Supplementary Information

Table S1. The primer sequences used in this study for qRT-PCR

Genes	RefSeq ID	Forward primer (5'-3')	Reverse primer (5'-3')	Length
с-Мус	NIM 002467.5	CACCGAGTCGTAGTCG	TTTCGGGTAGTGGAAA	93bp
	NM_002467.5	AGGT	ACCA	
TENT	NIM 100252.2	CGTGGTTTCTGTGTGG	CCTTGTCGCCTGAGGA	214bp
IEKI	TERT NM_198253.2	TGTC	GTAG	
DD 45	NIM 004222 5	ATTTGGGCAACGAGA	GTTGATCCTCCATCAC	117bp
DKAF	BRAF NM_004333.5	CCGAT	CACGA	
18S	10G ND 002142.4	CGCCGCTAGAGGTGAA	CTTTCGCTCTGGTCCG	52h.a
165 NK_005142.	NR_003142.4	ATTC	TCTT	52bp
PP2Ac	NIM 002715 4	GGTGGTCTCTCGCCAT	CTGGATCTGACCACAG	109bp
	NM_002715.4	CTATAG	CAAGTC	

Table S2. The antibodies used in this study

Antibodies	Catalog#	Source
anti-c-Myc for WB	sc-764	(Santa Cruz)
anti-c-Myc for IHC	sc-40	(Santa Cruz)
anti-TERT	NB-100-317	(Novus)
anti-BRAF	sc-9002	(Santa Cruz)
anti-p-ERK	#4370	(Cell signaling)
anti-t-ERK	#4695	(Cell Signaling)
anti-PP2Ac	sc-80665	(Santa Cruz)
anti-pT58 c-Myc	#11034	(Signalway Antibody)
anti-pS62 c-Myc	#11311	(Signalway Antibody)
anti-p-GSK3β (S9)	#9323P	(Cell Signaling)
anti-GSK3β	#12456P	(Cell Signaling)
anti-β-catenin	ab32572	(Abcam)
anti-p-Akt308	BS4009	(Bioworld Technology)
anti-t-Akt	BS1810	(Bioworld Technology)
anti-IgG	ab6715	(Abcam)
anti-Ubiquitin	ab33893	(Abcam)
anti-GAPDH	M20006	(Abmart)
anti-Ki67	Cat550609	(BD Pharmingen)

Abbreviations: IHC, immunohistochemistry; WB, western blotting

Table S3. siRNA sequences used in this study

siRNAs	Sequence (5'-3')	Source
si-c-Myc (sense)	AACGATTCCTTCTAACAGA	Ribobio
si-c-Myc (antisense)	UCUGUUAGAAGGAAUCGTT	Ribobio
si-TERT (sense)	GGCCGATTGTGAACATGGA	Ribobio
si-TERT (antisense)	UCCAUGUUCACAAUCGGCC	Ribobio
si-BRAF (sense)	CCTCAAGAGTAATAATATTT	Ribobio
si-BRAF (antisense)	AATATATTACTCTTGAGG	Ribobio
si-NC (sense)	UUCUCCGAACGUGUCACGUTT	Ribobio
si-NC (antisense)	ACGUGACACGUUCGGAGAATT	Ribobio

Table S4. The primer sequences used in this study for plasmid construction

Plasmid	Forward primer (5'-3')	Reverse primer (5'-3')	Restriction sites
pcDNA3.1(-)A-c-Myc	TGCTGGATATCTGCAGAAT TCATGCCCCTCAACGTTA GCTTC	CTTGGTACCGAGCTCGGATCC CTTACGCACAAGAGTTCCGTA	

Table S5. The primers used in this study for luciferase reporter plasmid construction

Plasmid	Forward primer (5'-3')	Reverse primer (5'-3')	Restriction sites
pGL3-BRAF-Luc	cgagctcttacgcgtgctagcCCGGC CTACAATGTTCATCTTAT	acttagatcgcagatctcgagCCACC GCCACCGCTCAGCGCCG	NHE1 and Xho I
pGL3-PP2Ac-Luc	cgagctcttacgcgtgctagcGCCAA GCCAGTCGGCCTT	acttagatcgcagatctcgagGAACA CCTTCTCGTCCAT	NHE1 and Xho I

Table S6. The primers used in this study for ChIP assay

Gene	Position	Forward primer (5'-3')	Reverse primer (5'-3')	Length	
	P1:	AGTAGTATTGGCTTCCCCG	CCATGGCTCCGGTTTCCTA	146hn	
	-582/-436	C	C	146bp	
	P2:	AAAGAAAACACGCGTCGC	GCGGGGAAGCCAATACTA	1561	
	-718/-562	AC	CT	156bp	
BRAF	P3:	CTGTTCATGAAAGGCACAA	CCTGTACAAGGCACATAGC	1111	
BKAF	-980/-869	AGTA	ATTC	111bp	
	P4:	TCATTCCCGTTTCTCTCTC	AACAATTGGGAGAGAAGA	1.401	
	-1157/-1015	CTTA	GGTCA	142bp	
	P5:	CCGGCCTACAATGTTCATC CCTGGGAGCTGATGC		121bn	
	-1499/-1378	TTAT	TC	121bp	
	P1:	GGTGAGAGCCAGCGGGCC GATGCCACCCGCCCAGCC		1.425	
	-143/0	A	UATUCCACCUCCCAUCC	143bp	
PP2Ac	P2:	CCAGAGGTGGGGGTGGTT	TGGCAGTCCGATCACGGA	144bp	
	-786/-642	AA	AA		
	P3:	GCTCTCTCTTTTAAGCACG	TTCTTTGGGCCTCGGACCG	220bp	
	-1161/-941	T	C		
	P4:	CCAAGCCAGTCGGCCTTGC	ACCCCACCCTCAGTATCA	200bp	
	-1689/-1489	C	GG		

