not part of BING space, not used in the query.

- Table S2. Oligonucleotide sequences of primers used in single-gene expression analysis by 90
- real-time RT-QPCR. 91

| Gene name                                                                                                | Forward primer (5'-3')  | Reverse primer (5'-3')       |  |  |  |
|----------------------------------------------------------------------------------------------------------|-------------------------|------------------------------|--|--|--|
| CXCL10                                                                                                   | AAAGCAGTTAGCAAGGAAAG    | TCATTGGTCACTTTTAGTG          |  |  |  |
| CXCL11                                                                                                   | TGCTACAGTTGTTCAAGGCTTCC | GGTACATTATGGAGGCTTTCTCAATATC |  |  |  |
| PODXL                                                                                                    | CTACTAGACAGTGTTTCAC     | GAGGTCTGTTGAGTTCTTTG         |  |  |  |
| OAS1                                                                                                     | ATTGTAAGAAGAAGCTTGGG    | CAGAGTTGCTGGTAGTTTATG        |  |  |  |
| GAPDH                                                                                                    | ATCACCATCTTCCAGGAGC     | CATGGTTCACACCCATGAC          |  |  |  |
| Detection of the amplification products was carried out using SYBR Green I. The mRNA abundance of target |                         |                              |  |  |  |
| genes in each een nine was normanzed based on GAT DIT abundance.                                         |                         |                              |  |  |  |

| 92  |  |  |
|-----|--|--|
| 93  |  |  |
| 94  |  |  |
| 95  |  |  |
| 96  |  |  |
| 97  |  |  |
| 98  |  |  |
| 99  |  |  |
| 100 |  |  |
| 101 |  |  |
| 102 |  |  |
| 103 |  |  |
| 104 |  |  |
| 105 |  |  |
| 106 |  |  |
|     |  |  |



**MDA-MB-231** 





**MDA-MB-231** 









**SUM159** 



**SUM159** 



## **SUM159**



## **SUM159**



- 108 Uncropped images of Western blots. (A) Membranes shown in Fig. 4B. (B) Membranes
- shown in Fig. 4C. (C) Membranes shown in Fig. S7A. (D) Membranes shown in Fig. S7B. C:
- 110 vehicle control; E: efavirenz; EO: efavirenz + ouabain; EV: efavirenz + vinburnine; MW:
- 111 molecular weight; O: ouabain; OV: ouabain + vinburnine, V: vinburnine.
- 112
- 113