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Abstract 

The tumor microenvironment is densely populated with tumor-associated macrophages (TAMs), which 
exhibit various phenotypes at different stages of tumor progression. TAMs are highly plastic and 
intricately linked to the antitumor activity and functionality of CD8+ T cells. Tumor cells, TAMs and CD8+ 
T cells constitute a feedback loop that monitors the tumor immune surveillance. Modulation of several 
chief signaling pathways within TAMs can steer them towards either an immunoinflammatory or 
immunosuppressive state. This can be achieved indirectly through cancer therapies or by directly 
targeting TAMs. New detailed insights into the immunostimulatory reprogramming of TAMs inspire the 
design of novel combinatory strategies that can be extrapolated to bolster cancer immunotherapy. 
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1. Introduction 
Immune cells are generally classified into innate 

and adaptive immune cells, with macrophages and T 
cells mapping to main representatives of each 
category, respectively. Macrophages serve as the 
body’s first line of defense against pathogens and 
cancers[1]. They directly eliminate senescent cells and 
tumor cells through phagocytosis or indirectly kill 
them via revitalizing CD8+ T cells. The phagocytosis 
of macrophages is reliant on “eat me” and “don’t eat 
me” signals[2]. Tumor cells frequently overexpress 
CD47, which, upon binding to SIRPα on the surface of 
macrophages, transmits a “don’t eat me” signal. This 
interaction between CD47 and SIRPα attenuates the 
phagocytic activity of macrophages, enabling tumor 
cells to obviate destruction[3]. As such, macrophages 
further partake in both innate and adaptive 
immunity[4]. These immune cells play drastically 
distinct roles at different stages of tumor progression 
by altering their phenotypes. In the early stage a high 

proportion of proinflammatory tumor-associated 
macrophages (M1 TAMs) and activated CD8+ T cells 
accumulate to remove the initially formed tumor cells. 
Conversely, in the late stage the TME is characterized 
by an increasing body of immunosuppressive TAMs 
(M2 TAMs) and exhausted CD8+ T cells, which 
promote tumor progression and metastasis. M1 TAMs 
potentiate T cell responses, whereas M2 TAMs 
attenuate T cell function and cancer immune 
surveillance within the TME (Figure 1a). Therefore, 
TAMs play dual roles in immune activation and 
suppression[5, 6]. It is important to note that 
macrophage phenotypes exist along as a dynamic 
continuum rather than as rigid binary classification. 
This spectrum reflects their functional plasticity in 
response to microenvironmental cues.  

Macrophages are highly plastic immune cells 
within the TME[7, 8]. Lipopolysaccharide (LPS), 
either alone or in combination with Th1 cytokines 
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such as interferon-γ (IFN-γ) and 
granulocyte-macrophage colony-stimulating factor 
(GM-CSF), facilitates the polarization of TAMs 
towards the M1 phenotype. This polarization is 
characterized by the production of proinflammatory 
cytokines [interlukin-6 (IL-6), IFN-γ, tumor necrosis 
factor-α (TNFα), and inducible nitric oxide synthase 
(iNOS)], augmented antigen presentation, and 
heightened phagocytic activity[9]. Conversely, Th2 
cytokines such as IL-4, IL-13, and macrophage 
colony-stimulating factor (M-CSF) reprogram TAMs 
towards the M2 phenotype, leading to the secretion of 
anti-inflammatory cytokines like IL-10 and 
transforming growth factor-β (TGF-β), and elevated 
expression of CD163, CD206, and Arg-1[9].  

Currently, it is envisaged that TAMs modulate 
the CD8+ T cell function through five principal 
underpinnings (Figure 1b): (1) cytokine secretion[10, 
11], (2) antigen presentation[12], (3) chemokine 
production to recruit CD8+ T cells[13], (4) immune 
checkpoint modulation [e.g., programmed death 
receptor 1 (PD-1), programmed death ligand 1 
(PD-L1), and B7-H3 (CD276)][12, 14, 15], and (5) 

metabolism modulation (e.g., arginine, glucose, and 
lactate)[14-16]. Ideally, TAMs and activated CD8+ T 
cells work synergistically to identify and eliminate 
primary and metastatic tumor cells, potentially 
maximizing the tumoricidal potency.  

Interactions between tumor cells and immune 
cells play a crucial role in controlling tumorigenesis. 
Reprogramming immune cells within the TME may 
enhance the efficacy of cancer immunotherapy. In this 
review, we propose a tumor cell-macrophage-CD8+ T 
cell loop by wiring a connection between TAMs and 
CD8+ T cells across multiple tumor landscapes. 
Several crucial signaling pathways within TAMs that 
regulate their immunostimulatory or 
immunosuppressive polarization are further 
discussed. Orchestration of these signaling pathways 
can yield a myriad of treatment scenarios to overcome 
TAM-mediated immunosuppressive TME. Finally, we 
focus on strategies to immunostimulate the 
accumulation and functionality of TAMs and CD8+ T 
cells within the TME, exploring potential therapeutic 
avenues for combining immune checkpoint blockade 
(ICB) therapy.  

 

 
Figure 1. A conceptual model of the tumor cell-macrophage-CD8+ T cell loop in the tumor microenvironment (TME). a. Alterations of macrophage 
phenotype and CD8+ T cell functionality in the TME during tumorigenesis. In the early stage of tumorigenesis, the TME is predominantly populated by M1 tumor 
associated macrophages (TAMs) and activated CD8+ T cells. Conversely, in the advanced stage, M2 TAMs and exhausted CD8+ T cells pervade the TME. b. Macrophages act 
as the bridge to orchestrates the interaction of tumor cells and CD8+ T cells. Tumor cells secrete an array of cytokines to educate the polarization state of TAMs. 
These TAMs, in turn, change the antitumor efficacy of CD8+ T cells via multiple mechanisms. 
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2. Tumor Cell-Macrophage-CD8+ T Cell 
Loop  

Tumors with diverse gene expression 
demonstrate significant correlations with the 
congregation of distinct phenotypes of TAMs and 
CD8+ T cells (Table 1). Elevated expression of 
MICAL2 in pancreatic cancer is associated with a 
heightened infiltration of M2 TAMs and a diminished 
presence of CD8+ T cells[17]. YBX1+ luminal breast 
cancer tissues demonstrate substantial infiltration of 
M2 TAMs and elevated expression of T cell 
exhaustion markers, such as indoleamine 
2,3-dioxygenase 1 and cytotoxic T-lymphocyte- 
associated protein 4 (CTLA4)[18]. In patients with 
intrahepatic cholangiocarcinoma, GM-CSFRα is 
positively correlated with CD8+ T cell infiltration, 
while inversely associated with the presence of M2 
TAMs and myeloid-derived suppressor cells 
(MDSCs)[19]. KCTD5 shows a positive correlation 
with the accumulation of CD8+ T cells and TAMs in 
patients with lung adenocarcinoma (LUAD)[20]. 
Breast cancers with overexpression of ARHGAP39 
exhibit low infiltration levels of CD8+ T cells and 
macrophages, but high infiltration of CD4+ T cells[21]. 
OPN deficiency in glioma cells reduces M2 TAM 
populations and increases CD8+ T cell 
cytotoxicity[22]. MTA1-overexpressing colon cancer 
weakens CD8+ T cell responses by inducing 
TAMs[23]. In hepatocellular carcinoma (HCC) tissues 
with high MISP expression, M2 TAMs are scarce, 
while CD8+ T cells are diffusely infiltrated[24]. 
GPC3-overexpressing ovarian tumor enhances M1 
TAM infiltration and triggers a specific CD8+ T cell 
response, thereby improving the long-term survival 
of mice[25].  

 

Table 1. The correlation of macrophages and CD8+ T cells in 
different cancer types. 

