Supplemental information

METTL3-mediated m6A methylation on lncRNA H19 inhibits intrahepatic cholangiocarcinoma progression through PPARγ downregulation

Rong Xiao^{1,2}, Xinya Lu¹, Fang Huang³, Yaru Zhao¹, Hao Jin¹, Xiaoyuan Jia¹, Biao Huang¹, Yigang Wang^{*,1}, Liang Chu^{*,2}

- 1, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; Oncology Department, Zhejiang Sci-Tech University Shaoxing Academy of Biomedicine, Shaoxing 312366, China
- 2, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- 3, Cancer Center, Department of Pathology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China

*Correspondence: Yigang Wang, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, No. 928, No. 2 Street, Hangzhou, Zhejiang, 310018, China. Telephone: 86-571-86843187. E-mail: ygwang@zstu.edu.cn;

Liang Chu, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China. Telephone: 86-27-69378518. E-mail: liangchu@tjh.tjmu.edu.cn.

Supplementary Table 1. Key resources.

Reagent or resource	Source	Identifier
HuCC-T1	RIKEN BioResource Research Center	RCB1960
RBE	RIKEN BioResource Research Center	RCB1292
293Т	Type Culture Collection of the Chinese Academy of Sciences	SCSP-502
239A	Type Culture Collection of the Chinese Academy of Sciences	SCSP-5094
Hibepic	Procell Life Science and Technology	CP-H042
RPMI 1640 medium	Gibco	C11875500BT
Fetal bovine serum	Excell	FCS500
DMEM medium	Gibco	C11995500BT
Lipofectamine 2000	Invitrogen	11668027
Lentivirus concentration solution	Beyotime	C2901M
Puromycin	MedChemExpress	HY-B1743
TRIzol reagent	Generay	GK3016
HiFiScript cDNA Synthesis kit	CWBIO	CW2569M
SYBR qPCR Master Mix	Vazyme	Q311-02
RIPA buffer	Beyotime	P0013B
BCA protein assay kit	Thermo	23227
0.45µm PVDF membranes	Millipore	IPVH08100
ECL imaging system	Vazyme	E411-04
Actinomycin D	MedChemExpress	HY-17559
Luc-Pair Duo-Luciferase Assay Kit	GeneCopoeia	LF003
Magna RIP kit	Millipore	17-700
EpiQuik m6A RNA Methylation Quantification Kit	Epigentek	P-9005-48
Magna MeRIP m6A Kit	Millipore	17-10499
BAY-4931	MedChemExpress	HY-148352
NOD/SCID	GemPharmatech	T001492

Supplementary Table 2. Sequences of siRNA, shRNA and RT-qPCR primers.

Names	Sequences
- Ivailles	Sequences
shMETTL3#1	GCAAGTATGTTCACTATGAAA
shMETTL3#2	GCTGCACTTCAGACGAATTAT
shH19#1	GAGTTAGCAAAGGTGACATCT
shH19#2	GCTCTGGAAGGTGAAGCTAGA
shH19#3	CCTGGGCCTTTGAATCCGGCCACAAAACC
siH19#1	GAATATGCTGCACTTTACA
siH19#2	TCACCTTTGCTAACTCTCC
siYTHDF1	TTCATGAACAACTAGACGC
siYTHDF2	TTGCTTGCAACTTCTGTGC
siYTHDF3	TTTAGGTCTCTGATCCACG
silGF2BP1#1	TACTGTACCATACTGAGCC

