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Abstract 

Background: Tertiary lymphoid structures (TLSs), organized clusters of immune cells within non-lymphoid 
tissues, significantly influence tumor progression and therapeutic response. However, their prognostic 
relevance and underlying regulatory mechanisms in clear cell renal cell carcinoma (ccRCC) remain insufficiently 
characterized. 
Methods: We integrated transcriptomic and clinical data from 928 ccRCC patients to construct a TLS-related 
prognostic RiskScore using machine learning algorithms. TLS maturation heterogeneity was characterized via 
immunohistochemistry and multiplex immunofluorescence analyses. The functional role of interferon 
regulatory factor 4 (IRF4), a key regulator within the TLS gene network, was investigated using in vitro assays. 
Single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics were employed to dissect the involvement 
of IRF4 in TLS formation and maturation. 
Results: The derived TLS-associated signature RiskScore, comprising CCL22, LOXL1, LIPA, ADAM8, and SAA1, 
effectively stratified patients into distinct prognostic groups and showed robust associations with clinical 
parameters, tumor microenvironment (TME) features, and predicted immunotherapy responses. Functional 
assays demonstrated that IRF4 significantly enhanced the malignant phenotype of 786-O and 769-P ccRCC 
cells. Clinically, elevated IRF4 expression independently predicted worse patient outcomes, characterized by a 
predominance of immature TLS phenotypes, reduced TLS density, and diminished CD8⁺ T cell infiltration. 
Mechanistically, scRNA-seq analyses revealed that active IRF4 signaling was predominantly confined to 
immature B cell states and was inversely associated with TLS maturation trajectories. Spatial transcriptomics 
further confirmed IRF4 enrichment within TLS regions, notably spatially segregated from high endothelial 
venules (HEVs) and mature TLS compartments. 
Conclusion: In conclusion, this study establishes a robust TLS-related prognostic signature for ccRCC and 
elucidates the mechanistic role of IRF4 in promoting TLS immaturity and immune dysfunction. By potentially 
recruiting immature B cells while impairing their maturation, IRF4 contributes to an ineffective anti-tumor 
immune landscape, offering a promising target for therapeutic intervention. 

Keywords: tertiary lymphoid structures (TLSs), clear cell renal cell carcinoma (ccRCC), tumor microenvironment (TME), 
interferon regulatory factor 4 (IRF4), single-cell RNA sequencing (scRNA-seq), spatial transcriptomics analysis 
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Introduction 
Renal cell carcinoma (RCC) represents a 

significant cause of cancer mortality worldwide (1–3). 
In 2022, it was estimated that there were over 7.37×104 
novel cases and 2.40×104 fatalities due to RCC (4). 
RCC prevalence in China has increased over the past 
thirty years, and the rate of new diagnoses per 100,000 
individuals has nearly tripled, rising from 1.16 in 1990 
to 3.21 in 2019(5). Clear cell renal cell carcinoma 
(ccRCC), the most frequent histological subtype, 
accounts for approximately 70% of all RCC cases (6). 
Genetic alterations in key driver genes such as VHL, 
SETD2, PBRM1, and BAP1 are characteristic of 
ccRCC, contributing to genomic instability and 
impaired DNA repair mechanisms, thereby 
potentially promoting ccRCC tumorigenesis (7). 

ccRCC is characterized by significant 
heterogeneity, leading to variable patient prognoses 
and highlighting the critical need for improved 
biomarkers beyond traditional clinicopathological 
features. In recent years, considerable research effort 
has focused on developing molecular signatures 
derived from high-throughput data to better stratify 
patients and predict outcomes. These efforts have 
explored various biological signatures of ccRCC. For 
instance, researchers have investigated signatures 
linked to specific cell death pathways (8,9), cancer 
stemness and non-coding RNAs (10), tumor 
microenvironment (TME) and immune components 
(11,12). This landscape of recently proposed 
biomarkers underscores the diverse strategies being 
employed and sets the stage for introducing novel 
signatures, like the TLS-based one in this study, which 
may offer unique insights into the tumor’s immune 
landscape and patient prognosis. Despite identifying 
numerous potential genomic biomarkers, the 
translation of these findings into routinely used tissue 
or blood-based molecular biomarkers for guiding 
clinical decision-making in ccRCC remains a 
significant challenge (13). 

TME is an intricate and dynamic system 
composed of diverse cell types, including endothelial 
cells, fibroblasts, and immune cells (14). The TME 
plays a critical role in tumor initiation, progression, 
and metastasis, and modulates therapeutic response 
(15,16), being actively shaped by components such as 
cancer-associated fibroblasts (17). Furthermore, 
systemic host factors, such as the gut microbiota, and 
intrinsic microenvironmental conditions, such as 
hypoxia, are increasingly recognized as modulators of 
the TME (18,19). Recent research indicates that 
tumor-associated immunity is evident in tertiary 
lymphoid structures (TLSs) (20). TLSs form in 
nonlymphoid tissues under pathological conditions, 

including cancer, rather than during physiological 
states (21,22). Structurally, TLSs are featured by a 
central cluster of CD20+ B cells surrounded by CD3+ T 
cells, similar to the lymphoid follicles in secondary 
lymphoid organs (SLOs) (23). The T cell region within 
TLSs consists of CD4+ T follicular helper (Tfh) cells, 
CD8+ cytotoxic T lymphocytes, CD4+ T helper 1 (TH1) 
cells, and regulatory T cells (Tregs) (24,25). Unlike 
SLOs, TLSs typically lack a distinct capsule, 
potentially facilitating their cellular constituents to 
interact directly with adjacent tissue (26). 

TLSs are implicated in initiating and enhancing 
adaptive immune responses (27,28). T cells within 
TLSs interact with mature dendritic cells (DCs) and B 
cells, inducing T cell differentiation and the 
development of germinal centers (GCs) (21). After B 
cells achieve complete maturation within TLSs, they 
become plasma cells that secrete high-affinity IgG and 
IgA, potentially increasing the tumor’s response to 
immunotherapy (29). TLSs are increasingly 
recognized as crucial organizing centers for 
anti-tumor immunity, influencing prognosis and 
therapeutic response across numerous malignancies 
(30). Accumulating evidence across diverse 
malignancies, such as melanoma (31), ovarian cancer 
(32), non-small cell lung cancer (33), bladder cancer 
(34), and pancreatic cancer (35), consistently links the 
presence, density, and particularly the maturation 
state of TLSs with patient prognosis and efficacy of 
immune checkpoint inhibitor (ICI) therapies. Indeed, 
understanding the broader TME’s impact is crucial, as 
studies highlight its pivotal role in regulating 
intercellular communication, shaping treatment 
responses, and driving resistance to chemoradiation, 
targeted therapy, and immunotherapy (36). However, 
the presence of TLSs in various tumors can differ 
significantly, which may lead to variable outcomes 
(37). Factors influencing TLS maturation, such as local 
metabolic constraints (38), and the specific cellular 
interactions within them, including T-cell activation 
levels (35), may contribute to this heterogeneity. In 
ccRCC, the different localization and maturity of TLSs 
can lead to different prognoses, with tumor-proximal 
TLSs being more mature and exhibiting better 
prognoses (39). Therefore, prognostic models for 
ccRCC incorporating TLS molecular markers hold 
potential clinical significance. 

Interferon regulatory factor 4 (IRF4) serves as 
one of the genetic markers for identifying TLSs in 
cancers, and it fulfills a complex role in immune 
regulation (23). Increased IRF4 levels enhance the 
differentiation of CD4+ CD25low effector T (Teff) cells 
and reduce T follicular helper (Tfh) cell numbers (40). 
Additionally, IRF4 directs effector regulatory T (Treg) 
cell differentiation and promotes immune 
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suppression (41). Upregulated IRF4+ Treg cells within 
tumors are significantly linked to early tumor 
recurrence as well as worse disease-free survival 
(DFS) and overall survival (OS) (42). Although IRF4 
fosters proliferation and continuous differentiation of 
CD8+ T cells (43), persistently high IRF4 can lead to 
CD8+ T cell exhaustion (44). Specifically, recent 
studies confirm that IRF4 upregulation following T 
cell activation impedes human CD8 T cell effector 
function, while promoting cell proliferation and PD-1 
expression, contributing to an exhausted phenotype 
in tumor-infiltrating lymphocytes (TILs) rather than 
activation alone (45). Moreover, IRF4 induces M2-type 
macrophages (46), contributing to an 
immunosuppressive TME. This process can be 
influenced by upstream signaling (47) and by 
post-translational modifications (48). 