Cancer subtype Macrophage status T cell status Re
fs 

MICAL2 in pancreatic cancer Increased presence of 
M2 TAMs 

Decreased presence of 
CD8+ T cells 

17 

YBX1+ luminal breast cancer Increased presence of 
M2 TAMs 

Increased T cell 
exhaustion 

18 

GM-CSFRα+ Intrahepatic 
cholangiocarcinoma 

Decreased presence 
of M2 TAMs 

Increased presence of 
CD8+ T cells 

19 

KCTD5+ lung 
adenocarcinoma 

Increased presence of 
TAMs 

Increased presence of 
CD8+ T cells 

20 

ARHGAP39+ breast cancer Decreased presence 
of TAMs 

Decreased presence of 
CD8+ T cells 

21 

OPN- glioma Decreased presence 
of M2 TAMs 

Increased CD8+ T cells 
cytotoxicity 

22 

MTA1+ Colon Cancer Increased presence of 
TAMs 

Decreased CD8+ T cells 
cytotoxicity 

23 

MISP+ hepatocellular 
carcinoma 

Decreased presence 
of M2 TAMs 

Increased presence of 
CD8+ T cells 

24 

GPC3+ ovarian cancer Increased presence of 
M1 TAMs 

Increased CD8+ T cells 
cytotoxicity 

25 

Given the proinflammatory and anti-inflam-
matory characteristics, specific molecular biomarkers 
for TAMs have been delineated through advanced 
molecular biology techniques. These newly 
characterized TAMs exhibit a robust correlation with 
the presence of CD8+ T cells in different tumor types. 
TIM4+ macrophages are predominantly located 
within the T-cell zones of tertiary lymphoid structures 
associated with various malignancies, showing a 
positive correlation with CD8+ T cell infiltration[26]. 
CD163+ M2 TAMs accumulate within the stromal 
compartments at the tumor-stroma interface of clear 
cell renal cell carcinoma and are positively correlated 
with an increased proportion of TIM3+CD8+ T cells, 
indicating terminal exhaustion[27]. JMJD8+ M2 TAMs 
exhibit a positive correlation with the presence of 
immunosuppressive cells and the suppression of 
CD8+ T cell function across various cancer types[28]. 

Cumulatively, modulating the expression levels 
of specific genes in tumor cells can profoundly 
influence the TAM phenotype and CD8+ T cell 
antitumor immunity. Likewise, genetic alterations in 
TAMs closely changes CD8+ T cell presence and 
activation within the TME. Tumor cells, macrophages, 
and CD8+ T cells constitute a feedback loop that 
orchestrates tumor immune surveillance; wherein, 
TAMs are pivotal determinants. Consequently, the 
phenotypic modulation of TAMs is critical for either 
reversing or propelling tumor immune evasion. 

Recent studies have elucidated valuable insights 
into the temporal and spatial heterogeneity of TAMs 
and their interactions with CD8+ T cells, which are 
pivotal for comprehending the cancer-TAM-CD8+ T 
cell loop and its role in tumor immunity. In the early 
stages of tumor development, the TME is 
characterized by the presence of M1 TAMs, activated 
CD8+ T cells, and proinflammatory cytokines, which 
can aid in controlling tumor growth[29]. As tumors 
progress, the TME undergoes profound alterations, 
leading to an immunosuppressive state. This shift is 
marked by the increased presence of regulatory T cells 
(Tregs), MDSCs, M2 TAMs, and immunosuppressive 
cytokines. These changes inhibit the function of CD8+ 
T cells and promote tumor growth and metastasis[29, 
30].  

The spatial distribution of TAMs within the TME 
can significantly modulate their interactions with 
CD8+ T cells. For example, TAMs located near blood 
vessels may have different functional properties 
compared to those in hypoxic regions of the tumor. 
These regional disparities can influence the 
recruitment, activation, and suppression of T cells[31]. 
Advanced techniques, such as single-cell RNA 
sequencing, have revealed the diversity of TAM 
subtypes and their distinct roles in various tumor 
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regions. These studies have shown that TAMs can 
either potentiate or inhibit T cell function depending 
on their location and the specific signals they receive 
from the TME[32]. Reciprocally, immunotherapy- 
activated CD8+ T cells recruit TAMs to their vicinity 
via CCR5 signaling and educates them into M1 
phenotypes. Therefore, effective immunotherapy 
requires coordinated functional modulation of both 
CD8+ T cells and TAMs[33]. Activated CD8+ T cells 
also secret cytokines to promote the M1 TAM 
polarization. Understanding the temporal and spatial 
heterogeneity of TAMs and their interactions with 
CD8+ T cells is essential for the development of 
effective cancer therapies. 

3. M1 TAM Polarization Signaling 
Pathways 
3.1. NF-κB signaling activation 

The basic leucine zipper transcription factor 
ATF-like 2 (Batf2) triggers CD8+ T cell antitumor 
immunity by upregulating IL-12 p40 in TAMs. 
Mechanistically, BATF2 interacts with p50 and p65 in 
macrophages, upregulating their activity in the 
nucleus. This interaction promotes IL-12 p40 
expression in macrophages via nuclear factor kappa-B 
(NF-κB) binding site in the Il12b promoter[34]. 
ApoC3TG mice-derived macrophages, when 
co-cultured with CD8+ T cells, significantly enhance 
CD8+ T cell activation. ApoC3 binds to Toll-like 
receptor 2/4 (TLR2/TLR4), inducing the spleen 
tyrosine kinase (Syk) activation, which promotes 
inflammasome activation in macrophages through the 
NF-κB/Akt/MAPK and cPLA2/NOX2 pathways[35]. 
Fats−/− mice experience a shift of TAMs from an M2 
to an M1 phenotype. This polarization is mediated by 
the stimulation and prolonged activation of NF-κB 
through the disruption of NF-κB/IκBα negative 
feedback loops, thereby enhancing the adaptive 
immune response of CD8+ T cells[36]. Morus alba L. 
fruit extract enhances the secretion of inflammatory 
cytokines and promotes M1 polarization in 
macrophages through the TLR4 downstream 
MAPKinase and NF-κB signaling pathways. This, in 
turn, amplifies CD8+ T cell activity and IFN-γ 
production[37]. An H2 receptor antagonist Ranitidine 
may activate the phosphoinositide 3-kinase 
(PI3K)-Akt2 signal, which subsequently regulates the 
NF-κB and GSK3β/Dynamin1 pathways to promote 
TAM polarization to the M1 phenotype and enhance 
macrophage endocytosis (Figure 2a)[38]. These 
findings collectively demonstrate that upregulation of 
NF-κB signaling pathway favors M1 TAM 
polarization and augments TAM-specific CD8+ T cell 
antitumor immunity (Table 2).  

However, in certain instances, the inactivation of 
the NF-κB signaling pathway is conducive to M1 
TAM polarization and CD8+ T cell-mediated 
antitumor responses. In glioblastoma multiforme 
(GBM) mouse models, NF-κB p65 knockout 
significantly increases M1 TAMs and CD8+ T cells, 
while reducing the populations of M2 TAMs and 
MDSCs[39]. In vitro co-culture models demonstrate 
that abrogating myeloid cell-associated NF-κB 
signaling enhances T cell proliferation and activation, 
as well as educates M2 to M1 polarization[39].  

 

Table 2. Potential signaling pathways for reprogramming 
tumor-associated macrophages. 

M1 TAM polarization M2 TAM polarization 
NF-κB signaling activation35-38 NF-κB signaling inactivation51-53 
STAT1/4 signaling activation40-42 STAT3/6 signaling activation57, 59, 60, 68-71 
STING signaling activation43, 44 Mincle pathway activation73, 74 
Notch1/2 signaling activation47 Syk-PI3K signaling activation75-80 
PRR signaling activation48, 49   

 

3.2. STAT1/4 signaling activation 
The signal transducer and activator of 

transcription (STAT) family of transcription factors 
plays distinct roles in modulating TAMs and CD8+ T 
cells within the TME. Activation of the STAT1 and 
STAT4 pathways orchestrates TAMs towards M1 
phenotypes (Table 2). The loss of Ythdf2 in TAMs 
reprograms them towards an antitumor phenotype 
and enhances their antigen presentation crosstalk to 
CD8+ T cells by upregulating IFN-γ–STAT1 signaling, 
thereby increasing CD8+ T cell responses (Figure 
2b)[40]. C1q+ macrophages express a repertoire of 
immunomodulatory ligands via METTL14-YTHDF2 
axis-mediated N6-methyladenosine (m6A) 
methylation on Ebi3, thereby preserving the 
functionality of CD8+ T cells. Consequently, Mettl14 or 
Ythdf2 deficiency in C1q+ macrophages thwarts 
cytotoxic CD8+ T cell infiltration and facilitates the 
accumulation of dysfunctional CD8+ T cells[41].  

