Table S1. The primer sequences of targeted genes used for qRT-PCR.

Name	Forward Primer (5'-3')	Reverse Primer (5'-3')		
circSAMD4	CCAGCACAAGTACAAGAATCATT	AGAGTGAGCCAGGATTTTGGG		
	A			
circSamd4	GCAAGCACGAGAATCATTAACCA	TTCGATAGAGTGTGCCAGGAT		
mmu_circRN	GAGGATGCCTGCCGAGTTGT	CTTTGCCATAGGGGTGCGTG		
A_005186				
mmu_circRN	CGACTAGCAACAGGGAGTGATG	CAGCAATAGCAGGGTTACCAA		
A_000706		T		
mmu_circRN	ATACTCAAACCCAAACGAAGG	CATTGTTACTGGTGCCCTCA		
A_30398				
mmu_circ_28	ACAAGGCAAGAAGAGGCAC	GTGACTTGCGGCCAGGA		
799				
mmu_circRN	GCTCAATGAGGAGGATTACTGG	AAGCGTAGTCTCCACTGGTCA		
A_28239		T		
SAMD4A	TCGAGGCTTTGGGCAATCC	GAGCTGACGAATCCACTGGT		
SRSF3	ATGCATCGTGATTCCTG	CTGCGACGAGGTGGAGG		
<i>GAPDH</i>	CTGGGCTACACTGAGCACC	AAGTGGTCGTTGAGGGCAATG		
Gapdh	CACTGAGCAAGAGAGGCCCTAT	GCAGCGAACTTTATTGATGGT		
		ATT		
CIRBP	TTTGGGTTTGTCACCTTTG	CTGCCTGGTCTACTCGGAT		
Cirbp	GGACTCAGCTTCGACACCAAC	ATGGCGTCCTTAGCGTCATC		
$Cirbp^{fl/fl}$	TTTTGGATTCTGTTCCTTTGCCTC	CTTCAAGTGGGGTTTCTTTCAC		
		AC		
Ggt1-Cre	CATCACATCAGGCACCCCAGAA	GAACATCTTCAGGTTCTGCGG		
		GA		
Ggt1-Cre	CATCACATCAGGCACCCCAGAA	GAACATCTTCAGGTTCTGCGG		

SAMD4A: sterile alpha motif domain-containing protein 4A; SRSF3: serine-rich splicing factor 3; CIRBP: cold-inducible RNA-binding protein

Table S2. The siRNA sequences of targeted genes used in this study.

Name	Sequences
si-NC	UUCUCCGAACGUGUCACGUdTdT
si- <i>circSAMD4</i>	AGCACAAGUACAAGAAUCAUUdTdT
si-CIRBP 1	CUUCUCAAAGUACGGACAGAU
si-CIRBP 2	GCCAUGAAUGGGAAGUCUGUA
si-CIRBP 3	CCUACAGAGACAGUUAUGATT
si-SRSF3 1	CCUGUCCAUUGGACUGUAATT
si-SRSF3 2	UGGAACUGUCGAAUGGUGAAA
si-SRSF3 3	CCCUCGAGAUGAUUAUCGUTT
si-HNRNPM 1	CUGUGCAAGCUAUAUCUAUGU
si-HNRNPM 2	ACAAGCAUAGUCUGAGCGGAA
si-RBM3 1	AGUGGCAGGUAUUAUGACAGU
si-RBM3 2	GGACGUUCCAGAGACUAUATT

CIRBP: cold-inducible RNA-binding protein; SRSF3: serine-rich splicing factor 3; HNRNPM: heterogeneous nuclear ribonucleoprotein M; RBM3: RNA binding motif protein 3

Table S3. Clinical characteristics in the normal control subjects.

Number	Age (year)	Sex	SCr (μmol/L)	BUN (mmol/L)
1	56	Female	59.4	3.52
2	50	Female	55.9	3.11
3	71	Male	123.3	5.9
4	56	Male	81	3.64
5	60	Female	61.5	4.41

SCr: Serum creatinine; BUN: blood urea nitrogen

Table S4. Clinical characteristics in the subjects with ATI.