Table S7. The peptide sequences used in this study

Peptides	Sequences (5'-3')
AuNP-p-CPS62	$AC\text{-}KKFELLPTPPL\{pS\}PSRRSGLC\text{-}NH2$
AuNP-CPS62	AC-KKFELLPTPPLSPSRRSGLC-NH2

Table S8. The IC50 values of AuNPs

	8305C		A375	
_	Mean	SD	Mean	SD
AuNP-Ctr	29.39	2.3	32.25	2.0
AuNP-p-	16.54	1.8	16.58	1.4
CPS62				
AuNP-CPS62	20.69	1.2	24.14	2.2

Supplementary Figures

Figure S1. TERT was knocked down in SF295 and RKO cells by siRNAs, and protein expression of TERT, BRAF and c-Myc were measured by western blotting analysis. GAPDH was used as a loading control.

Figure S2. c-Myc was ectopically expressed in TERT-knockdown 8305C and A375 cells, and western blotting analysis was used to evaluate the effect of the above treatments on the expression of TERT, BRAF and c-Myc. GAPDH was used as a loading control.

Figure S3. TERT interacts with and stabilizes c-Myc. (A) Reciprocal Co-IP assays were performed in SF295 and RKO cells to determine the interaction between TERT and c-Myc using the indicated antibodies. **(B)** Reciprocal Co-IP assays were performed in SF295 and RKO cells to determine the interaction between TERT and pS62c-Myc using the indicated antibodies. **(C)** Reciprocal Co-IP assays were performed in SF295 and RKO cells to determine the interaction between TERT and pT58c-Myc using the indicated antibodies. The antibody IgG was used as

negative control, and the co-immunoprecipitation is representative of three independently preformed experiments. (**D**) TERT-knockdown SF295 and RKO cells and their control cells were pretreated with 25 μM MG132 or DMSO for 4 h, and western blotting analysis was then used to detect the expression of TERT, BRAF and c-Myc. GAPDH was used as control.

Figure S4. BRAF was knocked down in 8305C and A375 cells, and the expression of TERT, c-Myc, pS62c-Myc, PP2Ac, p-GSK3β, β-catenin and p-AKT^{T308} were determined by western blotting assays. GAPDH was used as a loading control.

Figure S5. Upon treatment of 8305C and A375 cells with AuNP-Ctr, AuNP-p-CPS62 and AuNP-CPS62, mRNA expression of *TERT*, *BRAF* and *PP2Ac* were determined by qRT-PCR assays. *18S*

rRNA was used as a normalized control. Data were shown as mean \pm SD. **, P <0.01; ***, P <0.001 (n = 3).

Figure S6. AuNP-p-CPS62 or AuNP-CPS62 treatment causes a significant change in gene expression profiles. (A) Heatmaps showing the overlap of different expression genes in 8305C cells treated with AuNP-Ctr, AuNP-p-CPS62 or AuNP-CPS62. White represents the mean expression of significantly different genes, the redder means the higher the expression, the bluer means the lower the expression, each row represents a gene, and each column represents a sample. (B) The 476 DEGs were entered into the SangerBox analysis tool to enrich them onto the corresponding KEGG pathways. Shown were the top eight KEGG pathways enrichment analyses of DEGs (P < 0.05). False discovery rate (FDR) <0.25 were considered statistically significant. (C) Shown was the circle diagram of the pathways and the corresponding DEGs (P < 0.05).

Figure S7. M14 and BCPAP cells were treated with AuNP-Ctr, AuNP-p-CPS62 or AuNP-CPS62, and their effects on cell viability (**A**) and apoptosis (**B**) were determined by MTT assay and flow cytometric analysis, respectively. Data were presented as mean \pm SD (cell viability: n =5; cell apoptosis: n = 3). *, P < 0.05; **, P < 0.01; ***, P < 0.001.

Figure S8. Representative immunohistochemistry staining of Ki-67 in the indicated xenograft tumors (upper panels). Scale bars, 200 μ m. The lower panel represents the number of Ki-67-positive cells from five microscopic fields in each group. Data was presented as means \pm SD (n =5). # was

used to show the significant difference between PBS and AuNP-p-CPS62 or AuNP-CPS62. * was used to show the significant difference between AuNP-Ctr and AuNP-p-CPS62 or AuNP-CPS62. **, P < 0.01; ***, P < 0.001; ***, P < 0.001; ***, P < 0.001.

Figure S9. The percentage of TUNEL-positive cells shown in Figure 7E from five microscopic fields in each group. Data were shown as mean \pm SD (n =5). # was used to show the significant difference between PBS and AuNP-p-CPS62 or AuNP-CPS62. * was used to show the significant difference between AuNP-Ctr and AuNP-p-CPS62 or AuNP-CPS62. *##, P < 0.001; ****, P < 0.001.

Figure S10. The number of IHC-positive cells, as shown in Figure 7F and Figure 7G, from five microscopic fields in each group. Data were presented as mean \pm SD (n =5). # was used to show the significant difference between PBS and AuNP-p-CPS62 or AuNP-CPS62. * was used to show the significant difference between AuNP-Ctr and AuNP-p-CPS62 or AuNP-CPS62. ##, P < 0.01; ###, P < 0.001; ***, P < 0.01; ***, P < 0.001.

Figure S11. *In vivo* **biodistribution of AuNPs.** (**A**) *Ex vivo* fluorescence imaging of major organs and tumor tissues from the indicated mice. (**B**) *Ex vivo* fluorescence radiance of major organs and tumor tissues according to the region of interest (ROI) measurement.