Previous studies have elucidated IRF4’s 
involvement across various tumor types. Anaplastic 
large cell lymphoma shows a dependency on IRF4 
signaling, with MYC as a key target of IRF4(49). 
Furthermore, mutations affecting IRF4-DNA binding 
can upregulate genes specific to human lymphomas 
(50). IRF4 mRNA escalates from normal tissues to oral 
submucous fibrosis and oral squamous cell carcinoma 
(OSCC), paralleling immune infiltration (51). 
Moreover, IRF4 acts as an oncogenic factor in human 
non-small cell lung cancer, partly through triggering 
the Notch-Akt pathway (52). In multiple myeloma 
(MM), IRF4 is a critical transcription factor whose 
activity and cellular growth effects can be deregulated 
by the loss of the inhibitory protein BCL7A, which 
normally limits its DNA binding activity (53). Due to 
its specific overexpression and role in mediating MM 
progression and survival, IRF4 is actively being 
pursued as a therapeutic target, with novel direct 
small molecule inhibitors that bind its DNA-binding 
domain being designed and synthesized (54) and 
antisense oligonucleotide-based approaches being 
explored to silence its expression (55). Nevertheless, 
the precise functions of IRF4 in ccRCC are yet to be 
elucidated. 

This study employed an integrative approach to 
elucidate the complex role of TLSs in ccRCC. We 
developed and validated a robust TLS-related 
signature capable of predicting patient prognosis, 
TME characteristics, and immunotherapy response. 
Then, since IRF4 is a key TLS-associated gene with 
unclear functions in ccRCC, we investigated its 
specific contribution to tumor progression and TLS 
maturation. By combining in vitro functional assays 
with single-cell and spatial transcriptomics analyses, 
we specifically sought to determine how IRF4 
expression influences B cell dynamics within the 
TME, contributes to TLS heterogeneity, and 

ultimately impacts ccRCC progression, thereby 
identifying potential mechanisms driving immune 
evasion and revealing novel therapeutic 
vulnerabilities. 

Materials and Methods 
Raw Data Collection and Standardization 
Process 

This study compiled transcriptomic and clinical 
data for 763 ccRCC patients from several online 
databases, including the Cancer Genome Atlas 
(TCGA) database, clinical proteomic tumor analysis 
consortium (CPTAC) database, European Molecular 
Biology Laboratory (EMBL) database, and 
International Cancer Genome Consortium (ICGC) 
database, using datasets TCGA-KIRC, CPTAC-3, 
E-MTAB-3267, and RECA-EU. To ensure 
comparability and standardization, RNA sequencing 
data initially presented as fragments per kilobase of 
transcript per million mapped reads (FPKM) were 
converted to transcripts per million (TPM), followed 
by log2(TPM+1) transformation. Additionally, we 
mitigated the batch effect using the “ComBat” 
algorithm of the “sva” package. The study also 
incorporated genetic alteration data from the TCGA 
database, covering somatic mutations, copy number 
variations (CNVs), and tumor mutational burden 
(TMB). All patient consent and ethical approvals were 
appropriately secured in the original studies. Baseline 
clinical data for the patients were presented in Table 
S1. 

Consensus Clustering Analysis 
Our study utilized a consensus clustering 

approach to divide ccRCC patients into separate 
subgroups according to TLS-related genes and 
differentially expressed genes (DEGs), respectively. 
We executed consensus hierarchical clustering and 
confirmed the ideal cluster quantity and the 
distribution of patients using the “Consensus 
ClusterPlus” package in R, performing 1000 
repetitions for credibility assurance (56). 

Correlation of Clinical Traits and Immune 
Landscape with Molecular Profiles 

Several clinical variables were taken into 
consideration, including patient age, gender, tumor 
grade, and Stage. Utilizing the “survival” and 
“survminer” packages in R software, we performed 
the Kaplan-Meier (K-M) analysis to compare 
prognostic outcomes (57). Then, we estimated the 
prevalence of immune cells within samples by 
implementing the CIBERSORT algorithm (58), and we 
pinpointed the immune cells infiltrating proportion 
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through the single-sample gene set enrichment 
analysis (ssGSEA) algorithm (59). Additionally, we 
calculated the ESTIMATE score for each ccRCC 
specimen using the ESTIMATE algorithm (60), and 
compared immune checkpoints (ICPs) expression 
across subgroups. 

Functional and Pathway Enrichment Analysis 
We performed Gene Ontology (GO) and Kyoto 

Encyclopedia of Genes and Genomes (KEGG) 
pathway enrichment analyses with the 
“clusterProfiler” package (61). Additionally, we 
utilized the KEGG gene set (c2.cp.kegg.v7.5.1) to 
execute gene set variation analysis (GSVA) to 
underscore functional discrepancies among clusters, 
based on the adjusted P value < 0.001 and the 
threshold of |log2-fold change (FC)| > 0.2(62). 

Distinctive Expression and Development of 
the TLS-Related Predictive Signature 

The “limma” package in R software was utilized 
to pinpoint DEGs among different TLS-gene-related 
clusters, setting the selection threshold at |log2-FC| > 
1.25 and the adjusted P value < 0.001(63). We then 
devised a prognostic scoring system (RiskScore). To 
recognize prognosis-related genes, univariate Cox 
regression analysis was performed, considering DEGs 
expression levels and survival data. Subsequently, we 
used the least absolute shrinkage and selection 
operator (LASSO) technique and multivariate Cox 
regression analysis to create an optimal predictive 
model. RiskScore was calculated as follows: RiskScore 
= h0(t) × exp (expression of CCL22 × corresponding 
coefficient + expression of LOXL1 × corresponding 
coefficient + expression of LIPA × corresponding 
coefficient + expression of ADAM8 × corresponding 
coefficient + expression of SAA1 × corresponding 
coefficient). Patients were then categorized into low or 
high RiskGroups based on the median RiskScore. 

Clinical Relevance of the Predictive Signature 
and Establishment of a Prognostic Outcome 
Prediction Nomogram 

We compared clinical outcomes between the two 
RiskGroups by employing K-M analysis. We 
confirmed the predictive accuracy of the RiskScore 
system using a receiver operating characteristic (ROC) 
curve, created with the “survival ROC” package in R. 
Moreover, the prognostic relevance of the signature 
was investigated by categorizing ccRCC patients 
according to their clinical features. 

Integrating the RiskScore with clinical 
parameters, we formulated a nomogram for 
forecasting the 1-year, 3-year, and 5-year overall 
survival (OS) rates of ccRCC patients, utilizing the 

“rms”, “regplot”, and “survival” packages in R. To 
determine the accuracy and robustness of the 
nomogram, we conducted calibration curves, 
time-dependent ROC curves, and decision curve 
analysis (DCA). 

Forecasting the Treatment Response to ICI 
Therapy 

To forecast the response to immune checkpoint 
inhibitor (ICI) therapy in ccRCC patients, we utilized 
the tumor immune dysfunction and exclusion (TIDE) 
analysis. TIDE assesses two principal immune escape 
mechanisms: impaired T cell functionality and the 
inhibition of T cell infiltration with low cytotoxic T 
lymphocyte (CTL) counts (64). Low TIDE score 
patients are anticipated to have a favorable response 
to immunotherapy. Furthermore, we corroborated the 
response to immunotherapy of the TLS-related 
signature by analyzing the David Liu cohort, which 
involved 121 patients with metastatic melanoma who 
received anti-PD-1 blocking agent treatment 
(nivolumab or pembrolizumab) (65). We also 
validated the result with CheckMate 009 and 025 
(CheckMate cohort), and 136 advanced ccRCC 
patients treated with nivolumab (anti-PD-1) (66). 

Specimen Collection and H&E Staining 
In our study, we included a cohort of 60 patients 

diagnosed with ccRCC who were treated at the 
Department of Urology, Fudan University Shanghai 
Cancer Center (FUSCC, Shanghai, China). We also 
included clinical data for 105 ccRCC cases from the 
Department of Urology, FUSCC, between 2010 and 
2023, to examine the relationship between IRF4 
expression and prognosis. These patients underwent 
surgical procedures during which tissue samples 
were collected for further analysis. The study design 
and the collection and use of these tissue samples 
were carried out with strict adherence to the 
Declaration of Helsinki. The study was approved by 
the FUSCC Ethics Committee, and all patients 
provided informed permission. 

To assess the extent of lymphocytic infiltration, 
histopathological examinations were conducted. 
Hematoxylin and eosin (H&E) staining was 
conducted on slides of both ccRCC and adjacent 
normal tissues following reported protocols (67), and 
they were carefully reviewed by two experienced 
pathologists independently. 

TLS Maturation Analysis with Multiplex 
Immunofluorescence (mIF) Staining Assays 

 To further investigate the tumor 
microenvironment (68–70), we employed 
independent IHC staining on adjacent slides and 
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multiplex immunofluorescence staining assay, 
conducted in collaboration with Shanghai KR 
Pharmtech, Inc., Ltd. (Shanghai, China). Specifically, 
we used the 7-color multiplex immunofluorescence 
kit (KR Pharmtech, Inc., Ltd. (Shanghai, China) to 
analyze the maturation of TLSs. For the staining 
process, we selected a panel of specific antibodies, 
namely CD8 (Abcam, ab178089, 1:100), CD20 (Dako, 
L26, IR604), CD21 (Abcam, ab227662, 1:100), CD23 
(Abcam, ab315289,1:100), CK (Abcam, ab7753, 1:100), 
and PD-L1 (CST, E1L3N, 13 684S, 1:400) (71,72). 