silGF2BP1#2	TTGTAATTCTACTTTCCCG
silGF2BP1#3	TTGCTCACAGTTCTCTACT
silGF2BP2	TAAAGCTTGTTCATCATCC
SiIGF2BP3	TAAACTATCCAGCACCTCC
siPPARγ#1	CATTCCATTCACAAGAACA
siPPARγ#2	GAGAAGATAAAATCAAGTT
qPCR-METTL3-F	TTGTCTCCAACCTTCCGTAGT
qPCR-METTL3-R	CCAGATCAGAGAGGTGGTGTAG
qPCR-E-cadherin-F	CGAGAGCTACACGTTCACGG
qPCR-E-cadherin-R	GGGTGTCGAGGGAAAAATAGG
qPCR-N-cadherin-F	TCAGGCGTCTGTAGAGGCTT
qPCR-N-cadherin-R	ATGCACATCCTTCGATAAGACTG
qPCR-Vimentin-F	AAGGTGAACCAGAGAGTAAGACG
qPCR-Vimentin-R	CGGTGTCGGTACTTTTTGTCC
qPCR-GAPDH-F	GGAGCGAGATCCCTCCAAAAT
qPCR-GAPDH-R	GGCTGTTGTCATACTTCTCATGG
qPCR-MMP2-F	AGTGACGGAAAGATGTGGTGT
qPCR-MMP2-R	CTTGGTGTAGGTGTAAATGGG
qPCR-MMP9-F	AGACCTGGGCAGATTCCAAAC
qPCR-MMP9-R	CGGCAAGTCTTCCGAGTAGT
qPCR-ICAM1-F	ATGCCCAGACATCTGTGTCC
qPCR-ICAM1-R	GGGGTCTCTATGCCCAACAA
qPCR-H19-F	TGCTGCACTTTACAACCACTG
qPCR-H19-R	ATGGTGTCTTTGATGTTGGGC
qPCR-YTHDF1-F	ACCTGTCCAGCTATTACCCG
qPCR-YTHDF1-R	TGGTGAGGTATGGAATCGGAG
qPCR-YTHDF2-F	GTTGGTAGCGGGTCCATTACT
qPCR-YTHDF2-R	GGTCTTCAGTTTAGGTTGCTGT
qPCR-YTHDF3-F	TCAGAGTAACAGCTATCCACCA
qPCR-YTHDF3-R	GGTTGTCAGATATGGCATAGGCT
qPCR-IGF2BP1-F	GGCCATCGAGAATTGTTGCAG
qPCR-IGF2BP1-R	CCAGGGATCAGGTGAGACTG
qPCR-IGF2BP2-F	CCGCAGCGGAAATCAATCT
qPCR-IGF2BP2-R	ACGAAATATCCCGCCTCATTTAC
qPCR-IGF2BP3-F	ACGAAATATCCCGCCTCATTTAC
qPCR-IGF2BP3-R	GCAGTTTCCGAGTCAGTGTTCA
qPCR-PPARα-F	TTCGCAATCCATCGGCGAG
qPCR-PPARα-R	CCACAGGATAAGTCACCGAGG
qPCR-PPARβ-F	CAGGGCTGACTGCAAACGA
qPCR-PPARβ-R	CTGCCACAATGTCTCGATGTC
qPCR-PPARγ-F	ACCAAAGTGCAATCAAAGTGGA
qPCR-PPARγ-R	ATGAGGGAGTTGGAAGGCTCT
MeRIP-qPCR-H19-F	ACATGAAAGAAATGGTGCTA
MeRIP-qPCR-H19-R	CGATTCCTGAGTCAGGTAGT

qPCR-Hexon-F	ATGGTCGCTATGTGCCCTTC
qPCR-Hexon-R	CTGGCTCCGTCAACCCTTAG

Supplementary Table 3. Antibodies Information.

Antibody name	Source	Identifier
METTL3	ABclonal	A8370
E-cadherin	CST	3195S
N-cadherin	CST	13116S
Vimentin	CST	5741S
IGF2BP1	ABclonal	A13581
IGF2BP2	ABclonal	A14103
IGF2BP3	ABclonal	A6099
YTHDF1	ABclonal	A13260
YTHDF2	ABclonal	A15616
YTHDF3	ABclonal	A8395
PPARα	HUABIO	EM1707-71
PPARβ	HUABIO	ER1902-24
PPARγ	ABclonal	A11183
E1A	Abcam	ab204123
GAPDH	HUABIO	SA30-01
Mouse Control IgG	ABclonal	AC011
HRP Conjugated Goat anti-Mouse IgG polyclonal Antibody	HUABIO	HA1006
HRP Conjugated Goat anti-Rabbit IgG polyclonal Antibody	HUABIO HA1001	
Ki67	ABclonal	A20018

Supplementary Table 4. m6A sites information on H19 sequence.