UBC9 in TAMs impedes their polarization 
towards the M1 phenotype by facilitating STAT4 
SUMOylation. The targeted ablation of UBC9 in 
TAMs promotes M1 polarization and augments 
TAM-CD8+ T cell interactions, thereby amplifying 
CD8+ T cell responses (Figure 2b)[42].  

3.3. STING signaling activation 
MACRO inhibits type I IFN secretion and 

antigen presentation in TAMs. Mechanistically, 
MACRO diminishes the accumulation of 
tumor-derived cGAMP and ATP in the TME, thereby 
impeding P2X7R-mediated activation of the 
stimulator of interferon genes (STING)–IFN–β 



Int. J. Biol. Sci. 2025, Vol. 21 
 

 
https://www.ijbs.com 

4102 

pathway. Utilizing anti-MACRO neutralizing 
antibodies can restore the phagocytic activity and 
antigen presentation capabilities of TAMs, leading to 
increased CD8+ T cell infiltration[43]. However, 
SAMHD1 deficiency in tumor cells triggers type I IFN 
production via the activation of the cytosolic 
IFI16-STING pathway, concurrently fostering the 
polarization of TAMs towards the M1 phenotype and 
augmenting CD8+ T cell accumulation (Figure 2c)[44]. 
Therefore, STING signaling activation in 
macrophages and cancer cells both primes type I IFN 
secretion and M1 TAM polarization (Table 2). RON 
expression in breast cancer tissues, which inhibits 
IRAK4-mediated type I IFN production, gives rise to 
sparse infiltration of macrophages and CD8+ T 
cells[45].  

3.4. Notch1/2 signaling activation 
Jagged1-expressing tumor cells activate the 

Notch signaling pathway, culminating in the secretion 
of pluralistic cytokines that facilitate TAM 

recruitment. These TAMs subsequently attenuate the 
proliferation and cytotoxicity of CD8+ T cells. 
Consequently, in triple-negative breast cancer models 
with elevated Jagged1 expression, TAM infiltration is 
pronounced while CD8+ T cell presence is markedly 
assuaged[46]. In non-small cell lung carcinoma 
models, the absence of Jagged2, rather than Jagged1, 
shields CD8+ T cell functionality. Jagged2-deficient 
lung cancers exhibit increased infiltration of M1 
TAMs and CD8+ T cells. Mechanistically, deletion of 
Jagged2 triggers Nr4a-mediated induction of the Notch 
ligands DLL1/4 in cancer cells. DLL1/4 activates 
Notch1/2 signaling in macrophages, inducing the 
expression of the transcription factor IRF4 to sustain 
their immunostimulatory phenotype (Figure 2d)[47]. 
These findings suggest that Jagged1 and Jagged2 
respectively modulate the Notch pathway in tumor 
cells and macrophages to maintain an 
immunosuppressive TME mediated by macrophages 
and CD8+ T cells (Table 2). 

 
 

 
Figure 2. Signaling pathways for the polarization of TAMs towards the M1 phenotype. a. Activation of the NF-κB signaling pathway. b. Activation of the 
STAT1/4 signaling pathways. The activation of the NF-κB and STAT1/4 signaling pathways in TAMs induces their polarization towards the M1 phenotype. c. Activation of 
the STING signaling pathway. MACRO deficiency in TAMs promotes M1 polarization by activating the P2X7R-mediated STING–IFN–β pathway. 
Concurrently, the genetic deletion of SAMHD1 in tumor cells enhances the activation of the FI16-STING pathway, which subsequently polarizes TAMs to the M1 phenotype. d. 
Activation of the Notch pathway. Jagged 2-/- lung tumor cells trigger Nr4a-mediated induction of the Notch ligands DLL1/4 in cancer cells. DLL1/4 activates 
Notch1/2 signaling in macrophages, leading to M1 TAM polarization. 
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3.5. Pattern recognition receptor signaling 
activation 

Pattern recognition receptors (PRRs), including 
TLRs, Nod-like receptors (NLRs), C-type lectin 
receptors (CLRs), and RIG-I-like receptors (RLRs), 
recognize specific pathogen-associated molecular 
patterns (PAMPs) and damage-associated molecular 
patterns (DAMPs) and play dual roles in macrophage 
polarization and immunomodulation[48]. PRRs 
orchestrate the immune response by regulating the 
production of cytokines and chemokines. M1 TAMs 
are induced by PRR signaling in response to microbial 
products and proinflammatory cytokines, leading to 
the production of inflammatory mediators like TNF-α 
and IL-6. Conversely, M2 TAMs are promoted by PRR 
signaling in response to anti-inflammatory signals, 
resulting in the production of anti-inflammatory 
cytokines like IL-10 and TGF-β[48, 49]. These 
regulatory mechanisms facilitate the recruitment and 
activation of other immune cells, such as T cells and 
dendritic cells, thereby shaping the overall immune 
response[49]. In the context of cancer, PRRs on TAMs 
can either promote or inhibit tumor progression. For 
example, PRR activation can lead to the production of 
cytokines that enhance antitumor immunity or, 
alternatively, create an immunosuppressive 
environment that supports tumor growth[50]. The 
role of PRRs in macrophages is crucial for developing 
targeted therapies that can modulate macrophage 
function in various diseases, including cancer. 

4. M2 TAM Polarization Signaling 
Pathways 

TAMs primarily appear as an M2 phenotype 
within the TME at late stages. This phenomenon is 
largely by virtue of the myriad of materials produced 
during tumor progression, which, upon embedding 
into macrophages, alter the activation states of several 
critical signaling pathways (Table 2). In turn, these 
M2 TAMs secrete extracellular vesicles and cytokines 
that foster tumor immune evasion.  

4.1. NF-κB signaling inactivation 

The complement component 5a-complement 
component 5a receptor (C5a-C5aR) axis modulates 
macrophage function and antitumor immunity. C5a 
facilitates M2 TAM infiltration and tumor cell 
metastasis. Conversely, C5aR deficiency reinstates 
TAM antitumor activity and augments 
TAM-mediated CD8+ T cell responses. 
Mechanistically, the C5a-C5aR axis suppresses 
macrophage C-X-C motif chemokine ligand 9 
(CXCL9) secretion by activating C/EBPβ and 
inhibiting the ERK/Akt/NF-κB signaling 

pathways[51]. In macrophages, annexin A1 (ANXA1) 
promotes TAM polarization towards the M2 
phenotype by downregulating the NF-κB and Notch1 
pathways, while upregulating the JAK-STAT, Akt, 
and ERK pathways. ANXA1 deficiency increases the 
M1/M2 ratio and augments CD8+ T cell activation 
(Figure 3)[52]. Phospholipase A2 Group VII (PLA2G7) 
promotes the polarization of TAMs towards the M2 
phenotype in HCC candidates by downregulating the 
NF-κB pathway, thereby suppressing CD8+ T cell 
responses[53]. 

The cyclooxygenase-2 (COX-2)-derived 
oncogenic promoter PGE2 augments the affinity of 
NF-κB to the PD-1 promoter in both macrophages and 
CD8+ T cells via the EP4-PI3K-Akt signaling cascade, 
thereby upregulating their PD-1 expression. 
Conversely, the EP4-PI3K-Akt signaling blockade 
enhances macrophage phagocytosis and CD8+ T cell 
proliferation and activation in CRC models[54]. 
However, in SIGLEC10+ macrophages, Akt/P38/Erk 
signaling activity is suppressed, which educates their 
polarization towards the M2 phenotype and mitigates 
the CD8+ T cell proliferation and activation (Figure 
3)[55]. Akt phosphorylates MAPK-activating death 
domain protein, which subsequently activates 
Rab27a, leading to enhanced secretion of 
PD-L1-enriched exosomes from TAMs[56].  