The tissue slides obtained were first treated with 
Antibody Diluent Block buffer. Following this, the 
slides were incubated with the primary antibody for 
40-60 minutes. Then, the slides were treated with a 
polymer horseradish peroxidase (HRP)-conjugated 
secondary antibody for 10 minutes. Next, the 
Fluorophore Working Solution was applied to the 
slides for 10 minutes, visualizing the complexes. The 
nuclei within the tissue slides were stained with 
4’,6-diamidino-2-phenylindole (DAPI). Finally, whole 
slide scans were conducted at 20×  magnification 
using the KR-HT5 system (KR Pharmtech, Inc., Ltd. 
(Shanghai, China)). The acquired images were then 
analyzed using inForm 2.4.0 software.  

Images were classified into TLS maturation 
stages as follows: early TLS (E-TLS) depicted dense 
lymphocytic aggregates of mixed CD8+T and B cells 
(CD8 and CD20 positive) without follicular DCs 
(FDCs) and GC (CD21 and CD23 signals negative); 
primary follicle-like TLS (PFL-TLS) showed dense 
lymphocytic aggregates with FDCs and absence of a 
GC (CD21 positive but without CD23 signals); 
secondary follicle-like TLS (SFL-TLS) were identified 
by both FDCs and a GC (CD21 and CD23 
positive)(39). TLS-positive samples in the study were 
categorized as follows: SFL-TLS positive, containing 
at least one instance of SFL-TLS; PFL-TLS positive, 
with at least one PFL-TLS occurrence but no SFL-TLS; 
E-TLS positive, exhibiting neither PFL-TLS nor 
SFL-TLS (39,73). 

Immunohistochemistry and Scoring Assays  
After identifying at least one instance of TLSs in 

H&E-stained slides, adjacent slides were subjected to 
immunohistochemical (IHC) staining, performed as 
previously described (67), and IRF4 (ab315394, 
Abcam) was identified. 

In order to quantify the intensity of IRF4 
staining, an immunohistochemistry scoring system 
was employed, named IHCscore. The staining 
number score was determined based on the 
percentage of cells showing positive staining: a score 
of 0 was assigned for negative staining, 1 for 1-25% 
staining, 2 for 26-50% staining, 3 for 51-75% staining, 

and 4 for 76-100% staining. The staining color scored 0 
for negative, 1 for weak, 2 for medium, and 3 for 
strong staining. The final IHCscore was calculated by 
multiplying the staining number score by the color 
score (74). Based on the median IHCscore, the samples 
were further categorized into high and low groups. 

Cell Culture and siRNA Transfection 
The human ccRCC cell lines 786-O and 769-P 

were acquired from the Type Culture Collection Cell 
Bank, Chinese Academy of Sciences. These cells were 
nurtured in RPMI 1640 medium, supplemented with 
10% fetal bovine serum and 1% 
penicillin/streptomycin. Cells were maintained in a 
37°C incubator with 5% CO2. Cells were seeded in 
10-cm dishes at 50% confluency one day before 
transfection. Transfection commenced when cell 
density approached 70%. Hieff Trans® Liposomal 
Transfection Reagent (Yeasen, Shanghai, China) was 
used to prepare complexes with the negative control 
and IRF4 siRNA, according to the protocol from the 
manufacturer. After a 15-minute room temperature 
incubation, these complexes were introduced to the 
cells. We harvested the cells at 72 hours 
post-transfection for later analysis. 

Western Blotting Assay 
Cells were lysed using Cell lysis buffer for 

Western and IP (P0013, Beyotime) supplemented with 
protease inhibitors. Protein concentrations were 
determined using the BCA assay (P0009, Beyotime). 
Equal amounts of protein were separated by 10% 
SDS-PAGE and transferred onto PVDF membranes. 
Membranes were blocked with 5% non-fat milk in 
TBST for 1 hour at room temperature. Membranes 
were then incubated overnight at 4°C with primary 
antibodies diluted in blocking buffer. The following 
primary antibodies were used: IRF4 (11247-2-AP, 
Proteintech), CXCL13 (10927-1-AP, Proteintech), 
BCL6 (21187-1-AP, Proteintech), PD-L1 (28076-1-AP, 
Proteintech), and GAPDH (60004-1-Ig, Proteintech). 
After washing with TBST, membranes were incubated 
with horseradish peroxidase (HRP)-conjugated 
secondary antibodies for 1 hour at room temperature. 
The following secondary antibodies were used: Goat 
anti-Rabbit IgG (H+L) (SA00001-2, Proteintech) and 
Goat anti-Mouse IgG (H+L) (SA00001-1, Proteintech). 
Bands were visualized using an enhanced 
chemiluminescence (ECL) detection kit (36222ES, 
Yeason) and imaged using ChemiDoc Imaging 
System (Bio-Rad). 

Cellular Functional Experiments In Vitro 
The proliferation capability of cell lines was 

detected by colony formation assay and CCK-8 assay, 
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respectively. For colony formation assay, we seeded 
786-O or 769-P into 6-well plates with 1000 cells per 
well. After 14 days of culture in complete medium, the 
plates were gently washed twice with PBS, fixed with 
4% paraformaldehyde for 20 minutes at room 
temperature, and then stained with 0.1% Crystal 
Violet solution for 20 minutes at room temperature. 
Following staining, plates were carefully washed with 
water to remove excess stain and allowed to air dry 
before being photographed on a luminous board. The 
colonies were quantified if they contained more than 
50 cells. 

CCK-8 assay was conducted in 96-well plates, 
with each well containing 2000 cells in 100 µl of 
complete culture medium. Measurements were taken 
on day 1, 2, 3, 4, and 5 after incubation, respectively, 
by CCK-8 assay kit (Beyotime). After adding 10 µl 
CCK-8 reagent to each well, cell culture proceeded for 
an additional 2 hours shielded from light. 
Subsequently, absorbance was measured at the 
wavelength of 450 nm using Microplate 
Spectrophotometer (BioTek Instruments Inc.).  

Transwell assay was performed to assess cell 
invasion. Transwell chambers (Corning) coated with 
Matrigel (Corning) were loaded with 200 µl FBS-free 
culture medium containing 20,000 cells. Then, they 
were placed in 24-well plates, which contained 800 µl 
complete culture medium per well. After culturing for 
24 hours, non-invaded cells remaining on the upper 
surface of the Transwell membrane were carefully 
removed using a cotton swab. The chambers were 
then washed with PBS, and the invaded cells on the 
lower surface were fixed with 4% paraformaldehyde 
for 20 minutes at room temperature. After fixation, 
the membranes were stained with 0.1% Crystal Violet 
solution for 20 minutes. Excess stain was removed by 
washing with PBS, and the membranes were allowed 
to air dry before being carefully excised, mounted on 
slides, and photographed. 

Wound healing assay was used to evaluate cell 
migration. Cells were seeded into 6-well plates and 
allowed to grow until confluent, and a scratch was 
then made to create a wound. After 24 hours of 
incubation in FBS-free culture medium, the wound 
gap area was photographed and measured. 

Flow Cytometry Assay 
 Flow cytometry was performed to examine the 

apoptosis rate of cells. Cells were labeled with 
Annexin V-PE and 7-AAD (Multi Sciences) following 
the manufacturer’s instructions. Then, detection was 
carried out using the LSRFortessa flow cytometer (BD 
Biosciences), and results were analyzed with 
CytExpert software. 

Single-Cell RNA Sequencing and Data 
Preprocessing 

In this study, we collected scRNA-seq data from 
19 ccRCC samples sourced from GSE207493. The 
single-cell data from the 10x platform were 
preprocessed following the standard protocol 
outlined in the R package Seurat (75). Doublets were 
eliminated using DoubletFinder(76), and low-quality 
cells were filtered out based on specific criteria: cells 
with fewer than 200 or more than 6000 detected genes, 
or those with a mitochondrial gene ratio exceeding 
20%. Additionally, low-expression genes, defined as 
those expressed in fewer than 5 cells, were also 
excluded. Cell cycle status was assessed using the 
CellCycleScoring() function, and potential 
interference from cell cycle effects was mitigated 
through the regression algorithm implemented in 
ScaleData(). Following data normalization and 
standardization, Harmony was employed to correct 
for batch effects, and the top 2000 highly variable 
genes were selected. Dimensionality reduction was 
executed using Principal Component Analysis (PCA), 
with the first 15 principal components chosen for 
t-SNE visualization. Cell clustering was performed 
using the FindClusters() function, with a resolution 
parameter set to 0.5. Finally, cell subpopulations were 
manually annotated based on classical marker genes 
and references from previous literature (77).  