#	Position	Sequence context	Score(combined)	Decision
1	767	GACAG GG <u>A</u> CA UGGCA	0.598	m6A site (Moderate confidence)
2	779	GCAGG GG <u>A</u> CA CAGGA	0.570	m6A site (Moderate confidence)
3	786	ACACA GG <u>A</u> CA GAGGG	0.622	m6A site (High confidence)
4	907	CGGGA AG <u>A</u> CA GGCAG	0.541	m6A site (Low confidence)
5	980	CCCCG GG <u>A</u> CA UUGCG	0.646	m6A site (High confidence)
6	1078	ACAGU GG <u>A</u> CU UGGUG	0.663	m6A site (High confidence)
7	1438	AAGCA GG <u>A</u> CA UGACA	0.611	m6A site (High confidence)
8	1467	GGCGA GG <u>A</u> CA GAGGA	0.593	m6A site (Moderate confidence)
9	1591	UCCCA GA <u>A</u> CC CACAA	0.554	m6A site (Low confidence)
10	1648	AAUCC GG <u>A</u> CA CAAAA	0.706	m6A site (Very high confidence)
11	1708	CUACC UG <u>A</u> CU CAGGA	0.587	m6A site (Moderate confidence)
12	1744	UAGAG GA <u>A</u> CC AGACC	0.553	m6A site (Low confidence)
13	1772	AUCAA AG <u>A</u> CA CCAUC	0.629	m6A site (High confidence)
_14	1783	CAUCG GA <u>A</u> CA GCAGC	0.619	m6A site (High confidence)

15	2170	CCGGG UG <u>A</u> CU GGGCG	0.538	m6A site (Low confidence)
16	2319	GCCCU GG <u>A</u> CU CAUCA	0.673	m6A site (Very high confidence)

Figure S1: METTL3 regulates the expression of migration-related proteins.

A and B. The mRNA and protein expression of E-cadherin, N-cadherin and Vimentin were determined by RT-qPCR (A) and western blot (B) in HuCC-T1 and RBE cells with METTL3 overexpression, respectively.

C. The mRNA expression of MMP2, MMP9 and ICAM1 was determined by RT-qPCR in HuCC-T1 and RBE cells with METTL3 overexpression.

D and E. The mRNA and protein expression of E-cadherin, N-cadherin and Vimentin were determined by RT-qPCR (D) and western blot (E) in HuCC-T1 and RBE cells with METTL3 knockdown, respectively.

F. The mRNA expression of MMP2, MMP9 and ICAM1 was determined by RT-qPCR in HuCC-T1 and RBE cells with METTL3 knockdown.

G. The correlation between the expression of METTL3 and the indicated factors using GSE33327 database (n=149).

The results are presented as mean \pm SD of three independent experiments. *P < 0.05,
P < 0.01, *P < 0.001, according to a Student's t test.

Figure S2: H19 affects the proliferation and migration of ICCA cells.

A. The proliferation of HuCC-T1 and RBE cells with H19 overexpression was measured

by colony formation assay.

- B. The migration of HuCC-T1 and RBE cells with H19 overexpression was measured by wound healing assay.
- C. The proliferation of HuCC-T1 and RBE cells with H19 knockdown was measured by colony formation assay.
- D. The migration of HuCC-T1 and RBE cells with H19 knockdown was measured by wound healing assay.
- E. The protein expression of E-cadherin and N-cadherin was determined by western blot in HuCC-T1 and RBE cells with H19 overexpression or knockdown.