4.2. STAT3/6 signaling activation 
Activation of the STAT3 and STAT6 signaling 

pathways induces M2 phenotype polarization and 
fosters an immunosuppressive TME. The STAT3 
signaling pathway is crucial for maintaining the M2 
phenotype of TAMs across various tumor models. 
Tumor cell-derived RNase1 induces the polarization 
of TAMs from the M1 to the M2 phenotype by 
activating ALK/STAT3 signaling and attenuating 
STAT1 phosphorylation[57]. In macrophages, the 
m6A reader YTHDF2 educates an anti-inflammatory 
phenotype by upregulating IL-10–STAT3 
signaling[40]. Hypoxia inducible factor 1 α (HIF1α) 
transcriptionally upregulates Legumain in TAMs, 
which subsequently induces M2 polarization by 
activating the GSK-3β-STAT3 signaling pathway 
(Figure 3). Disrupting the HIF1α-Legumain axis can 
attenuate M2 TAM polarization and potentiate CD8+ 
T cell antitumor immunity[58]. YAP and STAT3 are 
overactivated and form a complex in breast cancers. 
Inhibition of the YAP/STAT3 complex induces M1 
TAM polarization, curtails Tregs populations, and 
amplifies CD8+ T cell activity[59]. Progranulin 
markedly upregulates PD-L1 expression on 
macrophages and drives their polarization towards 
the M2 phenotype via the JAK/STAT3 signaling 
pathway. This process inhibits CD8+ T cell 
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proliferation and activation through the PD-1/PD-L1 
interaction. Conversely, this effect can be abrogated 
by the STAT3 inhibitor Stattic[60]. 

Within the senescent TME, the 
senescence-associated secretory phenotype-associated 
proinflammatory cytokine IL-6 modulates CD73 
expression in TAMs via the JAK/STAT3 signaling 
cascade (Figure 3). This elevates adenosine levels and 
attenuates CD8+ T cell antitumor immunity[61]. The 
c-MAF and STAT3 signaling pathways are crucial for 
IL-6 to sustain the LYVE-1+ TAM phenotype. IL-6 
induces LYVE-1+ TAMs to express the 
immunosuppressive enzyme heme oxygenase-1 and 
form LYVE-1+ TAM nests via a CCR5-dependent 
signaling axis, thereby suppressing CD8+ T cell 
recruitment[62]. However, early IL-6 signal blockade 
weakens M1 TAM functionality through reducing 
SOCS3 levels and increasing SIRP levels, and thus 
decreasing the CD8+ T cell responses[63-65].  

STAT6 is another regulator of the M2 TAM 
transcriptional program within the STAT family. In 
the nucleus, phosphorylated STAT6 induces the 
transcription of M2 signature genes such as Arg1, 
Ccl17, and Mrc1, while concurrently inhibiting the 
activation of M1 signature genes like Nos2, Ccl5, and 
Nlrp3[66, 67]. Multiple cells within the TME produce 
IL-4, which polarizes TAMs towards the M2 
phenotype via activating the STAT6 pathway (Figure 
3)[68, 69]. However, Stat6−/− tumor-bearing 

mice-derived TAMs exhibit an M1 phenotype[70]. 
Plus, exoASO-STAT6 treatment increases the M1/M2 
ratio and CD8+ T cell activation in mice, further 
substantiating the role of STAT6 in the M2 
polarization[71]. 

4.3. Mincle pathway activation 
Tumor cells secrete various cytokines and 

chemokines that recruit and activate 
macrophages[72]. Once recruited to the TME, 
macrophages can express Mincle (Clec4e), a CLR that 
recognizes certain glycolipids (particularly trehalose 
dimycolate) and damaged cell components[73]. Upon 
activation, Mincle triggers downstream signaling 
pathways that modulate macrophage behavior[73]. 
Specifically, Mincle engages Syk to subsequently 
activates the NF-κB signaling pathway. This pathway 
is crucial for the transcription of genes associated with 
the M2 TAMs (Figure 3)[73]. The activation of the 
Mincle/Syk/NF-κB signaling axis promotes the 
expression of genes that are characteristic of M2 
TAMs[73, 74]. Conversely, silencing Mincle has been 
shown to enhance the proinflammatory and 
antitumor activities of M1 TAMs[73]. This suggests 
that Mincle signaling actively suppresses the 
functionality of M1 TAMs while contributes to the 
polarization of M2 TAMs. 

 

 
Figure 3. Tumor cell-macrophage interactions reprogram M2 TAM polarization. Tumor cells release a panel of chemokines, cytokines, PEG2, RNase1, and arginine 
to educate macrophages to M2 phenotypes. These molecules engulfed by macrophages induce their immunosuppressive polarization by activating STAT3/6, Syk-PI3K signaling 
pathways and suppressing NF-κB signaling activity. Moreover, tumor cell-derived arginine orchestrates macrophages towards M2 TAMs via activating arginine-polyamine- 
thymine DNA glycosylase (TDG) axis. In turn, M2 TAMs secrete extracellular vesicles (EVs) and chemokines (blue color) into tumor cells, which upregulate their PD-L1 
expression by activating the STAT3 signaling pathway, thereby facilitating tumor immune evasion. 
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4.4. Syk-PI3K signaling activation 
The activation of Syk-PI3K axis in macrophages 

drives their polarization towards the M2 phenotype, 
thereby establishing an immunosuppressive 
microenvironment in vivo. Pharmacological 
dual-targeting Syk and PI3K in macrophages can 
reprogram them towards the M1 phenotype. This 
intervention disrupts the α4β1-Syk-p110γ axis in 
macrophages, creating the destabilization of HIF1α 
and ultimately restoring the functionality of CD8+ T 
cells[75]. PI3Kγ signaling in macrophages leads to 
NF-κB inactivation and C/EBPβ activation via 
Akt/mTOR axis, thus initiating an 
immunosuppressive transcriptional program that 
undermines CD8+ T cell antitumor immunity (Figure 
3)[76]. Clever-1 deficiency in macrophages amplifies 
their immunostimulatory activity by enhancing 
mTOR signaling, thereby reactivating CD8+ T cell 
responses[77]. 

Genetic deletion of Syk in macrophages educates 
them towards the M1 phenotype, therefore 
augmenting CD8+ T cell infiltration and activation. 
Similarly, the FDA-approved Syk inhibitor R788 
induces TAM polarization towards the M1 phenotype 
and promotes CD8+ T cell activation in pancreatic 
ductal adenocarcinoma (PDAC) mice[78]. PI3Kγ is a 
marker of TAMs in PDAC and drives their 
polarization towards an immunosuppressive 
phenotype. Inhibition of PI3Kγ reprograms the 
transcriptional profile of TAMs, thereby activating 
CD8+ T cell-mediated immune surveillance[79]. In 
PDAC mice, B cell-macrophage crosstalk promotes 
TAM polarization towards the M2 phenotype via the 
activation of PI3Kγ/BTK axis (Figure 3). Thus, PI3Kγ 
inhibitor or BTK inhibitor treatment induces 
macrophage polarization towards the M1 phenotype 
and restores CD8+ T cell cytotoxicity[80]. Therefore, 
the suppression of the Syk/PI3K axis activity in 
macrophages reverses their immunosuppressive 
phenotype and rescues the tumor immune evasion.  