Pseudo-time Trajectory Analysis 
We extracted all B cells for further analysis and 

employed the R package monocle2(78) for 
pseudo-time trajectory inference to elucidate potential 
cell state transitions. Highly variable genes were 
selected using the dispersionTable() function to 
construct the feature space necessary for trajectory 
building. Subsequently, the DDRTree algorithm was 
utilized for dimensionality reduction, and the 
developmental differentiation paths of cell states were 
computed through the reduceDimension() function. 
Trajectory visualization was achieved using plot_ 
cell_trajectory(). Additionally, the dynamic 
expression changes of representative genes associated 
with B cell functional states were illustrated along the 
pseudo-time axis. 

Spatial Multi-omics Data Analysis 
Spatial multi-omics data analysis was conducted 

using spatial transcriptomic data obtained from the 
Gene Expression Omnibus (GEO, https://www.ncbi. 
nlm.nih.gov/geo). A total of seven samples diagnosed 
with clear cell renal cell carcinoma (ccRCC) from 
dataset GSE175540 were included in the analysis. The 
R package Seurat was utilized for the management 
and visualization of the spatial transcriptomic (ST) 



Int. J. Biol. Sci. 2025, Vol. 21 
 

 
https://www.ijbs.com 

3833 

data. To normalize the ST data, the SCTransform 
method was employed. The integration of ST data 
was achieved using the functions SelectIntegration 
Features, PrepSCTIntegration, FindIntegration 
Anchors, and IntegrateData. TLS scoring was 
performed based on TLS-related markers, and the 
expression of B cell-related markers was compared 
between TLS regions and non-TLS regions. 

To evaluate the spatial distribution relationship 
and co-occurrence patterns between IRF4 expression 
and TLS-related structures, we conducted hotspot 
region identification and spatial proximity analysis. 
Utilizing the smoothed expression matrix derived 
from spatial transcriptomic data, we employed the 
Hotspot module (79) to compute hotspot scores for 
IRF4, TLS marker genes, and high endothelial venules 
(HEVs) marker genes. We then overlaid IRF4 
expression levels with H&E staining images to 
delineate regions enriched in TLS. In the spatial 
co-occurrence analysis based on Squidpy module, we 
constructed a distance model based on conditional 
probability to calculate the likelihood of co-occurrence 
between IRF4 expression and HEV or TLS signals 
across various radius distances. The sample points 
were categorized into four groups: IRF4⁺/HEV⁺, 
IRF4⁺/HEV⁻, IRF4⁻/HEV⁺, and IRF4⁻/HEV⁻ (the 
same categorization applies to TLS analysis). 
Sampling was conducted within a distance range of 0 
to 6000 μm, and co-occurrence curves were plotted to 
assess enrichment or depletion trends relative to 
random distribution as a function of distance. This 
method effectively reveals the spatial dependency 
between IRF4-positive cells and the TLS or HEV 
microenvironment. 

Statistical Analysis 
We utilized R v4.2.3, Python v3.9, and GraphPad 

Prism v9.4.0 for statistical analysis and data 
visualization. We used the K-M estimator to plot 
survival curves, and significance was evaluated using 
the log-rank test. The Student’s t-test was employed to 
assess disparities between two groups, while 
One-Way ANOVA was used for comparisons among 
three or more groups. All hypothesis tests employed a 
two-tailed approach, with statistical significance set at 
P-values less than 0.05. 

Results 

The Landscape of Expression Levels of the 39 
TLS genes in ccRCC 

An overview of the study design and key 
findings is presented in Figure 1. We profiled 39 
TLS-related genes in ccRCC, clustering patients based 
on expression (TLSClusters) and derived DEGs 

(GeneClusters), revealing distinct survival and TME 
profiles. Seeking to translate these insights into a more 
practical tool, a robust 5-gene RiskScore was 
developed, which independently predicted overall 
survival across clinical subgroups, and correlated 
with specific immune landscapes. To delve deeper 
into the biological mechanisms underlying TLS in 
ccRCC, we then investigated IRF4, an important 
TLS-related gene. We found it promotes ccRCC 
progression in vitro and correlates clinically with poor 
prognosis and immature TLS. Further exploring how 
IRF4 contributes to this phenotype, single-cell and 
spatial analyses revealed high IRF4 expression 
predominantly in immature B cells, spatially 
segregated from mature TLS regions and HEVs. This 
suggests IRF4 recruits immature B cells but hinders 
TLS maturation, driving immune suppression and 
offering a potential therapeutic target. 

39-TLS related genes identified so far were 
analyzed in this study (23) (Table S2). First, we 
confirmed the existence of TLS in ccRCC (Figure 2A). 
Utilizing the TCGA-KIRC dataset, we evaluated the 
mRNA expression profiles of the 39 TLS genes. 
Among them, 35 TLS genes exhibited differential 
expression patterns in normal and tumor tissues 
(Figure 2B). The prognostic significance of the 39 TLS 
genes in ccRCC patients was evaluated through 
uniCox and Kaplan-Meier analysis (Table S3), 
demonstrating that 26 genes displayed notable 
disparities (Figure S1). Next, CNVs of the 39 TLS 
genes in ccRCC were assessed. CSF2 showed 
especially high frequencies of amplification, while 
CCR5, PDCD1, SGPP2, CCL20, ICOS, TIGIT, and 
CD200 exhibited primarily deletion (Figure S2A). 
Somatic mutations in the 39 TLS genes were found to 
be relatively rare in ccRCC. Among the 336 ccRCC 
specimens, only 11 had genetic mutations, with a 
frequency of 3.27% (Figure S2B). The aforementioned 
findings suggested that there were relatively rare 
occurrences of CNV alterations and somatic 
mutations in TLS genes in ccRCC. The CNVs of the 
TLS genes were further mapped across the 23 
chromosomes in Figure S2C. Furthermore, a 
regulatory network was constructed for the 39 TLS 
genes in ccRCC patients, including their interactions, 
regulatory relationships, and survival significance 
(Figure 2C and Table S4). 

Clinicopathological and biological 
characteristics of three subgroups defined by 
the 39 TLS genes in ccRCC 

The consensus clustering analysis was utilized to 
classify ccRCC patients into distinct clusters based on 
TLS genes, referred to as TLSClusters. The ideal 
cluster number was three, ascertained by the minimal 
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crossover in the consensus matrices (Figure S2D-N). 
Among the three clusters, TLSCluster B (317) 
comprised the largest population, followed by 

TLSCluster A (248) and TLSCluster C (198) (Figure 2D 
and Table S5). PCA additionally substantiated the 
unique dispersion among groups (Figure S3A).  

 

 
Figure 1. Schematic overview of the study design and main findings. 
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Figure 2. Construction of clusters and scoring based on 39 TLS genes in ccRCC. (A) H&E staining of tertiary lymphoid structures (TLSs) obtained from three ccRCC 
patients. (B) Differential expression patterns of the 39 TLS genes in tumor and normal tissues. (C) Regulatory network and prognostic significances of the 39 TLS genes. (D) 
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Consensus matrix heatmap defining the three TLSClusters (k = 3). (E) Kaplan-Meier (K-M) curves for the overall survival (OS) of three-TLSCluster patients. (F) Venn diagram 
illustrating the intersection of DEGs among the three TLSClusters, with 549 DEGs common to all three. (G) PCA results showing distinct transcriptome profiling of 
GeneClusters. (H) K-M survival analysis showing OS prognosis across GeneClusters. (I-J) Profiles of coefficient values for 155 prognostically associated genes and identification 
of the optimal lambda value using the least absolute shrinkage and selection operator (LASSO) method. (K) Identification of the five genes for constructing the ideal 
TLS-associated prognostic model via multivariate Cox analysis. (L) K-M OS analysis for patients stratified into different RiskGroups. *, p < 0.05; **, p < 0.01; ***, p < 0.001; ns, 
not significant. 

 
Furthermore, the survival assessment 

demonstrated that patients in TLSCluster A had the 
most favorable OS prognosis (Figure 2E). The 
ESTIMATE algorithm was used to estimate the 
immune and stromal fractions for each TLSCluster 
(Figure S3B and Table S6). The findings revealed 
moderate proportions of both immune and stromal 
cells in TLSCluster A. Furthermore, a heatmap 
visualized the expression levels of TLS genes and 
diverse clinical characteristics across the three clusters 
(Figure S3C). Besides, the GSVA analysis was 
conducted, which uncovered differentially 
distributed cancer-associated pathways in 
TLSClusters A-C, including B cell and T cell receptor 
signaling pathways (Figure S3D-F and Table S7). To 
evaluate the correlation between TLS genes and the 
TME features of ccRCC, we examined the infiltrating 
immune cell types across the three clusters by 
employing the CIBERSORT algorithm (Table S8). As 
shown in Figure S3G, significant differences in 
enrichment were observed among various immune 
cell populations. Furthermore, key ICPs, including 
CD200, CD40, TNFRSD4, NRP1, ADORA2A, and 
TNFRSF14, were found to be upregulated in 
TLSCluster A (Figures S3H). Moreover, we compared 
the clinical characteristics of these three groups, 
including age, gender, grade, and stage, but found no 
significant difference (Figure S3I-L). In summary, we 
classified three TLSClusters through the expression 
profiling of TLS genes, and we performed a thorough 
examination of the differences in survival outcomes, 
physiological roles, and TME features among patients 
assigned to these three separate TLSClusters. 

