GO-term	description	count in network	strength	signal	false discovery rate
GO:0046686	Response to cadmium ion	3 of 59	2.22	1.32	0.0092
GO:0046916	Cellular transition metal ion homeostasis	3 of 108	1.96	0.99	0.0269
GO:0097501	Stress response to metal ion	2 of 18	2.56	0.98	0.0345
GO:0061687	Detoxification of inorganic compound	2 of 17	2.59	0.98	0.0345
GO:0098754	Detoxification	3 of 132	1.87	0.93	0.0324
GO:0010035	Response to inorganic substance	4 of 532	1.39	0.8	0.0324

Table S1. Gene Ontology (GO) of DEPs in SCC154 cells treated with 26.01µM CdCl₂ (12h) vs untreated.

Figure S1. Cell viability and migration capacity of OSCC cells upon CdCl₂ exposure. A. Cell viability assay of CAL27, OT1109, SCC154 and SCC090 upon treatment with 0.1, 1, 10, 50 and 100 μ M of CdCl₂ (12h) and relative IC50 values. B. MTT assay of SCC154 cells after treatment with growing concentration of CdCl₂ (0.1, 1, 5 and 10 μ M) at T0,12h and 24h. C. Representative images of a wound healing assay for SCC154 cells following treatment with increasing concentrations of CdCl₂ (0.1, 1, 5, and 10 μ M) at time points T0, 12h, and 24h (10x magnification). The relative histogram displays the mean of the gap area of three biological replicates.

Figure S2. Fer-1 partially reverts mitochondrial dysfunction and lipid peroxidation induced by CdCl₂ only in CAL27 cells. Flow cytometry analyses and relative histograms of mitochondrial ROS amount (A), mitochondrial membrane potential (B) and lipid peroxidation (C) assessed by using MitoSOX, TMRM and BODIPY-C11 reagents, respectively, in CAL27 and SCC154 cells following treatment with 26.01µM CdCl₂ (12h) alone or pre-treated with Fer-1 (100µM for 24h). All data represent the mean of three independent experiments. Histograms are reported as mean \pm SD. *p*-value: $* \leq 0.05$; $** \leq 0.01$. ns: not significant.

Figure S3. Baf partially reverts lipid peroxidation and mitochondrial dysfunction mediated by CdCl₂ only in CAL27 cells. Flow cytometry analyses and relative histograms of mitochondrial ROS amount (A), mitochondrial membrane potential (B) and lipid peroxidation (C) assessed by using MitoSOX, TMRM and BODIPY-C11 reagents, respectively, in CAL27 and SCC154 cells following treatment with 26.01µM CdCl₂ (12h) alone or in combination with Baf (1µM for 12h). Each experiment was performed in triplicate. Histograms are presented as mean \pm SD. *p*-value: *≤0.05. ns: not significant.

Figure S4. Effects of *NCOA4* and *CD71* knockdown in CAL27 cells upon CdCl₂ exposure. A. Realtime PCR analysis of *NCOA4* in CAL27 cells treated or not with 26.01µM CdCl₂ upon *NCOA4* silencing (48h). **B**. Western blot analysis and relative optical densitometry of FtH1, CD71 and IRP1 in CAL27 cells either untreated or treated with 26.01µM CdCl₂ following *NCOA4* knockdown. GAPDH was used as normalization control for protein quantification. **C**. Representative dot plot (left) and relative histograms (right) of PI flow cytometry assay of CAL27 cells upon *NCOA4* silencing (48h), treated or not with 26.01µM CdCl₂. **D**. Realtime PCR analysis of *CD71* in CAL27 and SCC154 cells upon *CD71* silencing (24h). **E**. Representative dot plot (left) and relative histograms (right) of PI flow cytometry assay of CAL27 and SCC154 cells upon *CD71* silencing (24h). **E**. Representative dot plot (left) and relative histograms (right) of PI flow cytometry assay of CAL27 and SCC154 cells upon *CD71* silencing (24h). **E**. Representative dot plot (left) and relative histograms (right) of PI flow cytometry assay of CAL27 and SCC154 cells upon *CD71* silencing (24h), treated or not with 26.01µM CdCl₂. Experiments were performed in triplicate. Histograms are presented as mean \pm SD. *p*-value: *≤0.05; **≤0.01. ns: not significant.

Figure S5. Effect of CdCl₂ exposure on HIF-1a protein levels in OSCC cells. Western blot analysis and relative optical densitometry of HIF-1a in CAL27, SCC154 and CAL27T after treatment with with 26.01 μ M CdCl₂ (12h). GAPDH was used as normalization control for protein quantification. Each experiment was performed in triplicate. Histograms are presented as mean \pm SD. *p*-value: * \leq 0.05. ns: not significant.

Figure S6. A. Flow citometry analysis and relative histograms of CD71 surface expression in CAL27, SCC154 and CAL27T at basal level. **B.** Box plots showing gene expression analysis of *HMOX1*, *MT2A*, *FtH1* and *GPX4* in OSCC patients classified as smokers and no-smokers. *p*-value: ** \leq 0.01; *** \leq 0.001. ns: not significant.

Movie S1. Time lapse of fluorescence microscopy analysis of LIP content with FerroOrange dye in CAL27 untreated (12h) (10x magnification).

Movie S2. Time lapse of fluorescence microscopy analysis of LIP content with FerroOrange dye in CAL27 after treatment with 26.01 μ M CdCl₂ (12h) (10x magnification).

Movie S3. Time lapse of fluorescence microscopy analysis of LIP content with FerroOrange dye in SCC154 untreated (12h) (10x magnification).

Movie S4. Time lapse of fluorescence microscopy analysis of LIP content with FerroOrange dye in SCC154 after treatment with $26.01 \mu M \text{ CdCl}_{2}$ (12h) (10x magnification).

Movie S5. Time lapse of fluorescence microscopy analysis of LIP content with FerroOrange dye in CAL27T untreated (12h) (10x magnification).

Movie S6. Time lapse of fluorescence microscopy analysis of LIP content with FerroOrange dye in CAL27T after treatment with $26.01 \mu M \text{ CdCl}_2$ (12h) (10x magnification).

$$\begin{split} & |C50_CAL27:26.1\pm5.455\mu M\ CdCl_2 \\ & |C50_OT1109:74\pm0.9811\mu M\ CdCl_2 \\ & |C50_SCC154:\ unstable \\ & |C50_SCC090:\ unstable \end{split}$$