4.5. Enhanced crosstalk of chemokines and 
their receptors 

TAMs facilitate PD-1 expression on CD8+ T cells 
through IRF8-dependent antigen presentation, 
thereby precipitating CD8+ T cell exhaustion[81]. 
IL-1β in the TME enhances CXCL8 secretion by tumor 
cells and the chemotaxis of M2 TAMs. Tumor-derived 
CXCL8 fosters M2 TAM polarization by activating the 
STAT3 signaling pathway and concurrently hurdles 
PD-1+ CD8+ T cell recruitment[82]. TAM-derived 
CCL5 facilitates immune evasion in colorectal cancer 
(CRC) through the p65/STAT3-CSN5-PD-L1 
pathway[83]. Tumor cell-derived exosomes 

orchestrate the differentiation of monocytes into 
PD-1+ TAMs, which experience an M2-like phenotype 
with decreased phagocytic capacity and effectively 
suppress CD8+ T cell responses[84]. M2 TAM-derived 
extracellular vesicles enhance IQGAP1 nuclear 
translocation and activate STAT3 phosphorylation by 
downregulating MISP in HCC. This process 
attenuates CD8+ T cell responses and upregulates 
PD-L1 expression in tumor cells, thereby facilitating 
tumor immune evasion (Figure 3)[24]. Act1 
downregulation in macrophages increases CXCL9/10 
and PD-L1 expressions by activating the STAT3 
signaling pathway. Additionally, anti-Act1 
macrophages facilitate the benign-to-malignant 
transition in CRC cells via the CXCL9/10-CXC 
chemokine receptor 3 (CXCR3) axis and induce CD8+ 
T cell exhaustion through the PD-L1/PD-1 axis[85]. 

Tumor cell-derived SOX9 orchestrates the 
polarization of TAMs towards the M2 phenotype 
through the paracrine secretion of leukemia inhibitory 
factor (LIF), thereby attenuating CD8+ T cell function. 
LIF is abundantly present in malignant ascites. The 
ablation of SOX9 can curtail the levels of M2 
TAM-induced immunosuppressive cytokines, such as 
C-C motif chemokine ligand 2 (CCL2) and IL10, and 
reinvigorate CD8+ T cell responses[86]. Inhibiting the 
CCL2/C-C motif chemokine receptor 2 (CCR2) axis 
can reprogram TAM polarization towards the M2 
phenotype and revitalize CD8+ T cell responses, 
thereby mitigating the immunosuppressive state[87]. 
ETV4 upregulation in tumor cells augments the 
recruitment of TAMs and MDSCs via the 
CCL2/CCR2 axis, while concurrently inhibiting CD8+ 
T cell accumulation (Figure 3). Moreover, ETV4 
propels HCC metastasis through an FGF19–ETV4–
FGFR4 positive feedback loop[88]. In a triple-negative 
breast cancer model, CD8+ T cells induce PD-L1 
expression in TAMs at the marginal TME through the 
CCL2/PD-L1 axis[89]. Innate αβ T cells (iαβTs) 
demonstrate tumor-protective properties by 
reprogramming immunogenic macrophages in a 
CCR5-dependent manner and inhibiting CD8+ T cell 
activation through PD-L1/PD-1 interactions[90]. 
Hedgehog (Hh) signaling in TAMs drives M2 
polarization through the downstream transcription 
factor Gli1, which modulates Krüppel-like factor 4 
(Klf4). Klf4 deficiency in macrophages manifests as an 
M1 phenotype. Tumor cell-derived Hh ligand sonic 
hedgehog further amplifies M2 TAM polarization. 
Hh-induced M2 TAMs attenuate the production of 
CXCL9 and CXCL10, thereby impeding CD8+ T cell 
recruitment[91]. Nasopharyngeal carcinoma (NPC) 
cells secrete IFN-stimulated gene 15 (ISG15), which 
remodels macrophages into the M2 subtype by 
activating the LFA-1/SFK/CCL18 axis. These ISG15+ 
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M2 TAMs significantly impair CD8+ T cell responses. 
Clinically, the presence of ISG15+ M2 TAMs is 
frequently correlated with poor prognosis in NPC 
patients[92].  

In advanced CRC patients, TAMs-derived IL8 
alters CD8+ T cell function by downregulating TIM3 
expression through the IL8-CXCR2 axis[93]. NLRP3 
signaling in macrophages drives the differentiation of 
CD4+ T cells into Tregs and inhibits CD8+ T cell 
activation, processes dependent on IL-10[94]. 
Emp3-overexpressing macrophages produce elevated 
levels of TNF-α, which downregulates IL-2Rα 
expression on CD8+ T cells, thereby mitigating their 
proliferation and activation[95].  

4.6. TGF-β signaling upregulation and 
metabolic dysregulation in tumor cells 

IGF2BP3, by binding to CCL5 or TGF-β1, 
orchestrates the polarization of TAMs towards the M2 
phenotype, therefore suppressing CD8+ T cell 
functionality[96]. Elevated COX-2 expression in HCC 
drives TAM polarization towards the M2 phenotype 
and precipitates CD8+ T cell exhaustion via the TGF-β 
signaling pathway (Figure 3)[97]. Conversely, COX-2 
deficiency in TAMs promotes their polarization 
towards the M1 phenotype, thereby augmenting 
CD8+ T cell activity and immune surveillance[98].  

Another critical mechanism involves the 
regulation of immune responses by metabolic 
enzymes and metabolites. In the tumor 
microenvironment (TME), breast cancer cells act as 
the primary source of arginine, which polarizes M2 
TAMs and suppresses CD8+ T cell-mediated 
antitumor activity. Therapeutic targeting of 
the arginine-polyamine-thymine DNA glycosylase 
(TDG) axis between cancer cells and M2 TAMs 
significantly inhibits breast cancer growth (Figure 
3)[99]. Pathways associated with immunometabolic 
circuits are increasingly recognized as critical 
regulators of TAM–T cell interaction. These pathways 
integrate metabolic reprogramming and immune 
signaling to shape the functional dynamics of the 
tumor microenvironment. 

5. Post-Transcriptional Regulations 
The 2024 Nobel Prize in Physiology or Medicine 

was awarded jointly to Dr. Victor Ambros and Dr. 
Gary Ruvkun for their seminal discovery of 
microRNAs (miRNAs) for their pivotal roles in 
post-transcriptional gene regulation. This 
monumental work has profoundly enhanced our 
understanding of gene expression and its implications 
for a plethora of diseases, including the polarization 
of TAMs and CD8+ T cell responses within the TME.  

miR-155 is highly expressed in M1 TAMs[100, 
101] and plays a pivotal role in the polarization of 
TAMs towards the M1 phenotype[102, 103]. 
Additionally, miR-155 expression in T cells enhances 
TAM activation by inducing IFN-inducible genes. A 
triple combination of anti-PD-1/PD-L1/CTLA-4 ICB 
therapy significantly restores antitumor immunity in 
miR-155 T cell conditional knockout mice through the 
activation of both T cells and TAMs[104]. miR-506 
reprograms M2 TAMs into M1 phenotypes by 
targeting STAT3 signaling, thus promoting CD8+ T 
cell infiltration and enhancing the sensitivity of PDAC 
patients to PD-1 ICB therapy[105]. Extracellular 
vesicles, replete with bioactive substances, act as 
essential mediators of intercellular molecular 
transport and communication[106]. Extracellular 
vesicle-derived miR-155-5p from LUAD cells 
reprograms TAMs to an immunostimulatory 
phenotype and enhances CD8+ T cell activation, 
thereby inhibiting immune escape in 
immunocompetent mice[107].  

However, some tumor cell-derived miRNAs 
engulfed by TAMs lead to an education of M2 
phenotype. CRC cell-derived extracellular vesicles 
contain miR-21-5p and miR-200a, which, upon uptake 
by TAMs, induce M2 polarization and upregulate 
PD-L1 expression through the PTEN/Akt and 
SOCS1/STAT1 signaling pathways. This process 
leads to diminished CD8+ T cell responses and 
promotes tumor progression[108]. Endoplasmic 
reticulum (ER) stress in tumor cells facilitates immune 
escape in solid tumors by modulating the TME. 
ER-stressed HCC cell-derived exosomes harbor high 
levels of miR-23a-3p. Mechanistically, miR-23a-3p 
upregulates PD-L1 expression in macrophages via the 
PTEN/PI3K/Akt signaling pathway, thereby 
inhibiting T cell function and increasing T cell 
apoptosis[109].  