Gene Subgroups Construction Based on DEGs 
Using the “limma” package, we pinpointed 549 

TLSCluster-associated DEGs (Figure 2F and Table 
S9). To explore the complex interactions among these 
DEGs, a protein-protein interaction (PPI) network 
focusing on the top 50 DEGs was constructed (Figure 
S4A). KEGG analysis emphasized significantly 
enriched pathways related to cancer, including 
chemokine signaling pathway, Th1 and Th2 cell 
differentiation, and cytokine-cytokine receptor 
interaction (Figure S4B and Table S10), highlighting 
the involvement of pathways linked to the tumor 
immune response. Additionally, functional 
enrichment analyses further outlined the stimulation 
and growth of immune cells, along with the impact of 
immune molecules (Figure S4C and Table S10). Next, 

the uniCox analysis was employed to identify 155 
genes with significant prognostic relevance (p < 0.05) 
(Table S11). Based on these genes, we employed the 
consensus clustering algorithm to categorize patients 
into distinct genetic clusters, named GeneClusters 
(Figure S4D-N, and Table S5). The distinct 
transcriptome profiling of these GeneClusters was 
evident in the PCA results (Figure 2G). Following 
K-M survival analysis demonstrated that individuals 
in GeneCluster B had the most favorable OS 
prognosis, while those in GeneCluster C had the 
poorest OS (Figure 2H). Additionally, Figure S5A 
illustrated the variations in clinical features among 
the GeneClusters, highlighting significant differences 
in gene expression levels across different groups and 
suggesting a possible correspondence between 
GeneClusters and TLSClusters. Next, we evaluated 
the TME scores within these clusters. The results 
indicated the highest compositions of immune and 
stromal cells in GeneCluster A (Figure S5B and Table 
S6). Furthermore, the GSVA analysis uncovered 
varied activation statuses of biological pathways 
within these subgroups (Figure S5C-E and Table 
S12). Notably, GeneCluster C exhibited lower 
enrichment of activated immune function pathways, 
including T cell receptor signaling pathways, B cell 
receptor signaling pathways, apoptosis, NK 
cell-mediated cytotoxicity, and chemokine signaling 
pathways. Ultimately, we examined the immune 
characteristics of the TME, encompassing immune cell 
types and ICPs (Figure S5F-G and Table S8). 
Thereafter, we compared the clinical characteristics 
among GeneClusters, and we found significant 
differences in grade and stage, while there was no 
difference in age and gender (Figure S5H-K). Among 
them, the proportion of low grades(G1-2) and stages 
(Stage I-II) in GeneCluster B is relatively high, which 
is consistent with the better prognosis of GeneCluster 
B (Figure 2H). Interestingly, most immune cell types 
showed significant differences, and all ICPs exhibited 
variations among the GeneClusters. These findings 
suggested distinct immune activity within these three 
GeneClusters. 

Development of a TLS-Associated Predictive 
Signature 

Previous results underscored the crucial role of 
TLSs in influencing clinical outcomes, immune 
signatures, and TME characteristics. However, 
despite offering valuable insights into the patient 
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population, these analyses did not allow for accurate 
prediction of outcomes for individual patients. 

 Given the unique complexity and diversity of 
TLSs, we developed a TLS-associated signature to 
enhance the accuracy of prognostication. We devised 
a rating score named RiskScore, derived from the 155 
prognosis-associated DEGs. To construct an optimal 
predictive model, we utilized LASSO and 
multivariate Cox regression analyses (Figure 2I-K). 
Among the DEGs, five genes (CCL22, LOXL1, LIPA, 
ADAM8, and SAA1) were identified as having a 
significant prognostic impact (Table S13). Notably, 
CCL22 and LIPA suggested a favorable prognosis, 
whereas the remaining three genes showed 
associations with adverse outcomes. Then, patients 
were stratified into high and low RiskGroups 
according to their RiskScore. As shown in Figure S6A, 
there was a clear correlation between higher 
RiskScores and increased mortality. Moreover, K-M 
analysis confirmed that individuals characterized by a 
low RiskScore exhibited improved OS, aligning with 
the trends observed in TLSCluster A and GeneCluster 
B (Figure 2E, H, and L). The area under the curves 
(AUCs) of the ROC curves at 1-, 3-, and 5-years OS 
were 0.726, 0.694, and 0.704, respectively, showing 
high sensitivity and specificity (Figure S6B). To 
further substantiate the prognostic significance of the 
TLS-associated signature, we conducted a 
multivariate Cox regression analysis, incorporating 
variables such as age, gender, grade, stage, and 
RiskScore. The analysis revealed that the 95%CI for a 
higher RiskScore relative to a lower one ranged from 
1.121 to 1.257, with a P-value<0.0001 (Table S14). 
Figure S6C illustrated the allocation of patients in 
TLSClusters, GeneClusters, RiskGroups, and clinical 
outcomes. It is noteworthy that patients belonging to 
TLSCluster A and GeneCluster B exhibited lower 
RiskScores (Figure S6D-E and Table S5). 

Association between Clinical Features and the 
TLS-Associated Predictive Signature 

To rigorously assess the clinical utility of the 
RiskScore, we performed K-M survival analyses of 
various subgroups defined by different clinical 
features. Stratified survival analyses revealed that the 
disparities in forecasted outcomes between high and 
low RiskGroups were particularly evident in cases 
with advanced T stage, TNM stage, and tumor grade 
(Figure S6F-G, J-K, and N-O). Notably, patients with 
a high RiskScore experienced unfavorable clinical 
outcomes defined by T stage, TNM stage, and tumor 
grade. Our findings also indicated that patients in the 
low RiskGroup exhibited lower clinical grading 

(Figure S6H-I, L-M, and P-Q). Collectively, these 
results underscored the accuracy and dependability of 
the TLS-associated signature in forecasting clinical 
outcomes. 

Considering the predictive strength of the 
RiskScore, we integrated the RiskScore alongside 
essential clinical features to construct a nomogram 
(Figure S7A). The calibration plot assessed the 
performance of the nomogram and demonstrated a 
remarkable concordance regarding the prognostic 
nomogram-estimated OS and observed OS at 1-, 3- 
and, 5-years (Figure S7B). The AUCs of the ROC 
curves for 1-, 3-, and 5-year OS were high (0.847, 0.802, 
and 0.774, respectively), suggesting an excellent 
predictive ability (Figure S7C-E). Additionally, the 
decision curve analysis (DCA) validated the 
advantageous net benefit provided by the nomogram 
(Figure S7F-H). The nomogram exhibited robust 
predictive power for the prognosis of ccRCC, 
potentially contributing to personalized clinical 
management. 

Investigation into Immune Characteristics of 
the TLS-Associated Predictive Signature 

We conducted a comprehensive exploration of 
the immune landscape among ccRCC patients within 
distinct RiskGroups. We initially assessed the 
prevalence of immune cells in ccRCC patients (Figure 
3A). Remarkably, significant increases in infiltration 
within the high RiskGroup were observed, including 
activated T cells CD4 memory, T cells follicular 
helper, T cells regulatory (Tregs), macrophages M0, 
and neutrophils. Conversely, decreased infiltration 
was noted for resting T cells CD4 memory, T cells 
gamma delta, macrophages M1, macrophages M2, 
resting dendritic cells, resting mast cells, and 
activated mast cells. Figure 3B showed an association 
between the enrichment of immune cell types and 
RiskScore. Intriguingly, a significant positive 
correlation was detected between RiskScore and the 
presence of Tregs, and an inverse relationship was 
noted with the infiltration of resting mast cells. 
Considering the significance of ICI in the medical 
management of ccRCC patients, we examined 
variations in the expression profiles of ICPs across the 
RiskGroups (Figure 3C). In particular, TNFRSF18, 
CD44, CD276, and TMIGD2 demonstrated positive 
correlations with RiskScore, while other ICPs 
exhibited opposite correlations (Figure 3D). Notably, 
the heatmap was created to depict the patterns of 
tumor purity, TME scores, and the prevalence of 
immune-related cell varieties among RiskGroups 
(Figure 3E and Table S15).  
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Figure 3. Investigation into Immune Characteristics of the TLS-Associated Predictive Signature. (A) Immune cell abundance across different RiskGroups. (B) 
Association between the RiskScore and immune cell abundance. (C) Immune checkpoint (ICP) gene expression levels within RiskGroups. (D) Correlation of the RiskScore with 
ICP gene expressions. (E) The heatmap illustrating the distributions of tumor microenvironment (TME) score, TLSClusters, GeneClusters, RiskGroups, and the immune cell 
abundance within RiskGroups. (F) K-M analyses for OS of patients with varied RiskScore in the David Liu cohort. (G) The proportion of binary response (CR/PR vs SD/PD) within 
distinct RiskGroups in the David Liu cohort. (H) K-M analyses for OS of patients with varied RiskScore in the CheckMate cohort. (I) Tumor immune dysfunction and exclusion 
(TIDE) scores within RiskGroups. (J-K) Immunophenotype Score (IPS) within different RiskGroups stratified by both CTLA4 and PD-1. *, p < 0.05; **, p < 0.01; ***, p < 0.001; 
ns, not significant. 