Number	Age (year)	Sex	SCr (µmol/L)	BUN (mmol/L)	Diagnosis
1	54	Male	321.1	14.4	Nephrotic syndrome; ATI
2	37	Male	312.1	24.16	Nephrotic syndrome; ATI
3	42	Male	225.7	15.44	Nephrotic syndrome; ATI
4	52	Male	215	15.5	Nephrotic syndrome; ATI
5	67	Male	213.7	14.54	Nephrotic syndrome; ATI
6	32	Female	206	7.3	Henoch-Schönlein nephritis; ATI
7	19	Male	202.6	9.11	Nephrotic syndrome; ATI
8	17	Male	162.5	12.78	Nephrotic syndrome; ATI

SCr: Serum creatinine; BUN: blood urea nitrogen; ATI: acute tubular injury

Table S5. Top six circRNAs ranked by sequence conservation between human and mouse species.

Mmu_circ_RNA			Homologous hsa_circ_RNA			Conservation a		
Seqname	Length	Gene	Seqname	Length	Gene	Query	Identity	circBank
	(nt)	symbol		(nt)	symbol	Cover		database
mmu_circRNA_	519	Samd4	has_circ_	519	SAMD4	99%	93.00%	conserved
005305			0004846		A			
mmu_circRNA_	509	Myh9	has_circ_	509	МҮН9	99%	92.11%	conserved
28799			0004470					
mmu_circRNA_	290	Npr3	has_circ_	290	NPR3	100%	91.72%	conserved
28239			0072107					
mmu_circRNA_	420	Wdr1	has_circ_	420	WDR1	99%	88.54%	conserved
000706			0003550					
mmu_circRNA_	744	Epha2	has_circ_	738	ЕРНА2	98%	86.84%	conserved
005186			0010132					
mmu_circRNA_	529	Fkbp5	has_circ_	527	FKBP5	99%	85.98%	conserved
30398			0001599					

a Conservation metrics (query coverage and identity) were determined using NCBI BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi). Higher identity scores indicate greater homology with human circRNAs.

Table S6. Predicted interaction between SRSF3 protein and circSAMD4 using the CATRAPID website.

Gene	RNA ID	Interaction	RNA Binding	RNA-	RNA-	RNA-Binding
Symbol		Propensity	Protein	Binding	Binding	Motifs_IDs
			Propensity	Domains	Motifs	
SRSF3	has_circ_000	11.72	1	1	1	P84103 SRSF3 UGGAC
	4846					26876937 PAR-CLIP
	(circSAMD4)					

Supplemental Figures

Figure S1. Relative circRNA levels in renal cortex tissues by qRT-PCR. All quantitative data are presented as mean \pm SD. Statistical analysis was performed using one-way ANOVA with Tukey's multiple comparisons test. **P < 0.01, ***P < 0.001.

Figure S2. Co-localization staining of *circSamd4* and various segment-specific tubular markers in the kidneys of the CI-AKI model. *CircSamd4* (red) and various segment-specific tubular markers (green), including lotus tetragonolobus lectin (LTL), peanut agglutinin (PNA), and dolichos biflorus agglutinin (DBA), were detected by RNA FISH-immunofluorescence. Scale bar, 50 μm.

Figure S3. Co-localization staining of *circSAMD4* and CIRBP in iohexol-induced HK-2 cells by RNA FISH-immunofluorescence. Arrows indicate positive co-localization area. Scale bar, 20 μm.

Figure S4. Immunoblot and densitometric analyses of CIRBP expression in HK-2 cells transfected with three different *CIRBP*-targeting siRNAs. All quantitative data are presented as mean \pm SD. Statistical analysis was performed using one-way ANOVA with Tukey's multiple comparisons test (A). **P < 0.01, ns, not significant.

Figure S5. Quantification of nuclear CIRBP, cytoplasmic CIRBP, and cytoplasmic-to-nuclear CIRBP ratio, respectively (n = 4). All quantitative data are presented as mean \pm SD. Statistical analysis was performed using unpaired two-tailed Student's t-test. **P < 0.01, ***P < 0.001.

Figure S6. CIRBP suppression attenuated apoptosis through downregulating *FAS* mRNA levels in iohexol-induced HK-2 cells.

(A) Volcano plot of transcriptomics in iohexol-induced HK-2 cells transfected with CIRBP siRNA 3 or control siRNA. (B) qRT-PCR analysis of CIRBP and FAS mRNA levels in HK-2 cells transfected with CIRBP siRNA 3 or control siRNA for 48 hours, followed by iohexol treatment (200 mg iodine/mL, 6 hours) (n = 4). (C and D) Immunoblot and densitometric analyses of Fas in HK-2 cells. Cells were transfected with CIRBP siRNA 3 or control siRNA for 48 hours, followed by 6-hour treatment with iohexol (200 mg iodine/mL) (n = 4). (E) Relative Fas mRNA levels in kidney cortex from $Ggtl-Cre^+/Cirbp^{fl/fl}$ and $Ggtl-Cre^-/Cirbp^{fl/fl}$ mice with CI-AKI (n = 6). (F) HK-2 cells were transfected with CIRBP-FLAG plasmids for 48 hours, followed by 6-hour treatment with iohexol (200 mg iodine/mL). The RIP assay was performed using anti-FLAG antibody followed by qRT-PCR to detect the enrichment of FAS. Anti-IgG antibody was served as a control (n = 4). All quantitative data are