The competing endogenous RNAs (ceRNAs), 
such as long non-coding RNAs (lncRNA) and 
circRNAs, influence the post-transcriptional 
regulation of miRNAs through miRNA response 
elements[110-112], ultimately modulating the 
functions of TAMs and CD8+ T cells[113, 114]. M2 
TAMs-derived exosomes contain LINC01592, which 
can be transported into tumor cells and subsequently 
facilitate tumor growth by inhibiting the 
E2F6/NBR1/MHC-I signaling pathway. 
Consequently, inhibiting LINC01592 increases the 
MHC-I expression on the surface of tumor cells, 
thereby augmenting the efficacy of CD8+ T cell 
reinfusion therapy against tumors[113]. M2 TAMs 
exhibit high expression of circRNA MERTK, which 
mechanistically upregulates IL-10 expression in 
macrophages by sponging miR-125a-3p. This process 
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leads to increased apoptosis of CD8+ T cells and 
fosters an immunosuppressive TME[114]. 

6. Strategies for Repolarizing M2 TAMs 
to M1 Phenotypes  

The M1/M2 ratio elucidates the immune 
architecture of the TME, with M1 TAMs being 
indicative of favorable patient prognoses, while M2 
TAMs are emblematic of poor clinical outcomes[115]. 
Current strategies for TAM-related cancer therapy 
primarily encompass (1) the direct eradication of M2 
TAMs, (2) the reduction of M2 TAM recruitment, and 
(3) the repolarization of M2 TAMs to the M1 
phenotype. These modalities can effectively enhance 
CD8⁺ T antitumor immune responses and improve 
patient survival. By modulating the activity of the 
aforementioned signaling pathways, an increasing 
body of therapeutic paradigms are harnessed to 
repolarize TAM phenotypes and further potentiate 
the antitumor efficacy of CD8+ T cells (Table 3; 
Figure 4).  

6.1. Small-molecular drugs  
TLR agonists trigger innate immune responses in 

macrophages and can reprogram M2 TAMs into M1 
phenotypes, thereby diminishing Treg populations 
and promoting antigen-specific CD8+ T cell 
activation[116-118]. Additionally, they can attenuate 
PD-L1 expression in TAMs[116] and facilitate the 
secretion of proinflammatory cytokines by 
TAMs[118]. A TLR3-specific adjuvant, in conjunction 
with the VISTA-specific monoclonal antibody 13F3, 
markedly enhances the CD8+ T cell/Treg and M1/M2 
ratios. Furthermore, this combination therapy 
upregulates the expression of immunostimulatory 
molecules while concurrently downregulating 
immunosuppressive molecules[119]. A folate-targeted 
TLR7 agonist selectively delivers the drug to folate 
receptor-β positive macrophages in vivo, facilitating 
TAM polarization towards the M1 phenotype and 
enhancing CD8+ T cell infiltration. This synthetic 
compound significantly extends mouse survival 
without evident toxicity[120].  

 
 

 
Figure 4. Strategies for M1 TAM polarization. Multifaceted treatment avenues have confirmed their potential to drive M1 tumor-associated macrophage (TAM) 
polarization, including small-molecule drugs, nanomedicines, molecular therapies, natural products, oncolytic viruses, and ionizing radiation. Specifically, Toll-like receptor (TLR) 
agonists, colony-stimulating factor-1 receptor (CSF-1R) inhibitors, and phosphoinositide 3-kinase γ (PI3Kγ) inhibitors are representative small-molecule drugs. Nanomedicines 
refer to the use of nanomaterials to deliver drugs, specific antibodies, and even gene-editing plasmids to reshape the TAM phenotype. Many proinflammatory cytokines and 
chemokines, as well as immune checkpoint blockade antibodies, constitute the mainstay of molecular therapy. Natural products comprise of phytochemical and fungal extracts, 
bacteria, and metal ions. 
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Table 3. The detailed avenues for M1 TAM polarization. 

Classifications Subclassifications Treatment strategies Effects Study status Refs 
Small-molecular drugs  TLR agonists TLR3 Agonist Enhanced TAM antigen presentation, and 

increased CD8+ T cell activation 
Preclinical 116 

SMU-L11 (TLR7 agonist) M1 TAM polarization, and increased CD8+ 
T cell proliferation and activation 

Preclinical 118 

Folate-targeted TLR7 agonist Increased M1/M2 ratio, and increased 
CD8+ T cell infiltration 

Preclinical 120 

CSF1R kinase inhibitor Q702 Increased M1/M2 ratio, and increased 
CD8+ T cell populations  

Preclinical 125 

Inhibitor of FGFR1/2/3 and CSF-1R 3D185 Increased M1/M2 ratio, and increased 
CD8+ T cell activation 

Preclinical 126 

Targeting the Mincle pathway USMB-shMincle M1 TAM polarization  Preclinical 132 
PI3Kγ inhibitor AZD3458 Enhanced TAM activation, and increased 

CD8+ T cell antitumor activity 
Preclinical 135 

Pan-PI3K inhibitor Copanlisib Enhanced CD8+ T cell/Treg and M1/M2 
ratios, and increased infiltration of CD8+ T 
cells and TAMs 

Preclinical 136 

Nanomedicines TLR7/8 agonist  R848@LNPs  Increased M1 TAM and CD8+ T cell 
populations 

Preclinical 145 

TLR3 agonist, NF-κB activation FP-NPs M1 TAM polarization Preclinical 146 
NF-κB activation Ferumoxytol Increased M1 TAM populations Preclinical 147 
TLR7/8 agonist  Telratolimod Increased M1 TAM populations, and 

increased CD8+ T cell antitumor activity 
Preclinical 148 

TLR9 agonist  LCpG M1 TAM polarization, and increased CD8+ 
T cell proliferation 

Preclinical 149 

TLR7 agonist  T7-Exo/siGalectin-9 M1 TAM polarization Preclinical 150 
STAT3 signaling blockade CpGgel-siSTAT3 Enhanced M1 TAM activation, and 

increased infiltration of CD8+ T cells 
Preclinical 151 

STAT3 signaling blockade CS/LyP-1-PC Decreased infiltration of Tregs, M2 TAMs, 
and MDSCs 

Preclinical 155 

Targeting splenic CD169+ 
macrophages  

GM3-αGC-OVA Increased CD8+ T cell antitumor immunity Preclinical 158, 160 

Delivering siPDL1 into M2 TAMs 7D12-mExo-M2pep-siPDL1 M1 TAM polarization, and increased CD8+ 
T cell antitumor immunity 

Preclinical 161 

Nanodelivery of PD-L1 expression 
in M2 TAMs 

nano-PD-L1 trap Reduced M2 TAM proportion, and 
increased CD8+ T cell activation 

Preclinical 162 

Targeting Wnt/β-catenin signaling XAV-Np Increased M1/M2 ratio, and increased 
CD8+ T cell proliferation 

Preclinical 163 

Molecular therapy TLR3 agonist Poly-ICLC  M1 TAM polarization Preclinical 164 
TLR4 agonist Monophosphoryl lipid A  M1 TAM polarization, and increased CD+ 

8 T cell activation 
Preclinical 165 

 
Type I IFN Increased CD8+ T cell activation Preclinical 168 

 
IFN-γ Increased infiltration of M1 TAMs and 

CD8+ T cells 
Preclinical 169 

 
Dual-targeting CD47/PD-L1 antibody Increased CD8+ T cell activation, and 

increased infiltration of M1 TAMs  
Preclinical 171 

 
Combination of dual-targeting 
CD47/PD-L1 antibody and FOLFOX 

Decreased infiltration of Tregs and 
MDSCs, increased M1/M2 ratio, and 
increased CD8+ T cell activation 