The results are presented as mean \pm SD of three independent experiments. *P < 0.05, **P < 0.01, ***P < 0.001, according to a Student's t test. Scale bar, 100 μ m.

Figure S3: The effect of METTL3 on cell migration and H19 stability.

- A. The migration of RBE cells with METTL3 mutants overexpression was measured by transwell assay.
- B. The migration of RBE cells with METTL3 mutants overexpression and H19 overexpression was measured by by transwell assay.
- C and D. The H19 RNA decay rate was determined in METTL3-overexpressed (C) or

knockdown (D) HuCC-T1 and RBE cells after treatment with actinomycin D.

The results are presented as mean \pm SD of three independent experiments. **P < 0.01,
***P < 0.001, according to a Student's t test. Scale bar, 100 μ m.

Figure S4: Downregulation of IGF2BP1 reduces the stability of H19.

- A. The mRNA expression of reader YTHDFs and IGF2BPs was determined by RT-qPCR in HuCC-T1 cell with respective siRNAs transfection.
- B. H19 level was determined by RT-qPCR in the indicated YTHDFs- or IGF2BPs-knockdown HuCC-T1 cells after treatment with actinomycin D.
- C. The interaction between H19 and the indicated reader proteins in HuCC-T1 cells was verified by RIP-qPCR.
- D. The correlation between the expression of H19 and the indicated reader proteins in GEPIA dataset.
- E. The downregulated mRNA level of IGF2BP1 in three respective siRNA-treated HuCC-T1 and RBE cells was confirmed by RT-qPCR.
- F. H19 expression was determined by RT-qPCR in HuCC-T1 and RBE cells with IGF2BP1 knockdown.
- G. The interaction between IGF2BP1 and H19 was verified by RIP-qPCR.

H. The H19 RNA decay rate was determined in IGF2BP1 knockdown or IGF2BP1 knockdown and METTL3-overexpressed HuCC-T1 and RBE cells after treatment with actinomycin D.

The results are presented as mean \pm SD of three independent experiments. *P < 0.05,
P < 0.01, *P < 0.001, ns, no significance, according to a Student's t test.

Figure S5: The expression of PPARy is regulated by METTL3 and H19.

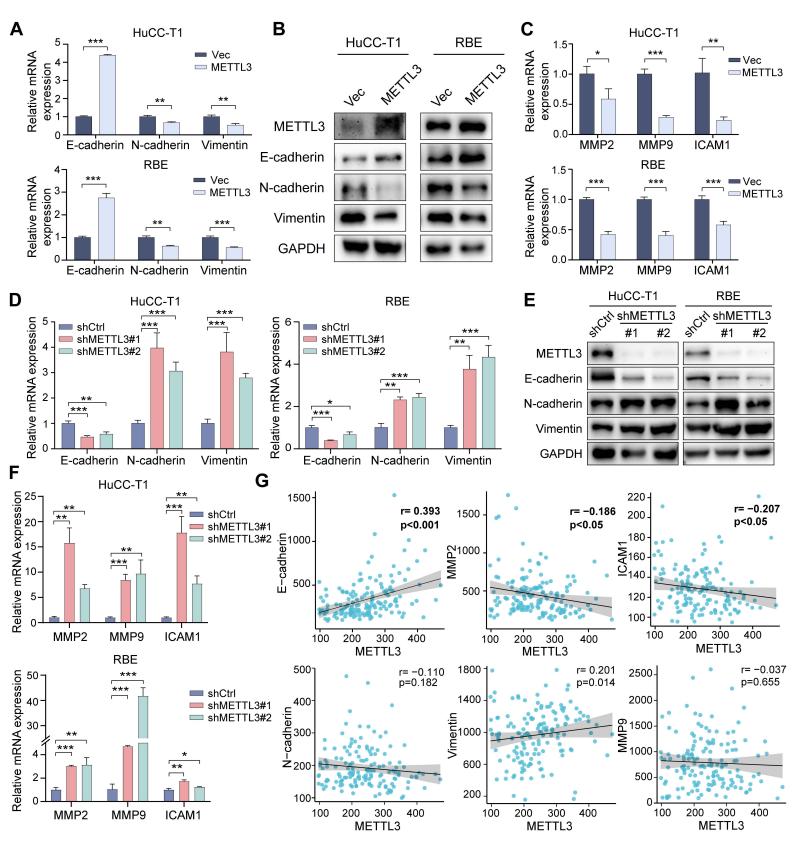
A. KEGG analysis terms of the 34 genes which expression are correlated with H19 expression in GSE33327 ICCA dataset (n=149).