 
Additionally, we investigated the 

immunotherapy outcomes among ccRCC patients. 
External independent confirmation using the David 
Liu cohort substantiated these trends, revealing a 
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more favorable prognosis among patients in the low 
RiskGroup (Figure 3F), and the low RiskGroup 
exhibited a heightened proportion of CR/PR (Figure 
3G). Similarly, we validated the above results in 
CheckMate Cohort, and also found that the low-risk 
group had a better prognosis (Figure 3H). 

We initially determined the TIDE score for each 
individual, and then we observed that patients in the 
low RiskGroup presented with reduced TIDE scores, 
suggesting that patients with a low RiskScore might 
exhibit increased responsiveness to immunotherapy 
(Figure 3I). Furthermore, we particularly explored the 
importance of risk scores in assessing the impact of 
immunotherapy by TCIA. The findings demonstrated 
that the likelihood of response to CTLA4-/PD-L1+ and 
CTLA4+/PD-L1+ therapies was elevated in the low 
RiskGroup (Figure 3J-K). This suggested that patients 
in the low RiskGroup might exhibit a higher 
likelihood of responding to CTLA4-/PD-L1+ or 
CTLA4+/PD-L1+ immunotherapy, potentially leading 
to more satisfactory clinical outcomes. In summary, 
our research indicated that RiskScore was associated 
with various immune cells and molecules, serving as 
a potent predictor for anticipating ccRCC patients’ 
response to immunotherapy. 

Insights into TLS Heterogeneity in ccRCC 
 In ccRCC, TLSs exhibited high heterogeneity 

(39), hence we investigated their characteristics with 
mIF. We preliminarily recognized the existence of 
E-TLS, PFL-TLS, and SFL-TLS in ccRCC by multiple 
independent IHC staining (Figure 4A). Different 
kinds of TLSs were identified similar to the stages of 
secondary lymphoid organ follicles (80). E-TLS (the 
first phase of TLS maturation) was defined as 
lymphocytic clusters without FDCs, PFL-TLS (the 
transitional phase of TLS maturation) as FDC-existing 
TLSs without GC cells, and SFL-TLS (the final phase 
of TLS maturation) as GC-existing clusters. Our 
research process was shown in Figure 4B: we used 
H&E results to initially choose regions containing 
TLSs, then employed IHC to ascertain their 
developmental stages, and finally conducted mIF for 
further observation. Figure 4C-E displayed the 
number and distribution of representative cells such 
as CD8+ T cells, CD20+ follicular B cells, CD21+ FDCs, 
and CD23+ GC cells in TLSs at different stages, as well 
as supplementing the distribution characteristics of 
markers such as PD-L1 and CK, at the cellular level. 
The above results comprehensively demonstrated the 
existence and characteristics of TLSs at different 
stages in ccRCC. 

The Oncogenic Role of IRF4 in ccRCC 
 IRF4 is one of the TLS-related genes (23), and it 

is widely regarded as a cancer-promoting gene in 
numerous tumors, including lung cancer, 
cholangiocarcinoma, and Hodgkin lymphoma 
(52,81,82). Nonetheless, the role of IRF4 in ccRCC is 
still unclear. As indicated by previous findings, IRF4 
showed elevated expression in ccRCC (Figure 2B), 
and individuals exhibiting higher IRF4 expression 
faced a worse prognosis (Figure S1U). Collectively, 
we hypothesized that IRF4 might contribute to tumor 
progression in ccRCC. 

We used IHC to stain the IRF4 protein of tissue 
and tumor slides. Typical differences in staining 
intensity were observed (Figure 5A). We calculated 
the corresponding IHCscore, based on the IHC 
staining slides, for samples containing E-TLS (n=20), 
PFL-TLS (n=20), and SFL-TLS (n=20) (Figure 5B). We 
observed a notable disparity in IHC score comparing 
E-TLS to PFL-TLS (p=0.0034), as well as a difference 
between E-TLS and SFL-TLS (p=0.0002), where E-TLS 
had the highest average IHCscore, while the 
difference between PFL-TLS and SFL-TLS showed no 
significance (p=0.3732). Next, we divided the sample 
into two groups, high (n=34) and low (n=26), based on 
the median IHCscore. We assessed the dimensions of 
the TLS area and the proportion of CD8+T cells in the 
specimens independently, and it was found that the 
elevated IHC score cohort exhibited a smaller TLS 
area (p=0.0039) and a diminished proportion of 
CD8+T (p=0.0003) (Figure 5C-D).  

Furthermore, we verified whether IRF4 has a 
predictive effect on clinical prognosis. We included 
105 ccRCC cases from FUSCC and separated them 
into groups of high and low levels of IRF4 RNA 
expression (Figure 5E). The results indicated that the 
IRF4 high expression group experienced worse OS 
(p=0.0001) and PFS (p=0.015) outcomes compared to 
the group with reduced IRF4 expression. 

Thereafter, we investigated the biological 
function of IRF4 at a molecular level in ccRCC in vitro. 
We used human ccRCC cell lines 786-O and 769-P to 
construct IRF4-knockdown ccRCC cells with IRF4 
siRNA. Then we detected the knockdown efficiency of 
IRF4 with Western Blotting, as well as the subsequent 
change of several TLS-related proteins such as 
CXCL13, BCL6, and PD-L1 (Figure 5F). The 
knockdown effect was excellent, and both CXCL13 
and BCL6 showed a decreasing trend after the IRF4 
knockdown, while PD-L1 increased. 

Finally, we explored the functional effects of 
IRF4 on ccRCC cells. The colony formation assay 
showed that knockdown of IRF4 reduced the 
proliferation of ccRCC (Figure 6A-B), and the CCK-8 
assay reflected the similar results (Figure 6C). 
Deficiency of IRF4 also impaired the invasion ability 
of ccRCC (Figure 6D-E). Besides, the si-IRF4 groups 
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showed worse migration extent in the wound healing 
assay (Figure 6F-G). Moreover, the apoptosis rate 
increased in IRF4-knockdown cells (Figure 6H-I). In 

summary, IRF4 may function as a cancer-promoting 
gene in ccRCC.  

 

 
Figure 4. Insights into TLS Heterogeneity in ccRCC. (A) Continuous independent IHC results showing E-TLS, PFL-TLS, and SFL-TLS with markers CD8, CD20, CD21, 
and CD23. (B) Schematic diagram of H&E staining, continuous independent IHC results, and mIF in continuous slides. (C-E) mIF showing E-TLS, PFL-TLS, and SFL-TLS with 
markers DAPI, CD8, CD20, CD21, CD23, PD-L1, and CK. 
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Figure 5. The Oncogenic Role of IRF4 in ccRCC. (A) IHC showing IRF4 distribution in normal tissues and tumors. (B) IHCscore in different TLS types of E-TLS, PFL-TLS, 
and SFL-TLS. (C-D) TLS area and percent of CD8+T cells in high or low IHCscore groups. (E) OS and PFS between high and low IRF4 expression group. (F) Western Blotting 
results of IRF4, CXCL13, BCL6, PD-L1, and GAPDH in 786-O and 769-P. *, p < 0.05; **, p < 0.01; ***, p < 0.001; ns, not significant. 
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Figure 6. Knockdown of IRF4 inhibiting ccRCC cell proliferation, invasion, and migration. (A-B) The colony formation assay of 786-O and 769-P cells treated with 
si-Ctrl or si-IRF4. (C) The CCK-8 assay of 786-O and 769-P cells treated with si-Ctrl or si-IRF4. (D-E) The transwell assay of 786-O and 769-P cells treated with si-Ctrl or si-IRF4. 
(F-G) The wound healing assay of 786-O and 769-P cells treated with si-Ctrl or si-IRF4. (H-I) The apoptosis flow cytometry assay of 786-O and 769-P cells treated with si-Ctrl 
or si-IRF4. *, p < 0.05; **, p < 0.01; ***, p < 0.001; ns, not significant. 
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IRF4 Marking B Cell Initiation but Restricting 
Maturation within the TME 

The preceding findings strongly implicated IRF4 
as a pro-tumorigenic driver in ccRCC. Given the 
observed association between high IRF4 expression 
and immature TLS phenotypes, we sought to explore 
the mechanism of this relationship. As B cells are 
central architects of TLSs, orchestrating their 
formation and maturation into germinal center-like 
structures, we hypothesized that IRF4 might regulate 
TLS development by modulating B cell differentiation 
or functional states within the tumor 
microenvironment. To explore this at the cellular 
level, we performed scRNA-seq on ccRCC tumor 
specimens. 