Preclinical 172 

 
Combination of dual-targeting 
PD-L1/CTLA4 antibody and TGF-β 
inhibitor 

Increased infiltration of M1 TAMs Preclinical 173 

 
Dual-targeting HER2/CD47 CAR-Ms Shift of TAM phenotype, and increased 

CD8+ T cell activation 
Preclinical 177 

Natural products Chinese medicines Compound Kushen Injection Increased CD8+ T cell proliferation and 
activation 

Preclinical 178 

Resveratrol Reduced proportion of M2 TAMs, and 
increased CD8+ T cell activation 

Preclinical 179 

Terminalia bellirica M1 TAM polarization, and increased   
CD8+ T cell antitumor immunity 

Preclinical 180 

 
Naringenin Lymph node CD169+ macrophage 

activation and increased infiltration of 
CD8+ T cells 

Preclinical 181 

  phytohemagglutinin Increased CD8+ T cell proliferation Preclinical 182 
 

Cannabigerol Remodeling M1 TAMs, and increased 
CD8+ T cell activation 

Preclinical 183 

Fungal extracts Lentinan Enhanced TAM activation, and increased 
CD8+ T cell proliferation 

Preclinical 184 

L-ergothioneine Increased infiltration of M1 TAMs and 
increased CD8+ T cell activation 

Preclinical 186 

Bacteria  Streptococcus salivarius M1 TAM polarization and enhanced Preclinical 187 
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Classifications Subclassifications Treatment strategies Effects Study status Refs 
antigen presentation, and increased CD8+ 
T cell proliferation and activation 

BCG hydrogel M1 TAM polarization and enhanced 
antigen presentation 

Preclinical + 
clinical 

188 

Metal ions Manganese Enhanced M1 TAM maturation and 
antigen presentation, increased CD8+ T 
cell differentiation and activation 

Clinical  189 

Oncolytic virus 
 

CARG-2020 Increased M1 TAM differentiation, 
decreased MDSC expansion, and 
increased CD8+ T cell antitumor immunity 

Preclinical 191 

IR and MGPJT IR Combination of VPA/HPTA and 
radiotherapy 

M1 TAM polarization, and increased  
CD8+ T cell activation 

Preclinical 192 

MGPJT MGPJT M1 TAM polarization Preclinical 199 

This table is related to Figure 4, which provides all strategies for M1 TAM polarization.  

 
 
The CSF-1/CSF-1R axis is crucial for the 

differentiation, proliferation, and survival of M2 
TAMs[121, 122]. The CSF1R fosters an 
immunosuppressive TME by increasing the 
intratumoral infiltration of M2 TAMs and MDSCs. 
Consequently, CSF-1R inhibition emerges as a 
promising strategy to specifically target M2 TAMs 
and counteract tumor immune evasion[123, 124]. The 
selective CSF1R inhibitors remodels the TME into an 
immunostimulatory state by increasing M1 TAMs and 
CD8+ T cells while reducing M2 TAMs and 
MDSCs[125, 126]. Fusing IL-10 with a CSF-1R 
blockade antibody generates a bifunctional protein 
that effectively depletes TAMs and augments CD8+ T 
cell antitumor immunity, demonstrating significant 
antitumor activity across various solid tumors, 
particularly in head and neck cancers[127]. 

As previously described, targeting the Mincle 
pathway is beneficial for reversing the polarization of 
M2 TAMs. Syk inhibitors can disrupt the Mincle 
signaling pathway[128, 129]. Aptamers, which are 
short, single-stranded DNA or RNA molecules, can 
bind to specific targets with high affinity. 
Mincle-specific aptamers have demonstrated 
therapeutic potential by selectively inhibiting Mincle 
activation[130]. Ultrasound-Mediated Bubble (USMB) 
technology enhances the delivery of therapeutic 
agents to specific tissues using ultrasound and 
microbubbles. It has shown promise in improving the 
efficiency and targeting of anti-Mincle agents[131, 
132]. Potential therapeutic approaches targeting the 
Mincle pathway highlight their relevance in 
modulating TAM activity and enhancing antitumor 
immunity. 

PI3Kγ inhibition can repolarize M2 TAMs to M1 
phenotypes, thereby triggering an antitumor immune 
response[76, 133, 134]. The PI3Kγ inhibitors 
stimulates M1 TAM activation and 
antigen-presentation and augments the CD8+ T/Treg 
and M1/M2 ratios, while reducing IL-10 secretion by 
M2 TAMs. As a monotherapy, it further enhances the 

CD8+ T cell activation and boosts the ICB antitumor 
activity[135, 136].  

A panel of canonical (e.g., Vinblastine and 
Doxorubicin[137, 138]) and non-canonical antitumor 
drugs (e.g., Hydroxychloroquine, Verteporfin, and 
Sulfasalazine[139-141]) can remodel the TME by 
immunostimulating the functions of TAMs and CD8+ 
T cells. Consequently, their combination with 
PD-1/PD-L1 ICB therapy reconfigures the TME by 
increasing the CD8+ T cell/Treg and M1/M2 ratios, 
contributing to the robust antitumor 
responses[142-144].  

6.2. Nanomedicines 
Given the substantial advantages of 

nanomaterials in cancer therapy, such as enhanced 
targeting precision, superior drug stability and 
bioavailability, and the augmented permeability and 
retention effect, researchers are endeavoring to design 
an array of nanomedicines to reprogram TAM 
phenotypes and augment CD8+ T cell functionality. 
Many nanomedicines repolarize M2 TAMs to M1 
phenotype via activating NF-κB and TLR signaling 
pathways[145-150], or obstructing STAT3 signaling 
pathway[151], thereby reactivating CD8+ T 
cell-mediated immune responses.  

Liposomes and lipid-coated calcium phosphate 
represent the promising antigen delivery systems and 
have been validated as an efficacious platform for 
vaccinations and drugs[152-156]. For example, 
Paclitaxel induces the polarization of M1 TAMs to M2 
phenotypes and diminishes the expression of 
CXCL9/10 on macrophages[157]. Conversely, the 
concomitant delivery of Paclitaxel and 
Cryptotanshinone via liposomes inhibits STAT3 
activation, thereby reversing the immunosuppressive 
TME[155]. CD169+ macrophages are situated in the 
marginal zone of the spleen and the subcapsular sinus 
of lymph nodes. GM3-αGC-OVA liposomes increase 
CD8+ T cell responses, which is closely related to 
CD169+ macrophages and the CD169 receptor[158]. A 



Int. J. Biol. Sci. 2025, Vol. 21 
 

 
https://www.ijbs.com 

4110 

liposomal platform targeting CD169 for selective 
delivery to macrophages can enhance CD8+ T cell 
proliferation and regulate the activation ratio of 
CD4+/CD8+ T cells in vivo[159, 160].  

PD-L1 is an emerging target for TAM-directed 
therapies. Delivering siPD-L1 to M2 TAMs via 
nanocarriers facilitates their reprogramming to M1 
TAMs[161]. The antitumor efficacy of the nano-PD-L1 
trap surpasses that of PD-L1 monoclonal antibodies. 
Unlike PD-L1 monoclonal antibodies, the nano-PD-L1 
trap can sustainably reduce the intratumoral 
accumulation of M2 TAMs and MDSCs[162]. 
Activation of Wnt/β-catenin signaling in 
antigen-presenting cells such as DCs and 
macrophages preferentially primes Tregs over CD8+ T 
cells. Utilizing β-catenin-targeting nanocarriers 
significantly upregulates CD80 and CD86 expression 
on macrophages while inhibiting CD206 and PD-L1 
expression. Consequently, in an in vitro co-culture 
system, these macrophages can enhance CD8+ T cell 
proliferation[163]. 