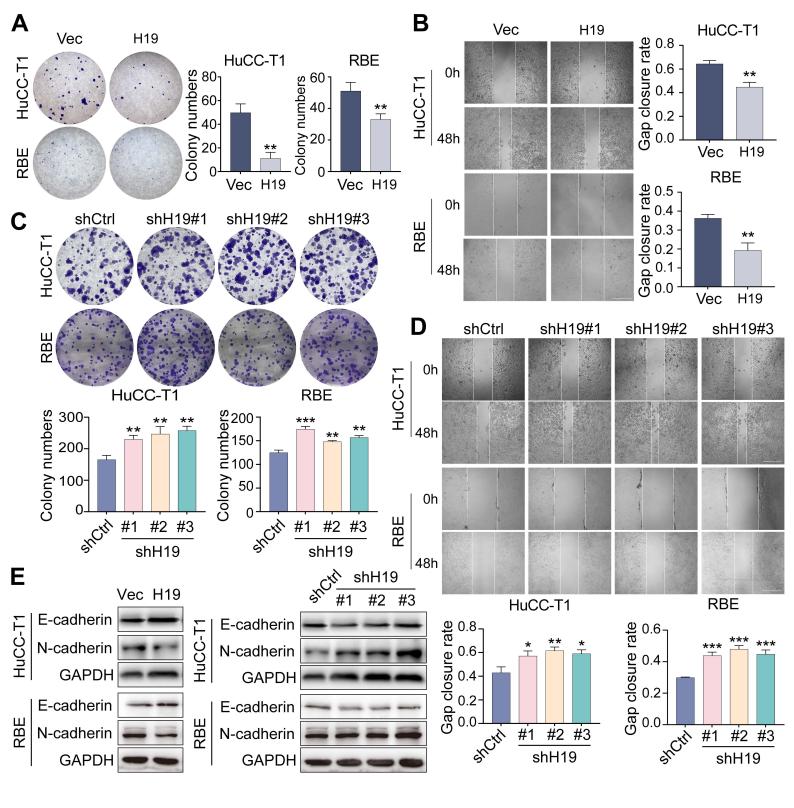
B and C. RT-qPCR analysis was performed to detect PPAR α , PPAR β and PPAR γ mRNA expression in HuCC-T1 and RBE cells with H19 overexpression (B) or knockdown (C), respectively.

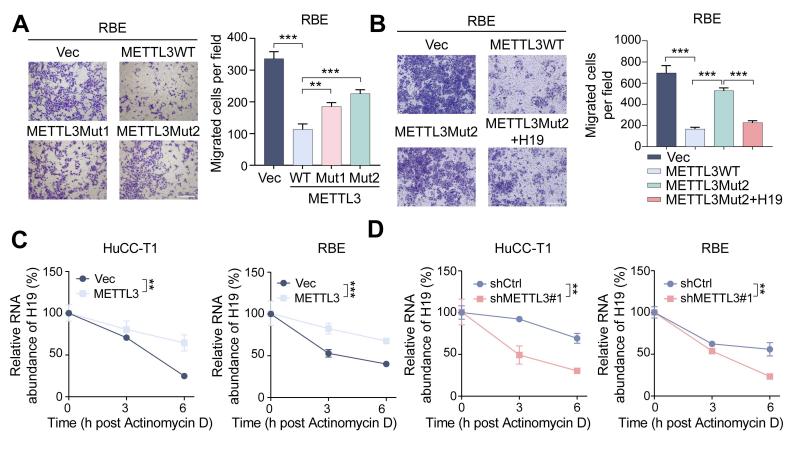
- D. PPARy mRNA expression was downregulated by siRNAs treatment in HuCC-T1 cells.
- E. PPARγ mRNA expression was determined by RT-qPCR in HuCC-T1 cell with the indicated siRNAs treatment.