presented as mean \pm SD. Statistical analysis was performed using unpaired two-tailed Student's t-test (B and F), or two-way ANOVA with Tukey's multiple comparisons test (D and E). *P < 0.05, **P < 0.01, ***P < 0.001.

Figure S7. Neither HNRNPM nor RBM3 knockdown affected circSAMD4 expression

(A) Relative expression of *circSAMD4*, linear *SAMD4A* and *HNRNPM* in HK-2 cells transfected with two different *HNRNPM*-targeting siRNAs. The expression levels of these genes were normalized to *GAPDH* mRNA levels (n = 4). (B) Relative expression of *circSAMD4*, linear *SAMD4A* and *RBM3* in HK-2 cells transfected with two different *RBM3*-targeting siRNAs. The expression levels of these genes were normalized to *GAPDH* mRNA levels (n = 4). All quantitative data are presented as mean \pm SD (A-B). Statistical analysis was performed using one-way ANOVA with Tukey's multiple comparisons test (A-B). ***P < 0.001, ns, not significant.

Figure S8. CircSAMD4 knockdown abrogated the pro-apoptotic effects by SRSF3 suppression in iohexoltreated RTECs in vitro

Cells were co-transfected with *SRSF3* siRNA 3 (or control siRNA) and *circSAMD4* siRNA (or control siRNA) for 48 hours, followed by 6-hour treatment with iohexol (200 mg iodine/mL) (n = 4). (A and B) Immunoblot and densitometric analyses of cleaved caspase-3 expression in HK-2 cells (n = 4). (C and D) Flow cytometric analysis of apoptosis in HK-2 cells (n = 4). All quantitative data are presented as mean \pm SD (B and D). Statistical analysis was performed using one-way ANOVA with Tukey's multiple comparisons test (B and D). *P < 0.05, **P < 0.01, ***P < 0.001.

Figure S9. Altered expression of SRSF3, circSamd4 and CIRBP in RTECs in cisplatin-induced AKI.

Male C57BL/6 mice were injected with one dose of cisplatin (30 mg/kg). Control mice were injected with normal saline. Serum and kidney tissues were collected at 48 hours after cisplatin injection. (A) Serum creatinine (SCr) levels (n = 6). (B and C) Representative images of hematoxylin and eosin (H&E) staining and pathological score in kidney tissues (n = 6). Scale bar: 50 μ m. (D) Representative RNA FISH staining images of *circSamd4* in kidney tissues. The white arrows indicated *circSamd4*-positive signals. Scale bar: 50 μ m. (E) *CircSamd4* (mmu_circ_005305) expression in kidney tissues, measured by qRT-PCR (n = 6). (F) Representative immunofluorescence images of CIRBP in kidney sections from mice. Scale bar: 50 μ m. The arrows point to nuclear staining of CIRBP in control or nuclear and cytoplasmic staining in RTECs in cisplatin-induced AKI. (G) Representative immunofluorescence images of SRSF3 in kidney sections from mice. Scale bar: 50 μ m. Arrows point to representative tubule cells with nuclear SRSF3. (H-I) Immunoblot and densitometric analyses of SRSF3 expression in kidney cortex (n = 6). All quantitative data are presented as mean ± SD (A, C, E and I). ***P < 0.001.

Figure S10. Co-localization staining of *circSAMD4* and various segment-specific tubular markers in renal biopsy specimens from patients pathologically diagnosed with ATI. *CircSAMD4* (red) and various segment-specific tubular markers (green), including lotus tetragonolobus lectin (LTL), peanut agglutinin (PNA), and dolichos biflorus agglutinin (DBA), were detected by RNA FISH-immunofluorescence. Scale bar, 50 μm.

Figure S11. qRT-PCR analysis for the expression of *circSAMD4* after treatment with Actinomycin D ($10 \,\mu\text{g/mL}$) at the indicated time points in HK-2 cells (n = 4). All quantitative data are presented as mean \pm SD. Statistical analysis was performed using two-way ANOVA with Tukey's multiple comparisons test. ns, not significant.