6.3. Molecular Therapies 
Proinflammatory cytokines and chemokines are 

extensively utilized to modulate TAMs and CD8+ T 
cells within the TME. Some vaccine adjuvants 
enhance the antitumor immune response of TAMs 
and CD8+ T cells by activating TLR3[164] and 
TLR4[165]. Type I and Type II IFNs can induce 
macrophage polarization towards the M1 phenotype, 
augments their phagocytic activity and the 
production of proinflammatory cytokines[166-169]. 
The combination of anti-CD20 and a mutated IL-2 
(no-alpha mutein) promotes the release of 
proinflammatory cytokines by CD8+ T cells and the 
expression of immunostimulatory molecules on the 
surface of TAMs[170].  

Dual-targeting ICB therapy effectively reverses 
the immunosuppressive ecosystem via stimulating 
TAM functionality. Dual-targeting CD47/PD-L1 ICB 
therapy or combined with FOLFOX strategy 
markedly increases the M1/M2 ratio and activated 
CD8+ T cell populations in the TME[171, 172]. 
Dual-targeting PD-L1/CTLA4 antibody plus TGF-β 
inhibitor significantly increases M1 TAM 
populations[173]. However, dual-targeting PD-1/ 
CTLA-4 ICB therapy-amplified CD8+ T cell infiltration 
and antitumor response are weakened by depleting 
CXCL9 expression on TAMs[174].  

Targeting specific biomarkers on M2 TAMs has 
shown potential to reprogram them to the M1 
subtype, thereby enhancing CD8+ T cell responses. 
MARCO is predominantly expressed on macro-
phages, particularly M2 TAMs, where it enhances 
IL-10 production and Treg proliferation[175]. 

Targeting MARCO on TAMs with antibody can 
re-educate them towards the M1 subtype[176]. 
Chimeric antigen receptor macrophages (CAR-Ms) 
dual-targeting HER2/CD47 phagocytose 
antigen-specific tumor cells. These engineered 
CAR-Ms also reprogram M1 TAM polarization and 
stimulate CD8+ T cells to secrete a plethora of 
proinflammatory molecules[177].  

6.4. Natural Products 
Many phytochemical extracts in nature, 

renowned for their anti-inflammatory and antioxidant 
properties, modulate TAMs and CD8+ T cells within 
the TME. Several traditional Chinese medicines (e.g., 
Compound Kushen Injection, Resveratrol, and 
Terminalia bellirica) drives the polarization of M2 
TAMs to M1 phenotypes and augments the activation 
of intratumoral CD8+ T cells, ultimately leading to the 
shrinkage of solid tumors[178-180]. Moreover, 
Naringenin and Phytohemagglutinin potentiate CD8+ 
T cell activation by stimulating macrophages in the 
TME, likely through improved antigen processing 
and presentation[181, 182]. Cannabigerol can reduce 
the secretion of CSF-1 in solid tumors, such as 
melanoma, thereby remodeling M1 TAMs and 
reinstating CD8+ T cell activation[183]. 

Fungal extracts exhibit potent efficacy in 
educating M1 TAM polarization and invigorating 
CD8+ T cell antitumor immunity[184, 185]. 
L-ergothioneine lacks intrinsic immunostimulatory 
properties but can potentiate TLR responses in 
macrophages, thereby eliciting robust innate immune 
activity[185]. When conjugated with a TLR2- 
containing cancer vaccine, it markedly enhances M1 
TAM infiltration and CD8+ T cell activation[186]. 

A variety of bacteria (e.g., Streptococcus salivarius 
and Bacillus Calmette-Guérin lysate) and metal ions 
(e.g., Mn²⁺) both polarize TAMs to M1 phenotype and 
augments their maturation and antigen presentation, 
thus inducing memory CD8+ T cell amplification, and 
CD8+ T cell activation[187-189]. Conversely, the 
microbiome in PDAC patients creates an 
immunosuppressive TME by differentially activating 
specific TLRs in macrophages. However, bacterial 
ablation can immunostimulate the tumor immune 
microenvironment and enhance the antitumor 
efficacy of PD-1 ICB therapy[190].  

6.5. Oncolytic Virus 
Oncolytic viruses are a class of viruses that 

selectively target and eradicate tumor cells while 
sparing jeopardy to normal tissues. Additionally, they 
can activate TAMs and CD8+ T cells to further 
eradicate residual tumor cells. For example, 
CARG-2020 is a self-amplifying virus-like vesicle that 
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encodes immune regulatory genes to modulate 
various immune signaling pathways. It educates M2 
TAMs polarizing towards M1 phenotypes and 
augments CD8+ T cell responses[191].  

6.6. Ionizing radiation (IR) and medical gas 
plasma jet technology (MGPJT) 

IR not only directly disrupts the DNA replication 
of tumor cells but also reconfigures the TME through 
influencing TAM phenotypes and CD8+ T cell activity. 
Valproic acid (VPA) and its derivative HPTA are 
potent immune activators for radiotherapy. The 
combination of VPA/HPTA and radiotherapy can 
induce the polarization of TAMs towards the M1 
phenotype, increase the number of activated CD8+ T 
cells and elicit a substantial production of 
inflammatory cytokines during the early stage of 
treatment[192]. Conversely, two weeks of 
radiotherapy increases STAT3-activated TAMs and 
reduces CD8+ T cells. Targeting local TLR9/STAT3 
signaling promotes the local accumulation of M1 
TAMs and CD8+ T cells[193]. Notably, targeting local 
STAT3 is challenging because, although STAT3 
diminishes CD8+ T cell cytotoxicity and enhances 
Treg tolerance, it is indispensable for the expansion of 
memory T cells and long-term tumor 
immunity[194-197]. ATM inhibition intensifies 
IR-induced DNA damage, which upregulates type I 
IFN expression in macrophages through the 
STING/IRF3 signaling pathway, thereby augmenting 
IR-induced CD8+ T cell antitumor immunity[198]. 

MGPJT is an innovative medical treatment 
method that harnesses plasma, often referred to as the 
fourth state of matter. This technology involves 
ionizing a gas using radio frequency or microwave 
energy to generate a plasma jet, which produces 
reactive oxygen and nitrogen species (ROS and 
RNS)[199]. These ROS and RNS can induce 
immunogenic cell death in tumor cells, thereby 
activating the immune system and polarize M2 TAM 
to M1 phenotype by releasing tumor antigens[200]. By 
modulating oxidative stress levels and cytokine 
profiles within the TME, gas plasma jets can 
potentiate the antitumor immune response of 
TAMs[199, 200]. The plasma jet-generated ROS and 
RNS can directly eradicate tumor cells, leading to the 
release of DAMPs[201]. These DAMPs can further 
stimulate the immune system and reprogram TAMs 
to bolster their antitumor activities[201, 202]. 
Consequently, MGPJT represents a promising 
approach to harnessing the body's intrinsic defenses 
against cancer. 

7. Conclusions and Perspectives 
We have posed and contextualized the tumor 

cell-macrophage-CD8+ T cell loop where macrophage 
is prone to be reprogrammed. Recent works that delve 
into the intricate mechanisms underlying TAM 
immunostimulatory and immunosuppressive 
polarization have been further explored. These 
mechanisms inform and enhance innovative or 
combinatory therapeutic strategies aimed at 
modulating TAMs towards the M1 phenotype. Such 
novel interventions can substantially ameliorate the 
immunosuppressive milieu of the TME, either as 
standalone treatments or in combination with ICB 
therapy. Emerging technologies, like single-cell RNA 
sequencing and spatial transcriptomics, are 
unraveling the functional diversity of TAMs and their 
crosstalk with CD8+ T cells. These insights provide a 
rational basis for optimizing combinatorial strategies 
that integrate TAM reprogramming with ICB therapy. 

Future endeavors should expeditiously translate 
strategies for immunostimulatory reprogramming 
TAM phenotypes into tangible clinical benefits for 
cancer patients. Our advanced understanding of TAM 
polarization paves the way for the development of 
cutting-edge therapeutic approaches that functionally 
immunostimulate TAMs and subsequently augment 
CD8+ T cell antitumor immunity, potentially 
providing many promising avenues to better optimize 
clinical benefits for cancer patients undergoing ICB 
treatment.  
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