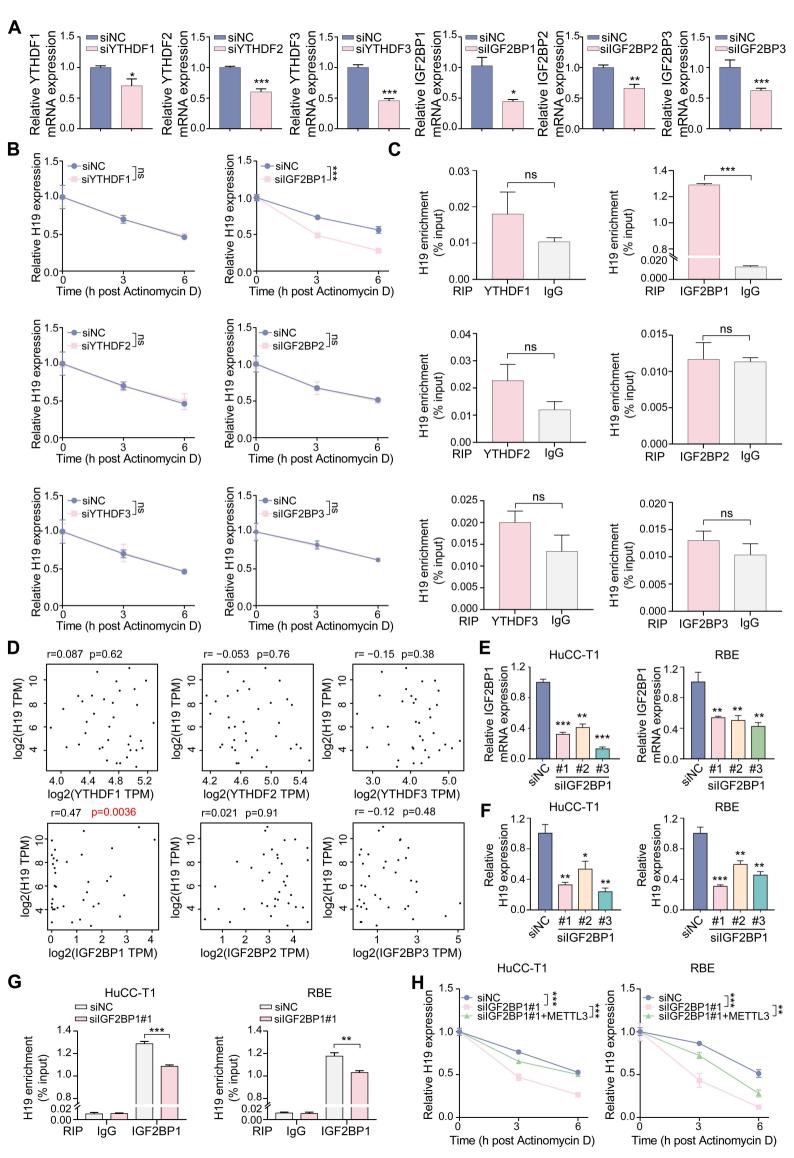
F and G. RT-qPCR analysis was performed to detect PPARα, PPARβ and PPARγ mRNA expression in HuCC-T1 and RBE cells with METTL3 overexpression (F) or knockdown (G).