Unsupervised clustering and t-distributed 
stochastic neighbor embedding (t-SNE) analyses, 
based on canonical immune marker genes, identified 
11 immune cell populations alongside tumor cells 
(Figure 7A-B). Focusing specifically on the B cell 
compartment (CD19⁺, CD79A⁺), we performed 
re-clustering, which revealed five distinct B cell 
subpopulations (Clusters 0-4) (Figure 7C-D). Marker 
gene analysis allowed annotation of these clusters into 
four major functional subsets: Cluster 0: HLA-DQA2⁺, 
LTB⁺, suggestive of Memory B cells; Cluster 1: 
NR4A2⁺, JUNB⁺, representing Activated B cells; 
Cluster 2: CD83⁺, KDM6B⁺, another Memory 
B-enriched subset; Cluster 3: MZB1⁺, XBP1⁺, 
characteristic of Plasma cells; Cluster 4: IGHD⁺, 
FCER2⁺, indicative of Naive B cells. 

To elucidate the developmental relationships 
among these subpopulations, we performed 
pseudotime trajectory analysis. The inferred trajectory 
suggested a differentiation continuum beginning with 
Naive B cells, branching toward Activated and 
Memory B cells, and culminating in Plasma cell fates 
(Figure 7E). The inferred trajectory suggested a 
potential differentiation path originating from Naive 
B cells, branching towards Activated or Memory B cell 
states and culminating in Plasma cells. 

We then examined the expression dynamics of 
key genes implicated in B cell activation and TLS 
formation along the inferred pseudotime trajectory. 
Density plots confirmed that Naive B cells were 
enriched at the beginning of the pseudotime 
trajectory, while Plasma cells were predominantly 
found at the later stages, with Activated and Memory 
B cells occupying intermediate positions (Figure 7F). 
Notably, IRF4 expression peaked early in pseudotime, 
aligning with the Naive B cell state, and declined 
progressively as cells transitioned toward more 
differentiated states (Activated, Memory, Plasma) 

(Figure 7F-G). In contrast, key genes essential for TLS 
maturation and germinal center activity, such as 
CD83, BCL6, and AICDA, displayed peak expression 
in the mid-to-late pseudotime trajectory, especially 
within Activated and Memory B cell populations. 

Collectively, these findings suggest a temporally 
restricted role for IRF4: it is highly expressed during 
the initial recruitment or activation of immature B 
cells, potentially promoting TLS initiation, but its 
downregulation appears essential for subsequent B 
cell maturation and the establishment of functional 
TLSs. Persistent IRF4 expression may thus contribute 
to TLS immaturity, limiting effective anti-tumor 
immune responses in the ccRCC microenvironment. 

IRF4 Segregating from Mature TLS regions 
and High Endothelial Venules 

The single-cell analyses strongly suggested that 
IRF4 primarily functions during the early phases of B 
cell recruitment and TLS initiation, rather than 
supporting their maturation. This raised a critical 
question: are IRF4-expressing cells spatially localized 
within immature regions of TLSs, distinct from the 
functional zones associated with maturation? To 
address this, we performed spatial transcriptomics 
analysis (83). Initially, we visualized H&E staining 
tissue sections alongside spatial heatmaps 
representing TLS scores (Figure 8A). Regions with 
high TLS scores were computationally identified and 
demarcated. We then compared the average 
expression levels of IRF4 and mature TLS-associated 
genes between the defined TLS regions and adjacent 
non-TLS regions (“Other”) across all analyzed 
samples. Dot plot visualizations demonstrated that 
IRF4, along with most canonical mature TLS markers, 
exhibited significantly higher average expression 
within TLS regions compared to non-TLS areas 
(Figure 8B). Statistical validation confirmed the 
significant upregulation of IRF4 expression within 
TLS regions (Figure 8C). 

To investigate the fine-scale spatial organization 
within TLSs, we conducted spatial hotspot analysis on 
representative tissue sections (Figure 8D). While IRF4 
expression was markedly elevated within TLS 
regions, the spatial distribution of IRF4 hotspots 
displayed a distinct pattern compared to hotspots 
derived from high endothelial venule (HEV) markers 
and TLS maturation gene sets. Specifically, the spatial 
hotspots for HEV and maturation markers showed 
considerable overlap, reflecting their co-localization 
within functional TLS compartments. In contrast, 
IRF4 expression hotspots were spatially segregated, 
residing apart from these mature functional zones. 
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Figure 7. IRF4 Marking B Cell Initiation but Restricting Maturation within the TME. (A) t-Distributed Stochastic Neighbor Embedding (t-SNE) projection of 
single-cell transcriptomes from the TME. (B) Dot plot illustrating the expression patterns of selected canonical marker genes across the identified tumor and immune cell types. 
(C) Visualization of B cell subpopulations identified through subclustering of the total B cell. (D) Heatmap showing the top 5 differentially expressed genes across the five B cell 
clusters. (E) Pseudotime trajectory analysis of B cells. (F) Dynamics of B cell states and gene expression along the pseudotime trajectory. (G) Smoothed expression profiles of key 
B cell regulatory genes (BCL6, AICDA, CXCR5, CD83, CD27, IRF4) along the pseudotime axis. 
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Figure 8. IRF4 Segregating from Mature TLS regions and High Endothelial Venules. (A) Identification of TLS regions by TLS score across multiple spatial 
transcriptomics samples. (B) Dot plot summarizing gene expression patterns in computationally defined TLS versus non-TLS (Other) regions. (C) Violin plots comparing the 
expression level distribution of selected genes between TLS and non-TLS (Other) regions. (D) Detailed spatial analysis within a representative TLS region, including spatial 
heatmap of IRF4 expression levels and Hotspot analysis result for IRF4 score, high endothelial venules (HEV) markers score, and TLS markers score. (E) Spatial co-occurrence 
analysis assessing the spatial relationship between IRF4 expression and HEV or TLS markers score. *, p<0.05; **, p<0.01; ***, p<0.001; ns, not significant. 

 
Quantitative spatial co-occurrence analysis 

further revealed that, despite its overall enrichment 
within TLS areas, IRF4 lacked strong spatial 
co-localization with markers of mature TLS zones or 
HEVs across varying distance scales (Figure 8E). This 
pattern sharply contrasted with the robust 
co-localization observed among maturation markers 
themselves, reinforcing the notion that IRF4 is 
compartmentalized away from functional maturation 
hubs within the TLS. 

These spatial transcriptomics findings aligned 
closely with our histopathological observations from 
the FUSCC cohort. IHC analysis confirmed that high 

IRF4 protein expression was significantly associated 
with early, immature TLSs (E-TLS). Moreover, tumors 
characterized by high IRF4 expression and E-TLS 
dominance exhibited smaller overall TLS areas and 
markedly reduced CD8⁺ T cell infiltration (Figure 
5B-D), underscoring the functional relevance of 
IRF4’s spatial and molecular profile in shaping 
immune cell organization and infiltration. 

Taken together, our integrative analysis clarifies 
the multifaceted role of IRF4 in ccRCC TLS biology. 
High IRF4 expression, as identified by scRNA-seq, 
marks immature B cell states and suggests a role in 
TLS initiation. However, its sustained expression 
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inversely correlates with B cell maturation markers, 
indicating an inhibitory effect on functional 
progression. Spatially, IRF4 is enriched within TLSs 
but remains segregated from mature zones and HEVs, 
disrupting the spatial architecture necessary for 
effective TLS maturation. Collectively, these findings 
suggest that IRF4 fosters TLS immaturity by halting B 
cell development and impairing spatial organization, 
thereby contributing to an immunosuppressive tumor 
microenvironment and weakening anti-tumor 
immunity. 

Discussion 
Previous studies have explored the role of TLSs 

across various cancer types, shedding light on their 
relevance to prognosis and treatment responses (84–
86). However, research specifically addressing the 
relationship between TLSs and renal cell carcinoma, 
particularly ccRCC, remains limited. Our study aimed 
to address this gap by investigating the complex 
interplay between TLS-related genes and the 
pathophysiology of ccRCC. Through an extensive 
integrative analysis, we examined genetic alterations, 
their associations with patient survival, and their 
influence on the TME, offering an in-depth 
understanding of the immunological landscape in 
ccRCC. 

Building on this framework, our comprehensive 
profiling of TLS-related genes in ccRCC provided key 
insights into their expression patterns, genetic 
variations, and clinical significance, laying the 
groundwork for improved prognostication and 
potential therapeutic interventions. Specifically, we 
analyzed the expression profiles, copy number 
variation (CNV) frequencies, somatic mutation rates, 
and interconnections of 39 TLS-related genes. Using 
consensus clustering, we stratified patients into three 
TLSClusters (A–C), each showing distinct survival 
outcomes, TME characteristics, enriched KEGG 
pathways, immune cell infiltration profiles, and 
immune checkpoint (ICP) expression levels. From 
these clusters, we identified 549 differentially 
expressed genes (DEGs), of which 155 were 
determined to have prognostic value through 
univariate Cox regression analysis. These genes 
further enabled the classification of patients into three 
GeneClusters (A-C), which also demonstrated 
significant differences in both clinical and 
immunological features. Collectively, these findings 
underscore the critical role of TLSs in shaping the 
immune architecture of ccRCC and influencing 
patient outcomes. 

To enhance clinical applicability, we developed a 
prognostic signature, termed the RiskScore, derived 

from the 155 prognostic genes using LASSO and 
multivariate Cox regression analyses. This five-gene 
signature (CCL22, LIPA, LOXL1, ADAM8, and SAA1) 
showed strong correlations with patient survival.  
Notably, CCL22, a chemokine enriched in TLSs (87), 
has been implicated in promoting regulatory T cell 
(Treg) recruitment and suppressive activity in 
hepatocellular carcinoma (88). LOXL1 contributes to 
extracellular matrix remodeling and TME disruption 
(89), while ADAM8 facilitates interactions between 
tumor cells and macrophages (90), playing a 
prominent role in several malignancies (91). SAA1 
promotes leukocyte recruitment, either directly or via 
chemotactic cascades (92), and has been linked to 
ccRCC progression by modulating mast cells and 
PD-L1 expression (93).  To further support clinical 
utility, we integrated the RiskScore with key clinical 
variables into a nomogram, which demonstrated 
strong predictive accuracy and calibration in survival 
prediction.  

Our findings align with, and extend, the growing 
body of literature emphasizing the importance of 
TLSs in modulating tumor progression and shaping 
immunotherapeutic responses. For example, Ling et 
al. employed a deep-learning TLS classifier on 
H&E-stained slides, demonstrating that mature TLSs 
serve as independent prognostic markers in 
esophageal squamous cell carcinoma (94). Ruffin et al. 
showed that the spatial organization of immune cells 
indicative of TLSs with germinal centers correlated 
with better prognosis in HPV-positive head and neck 
squamous cell carcinoma (85). Additionally, Kinker et 
al. find that the gene signature indicative of mature 
TLSs is more prevalent in pre-treatment biopsy 
samples from pancreatic ductal adenocarcinoma 
patients with extended survival following various 
chemoimmunotherapy treatments (95). Within renal 
cell carcinoma, TLSs have drawn growing attention. 
Mylan et al. reported that the presence of TLSs was 
associated with enhanced immunotherapy responses, 
potentially by sustaining B cell maturation (83), while 
Dai et al. identified intratumoral CXCL13+CD8+ T 
cells, a TLS component, as markers of poor prognosis 
in ccRCC(96). Moreover, Xu et al. further 
demonstrated that ccRCC patients undergoing 
anti-PD-1/PD-L1 therapy exhibited improved 
survival and response rates when intratumoral TLSs 
and SFL-TLSs were present (73). Our TLS-based 
prognostic signature thus builds on these findings, 
offering a refined tool to distinguish between 
favorable and unfavorable clinical trajectories. 

ccRCC patients with SFL-TLS have a better 
prognosis compared to those with no SFL-TLS, 
indicating the maturity of TLSs matters when 
assessing the patient’s condition (39). Therefore, we 
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investigated the characteristics of TLS maturation 
heterogeneity using mIF. While the overall TLS 
landscape and the derived signature provide valuable 
prognostic information, understanding the roles of 
specific regulatory genes within this context is crucial 
for deeper mechanistic insight. While the overall TLS 
signature provided prognostic insights, we focused 
on the mechanistic role of key regulatory genes, 
particularly IRF4, a central transcription factor in B 
cell biology. Consistent with prior reports in other 
cancers such as OSCC (51), IRF4 expression was 
higher in tumor tissues compared to normal tissues. 
We observed that IRF4 was predominantly enriched 
in E-TLS compared to PFL-TLS and SFL-TLS, with 
higher IRF4 levels correlating with smaller TLS areas, 
reduced CD8+ T cell infiltration, and worse overall 
and progression-free survival. IRF4 is known to be a 
critical regulator of lymphocyte development and 
function, and typically acts as a master regulator in B 
cells (97). Its precise role can be context-dependent, 
influencing differentiation, activation, and potentially 
exhaustion (45). Functionally, IRF4 knockdown in 
ccRCC cells resulted in diminished proliferation, 
invasion, and migration alongside increased 
apoptosis, suggesting that IRF4 exerts a pro- 
tumorigenic effect and impedes the development of a 
mature, anti-tumor immune microenvironment.  

Mechanistically, we found that IRF4 knockdown 
was associated with reduced expression of CXCL13 
and BCL6, alongside increased PD-L1 expression. 
CXCL13, a key chemokine for TLS formation, 
orchestrates the recruitment of B and T cells to the 
TME (98). CXCL13 is also reported to serve as a 
positive prognostic indicator in ovarian cancer (99). 
However, in ccRCC, CXCL13-CXCR5 interactions 
paradoxically promote tumor proliferation and 
migration (100), aligning with our observation that 
reducing IRF4 lowers pro-tumorigenic CXCL13. 
Elevating BCL6 levels is crucial for initiating the GC 
reaction, given that BCL6-deficient GC precursor B 
cells cannot migrate into the follicle (101). In diffuse 
large B cell lymphoma, BCL6 suppresses cell death 
genes, hence promoting tumor growth, while this 
progression can be eliminated by inhibiting 
BCL6(102). Interestingly, IRF4 can both stimulate and 
inhibit BCL6 transcription depending on context 
(103,104). Our results suggested that IRF4 promotes 
BCL6 and thereby may contribute to tumor 
progression in ccRCC. In advanced ccRCC, PD-L1 
expression is prevalent at both primary and metastatic 
locations (105). When PD-L1 engages PD1, it inhibits 
the PI3K-AKT and RAS-MEK-ERK pathways, 
suppressing T-cell expansion and tumor-killing 
effects (106). Our investigation indicated IRF4 may 
enhance this process in ccRCC, as higher PD-L1 levels 

were observed in the absence of IRF4. 
To elucidate how high IRF4 expression links to 

immature TLS phenotypes, we leveraged single-cell 
RNA sequencing to map B cell subpopulations within 
the ccRCC TME. Pseudotime trajectory analysis 
indicated a progression from naive to plasma-like B 
cells, with IRF4 expression peaking at early stages and 
declining along the maturation path. In contrast, 
markers of TLS maturation and germinal center 
activity were most prominent in later stages. This 
inverse relationship suggests that while IRF4 
promotes early B cell presence and TLS initiation, its 
sustained expression may hinder functional 
maturation, preventing the formation of germinal 
center-like structures essential for effective anti-tumor 
immunity. These findings are consistent with the 
known stage-specific functions of IRF4 in B cell 
differentiation (97,107), and participates in networks 
orchestrating the antibody response (108). Our data 
suggest that in ccRCC, sustained high IRF4 may lock 
B cells in an early or alternative state, preventing full 
maturation within TLSs. 

Complementing the single-cell perspective, our 
spatial transcriptomics analysis provided crucial 
context regarding IRF4’s location within the tumor 
architecture. We confirmed that IRF4 expression is 
significantly upregulated within computationally 
defined TLS regions compared to adjacent non-TLS 
areas. However, a finer-scale spatial analysis using 
hotspot identification and co-occurrence modeling 
revealed a distinct pattern. While IRF4 expression was 
elevated within the TLS, its spatial hotspots showed 
significant segregation from hotspots associated with 
markers of HEVs and TLS maturation gene sets. This 
indicates that the cells expressing high levels of IRF4, 
while part of the TLS aggregate, are often located in 
regions spatially distinct from the mature, functional 
compartments characterized by active immune cell 
recruitment and germinal center-like activity. This 
spatial segregation reinforces the hypothesis derived 
from scRNA-seq and IHC data: high IRF4 expression 
in ccRCC TLSs is associated with structures or cellular 
states that are distinct from, and potentially inhibitory 
to, the development of fully mature, SFL-TLS like 
structures. These observations resonate with prior 
studies highlighting IRF4’s role in B cell positioning 
and function within lymphoid tissues (109). 

Despite these important insights, our study has 
several limitations. As a retrospective analysis, it 
carries inherent risks of selection and information 
biases. Additionally, our reliance on publicly 
available datasets may limit generalizability across 
diverse patient populations. Importantly, while our 
findings highlight correlations between TLS-related 
gene expression, IRF4 levels, and clinical outcomes, 
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they remain largely associative. Future studies, 
including prospective cohorts and mechanistic 
experiments, are warranted to validate these 
associations and further elucidate the causal roles of 
TLSs and IRF4 in ccRCC progression. 

Conclusion 
In conclusion, this study established a 

TLS-related signature in ccRCC, providing insights 
into TME features and tumor progression. We 
establish a robust TLS-based gene signature 
predictive of patient outcomes and identify IRF4 as a 
key regulator that impairs TLS maturation by 
arresting B cell development and disrupting spatial 
organization. Together, these findings highlight both 
the TLS signature and IRF4 as promising prognostic 
markers and therapeutic targets, offering new 
avenues to refine immunotherapy strategies in 
ccRCC. 
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