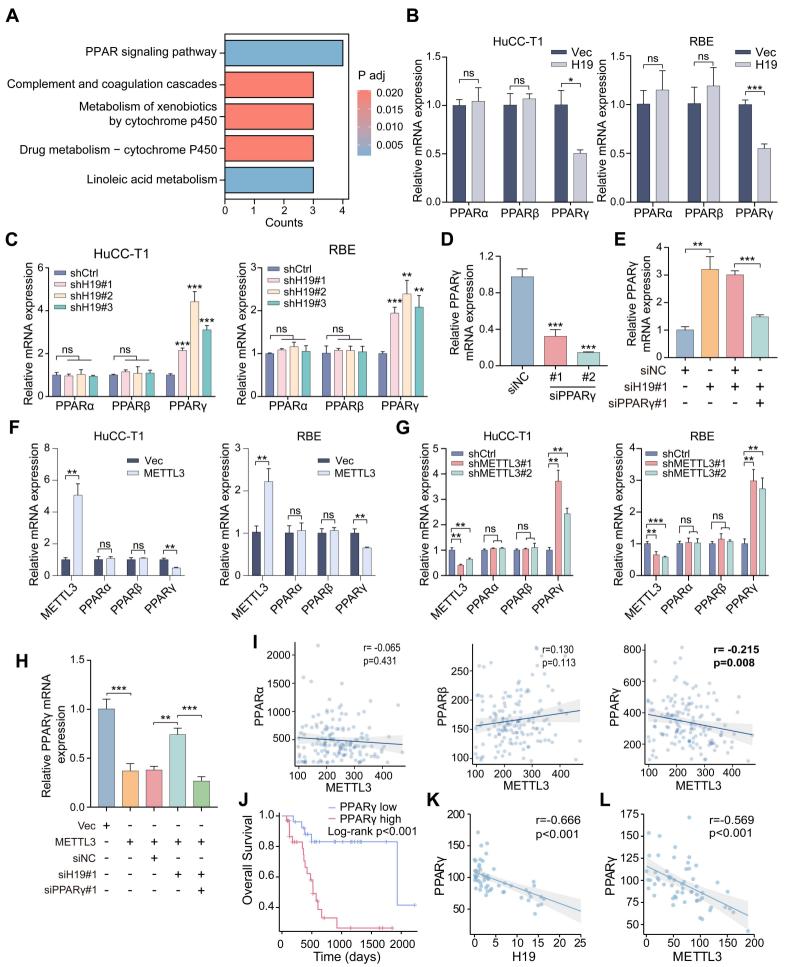
- H. PPARγ mRNA expression was determined by RT-qPCR in HuCC-T1 cell with METTL3 overexpression and the indicated siRNAs treatment.
- I. The correlation between the expression of METTL3 and PPAR α , PPAR β , PPAR γ in GSE33327 dataset (n=149).
- J. Kaplan–Meier survival analysis of the correlation between PPARy expression and overall survival in the TJ cohort.
- K. The correlation between H19 and PPARy expression in the TJ cohort.
- L. The correlation between METTL3 and PPARy expression in the TJ cohort.


The results are presented as mean \pm SD of three independent experiments. *P < 0.05,
P < 0.01, *P < 0.001, ns, no significance, according to a Student's t test.


Figure S6: Overview of the oncolytic adenovirus, IC₅₀ assay, and animal experiment design.


- A. The schematic overview of the structure of the constructed oncolytic adenovirus.


 ITR, inverted terminal repeat.
- B. IC₅₀ determination of BAY-4931 in HuCC-T1 and RBE cells.
- C. The schematic overview of animal experiment. HuCC-T1 cells were subcutaneously inoculated into NOD/SCID mice at 1×10^7 cells per mouse. When tumor volume


reached approximately 100-120 mm³ (Day0), the mice were randomly divided into four groups (n=8) and treated with 5×10⁸ plaque forming unit (PFU) SD55-EGFP, SD55-H19 or SD55-H19 plus BAY-4931 (30mg/kg, gavage) once a day for repeated four times. PBS and DMSO treatment were used as control. s.c., subcutaneous, i.t., intratumoral injection, i.g., intragastric gavage.

