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Abstract 

The aryl hydrocarbon receptor (AHR) plays crucial roles in the control of stress, xenobiotic metabolism, 
inflammation, and cancer. However, information on the chromatin regulation of ligand-dependent AHR 
promoter activation is limited. AHR and nuclear factor erythroid 2-related factor 2 (NRF2) signaling are 
coordinated to maintain the balance of reactive oxygen species (ROS), which is termed the AHR–NRF2 gene 
battery. Recently, promoter activation of AHR to phase I ligands was reported to be regulated by AHR–NRF2–
Jun dimerization protein 2 (JDP2) in a spatiotemporal manner. Tight coupling between phase I and II nuclear 
transcriptional factor complexes through histone chaperone JDP2 in a time- and space-dependent manner may 
occur in the chromatin to regulate phase I gene expression. This new mechanism, termed AHR–NRF2–JDP2 
gene battery, may facilitate the identification of therapeutics at the reduction of reactive toxic intermediates at 
the nucleosome level. Identifying the AHR–NRF2–JDP2 gene battery mechanisms will enable the development 
of novel therapeutics for the risk assessment of oxidative stress/antioxidation, detoxification, ROS, cell death, 
inflammation, allergies, and cancer. 

Keywords: aryl hydrocarbon receptor, chromatin control, Jun dimerization protein, nuclear factor erythroid 2-related factor 2, 
reactive oxygen species, transcriptional regulation 

1. Introduction 
The aryl hydrocarbon receptor (AHR) was 

identified as a possible receptor for the anthropogenic 
compound 2,7,8-tetrachlorodibenzo-p-dioxin (TCDD) 
in 1976 [1]. TCDD-bound AHR stimulates the 
expression of cytochrome P450 family 1 subfamily A 
member 1 (CYP1A1). Thus, the AHR has been 

identified as a ligand-activated transcription factor 
with physiological roles in health and disease [2-4]. 
Studies in recombinant mice have indicated that AHR 
plays an important role in organ development as well 
as reproductive, hematopoietic, and immune 
response regulation [5,6]. AHR consists of 11 exons 
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and is located on chromosome 7p21 in humans and 
chromosome 12A3 in mice [7,8]. The AHR promoter 
consists of a GC-rich sequence located near the 
transcription start site (TSS), which is bound by zinc 
finger transcription factors, such as SP1 and SP3, and 
lacks the TATA and CCAAT boxes [9-13]. 

Chromatin immunoprecipitation (ChIP) 
sequencing analysis of the AHR–aryl hydrocarbon 
receptor nuclear translocator (ARNT) complex has 
been used to identify the genes activated in response 
to TCDD. This complex was found to preferentially 
bind proximal promoter regions within 1 kb from the 
+1 TSS [14], indicating that the AHR target genes are 
mainly located within the proximal promoter. By 
contrast, the AHR/ARNT bound locus was also 
positioned distally (approximately 100 kb) from the 
annotated +1 site [15]. This finding indicates that AHR 
regulates the proximal and distal promoters of the 
target genes. Notably, gene regulation occurs by 
remote cis-acting regions through chromatin 
remodeling, DNA looping, or even intra- and 
inter-chromosomal interactions [16]. In addition, 
TCDD induced c-Jun and Jun D expression by the 
activation of AHR–ARNT through dioxin-responsive 
elements (DREs) or xenobiotic response elements 
(XREs) (core sequence: 5′-TA/TGCGTG-3′) in an 
AHR-dependent manner [17]. These factors regulated 
AHR transcription in a cell- or cancer-type-specific 
manner [18]. AHR expression was also regulated by 
the levels of epigenetic markers. Inhibitors of histone 
deacetylases (HDACs) increased, whereas histone 
acetyltransferase (HAT) inhibitors decreased AHR 
promoter activity. These findings indicate that histone 
acetylation changes in the epigenetic landscape are a 
critical regulator of AHR expression [19]. Likewise, 
DNA hypermethylation induced by 5-aza-2′- 
deoxycytidine downregulated AHR expression in 
acute lymphoblastic leukemia (ALL) cell lines [20]. 
Thus, epigenetic regulation, such as acetylation and 
methylation, is critical for AHR activation and its 
response to phase I ligands. 

AHR transcription is initiated by the complex of 
phase I ligand-bound AHR with ARNT, which binds 
the XRE/DRE motif in the AHR promoter region as 
the canonical pathway of AHR activation [21-23]. The 
phase I ligand binds to the AHR via the Per-Arnt-Sim 
(PAS) B domain and enables its translocation into the 
nucleus to induce AHR transcription via RNA 
polymerase II (Pol II). However, XRE/DRE elements, 
to which the AHR–ARNT complex binds, are also 
present in the promoter of the phase II enzyme 
transcription factor nuclear factor erythroid 2-related 
factor 2 (NRF2) [24]. 

Conversely, NRF2 along with musculoa-
poneurotic fibrosarcoma (sMAF) proteins directly 
activate the AHR promoter and AHR target genes, 
such as CYP1A1 and CYP1B1, by recruiting the NRF2–
sMAF complex to antioxidant response elements 
(AREs) in the gene promoters of AHR, CYP1A1, or 
CYP1B1 detoxification phase I enzymes [25]. The 
interconversion of phase I ligands, such as AHR 
ligands, activated phase I (AHR target gene 
promoters) or II enzyme gene promoters (NRF2 target 
gene promoters), such as NAD(P)H:quinone 
oxidoreductase 1 (NQO-1) and glutathione 
S-transferase alpha 1 gene promoters, which 
constituted the AHR–NRF2 gene battery [26-32].  

The “gene battery” model was presented by 
Britten and Davidson in 1969 to elucidate the 
theoretical gene control for the regulated gene 
expression in eukaryotes [33]. A gene battery is 
characterized as a group of nonlinked genes that 
exhibit cross talk, having an interrelationship 
regarding up- and downregulation, in response to 
some signal. The battery’s response is mediated by 
certain regulatory proteins whose effect may be 
combinatorial in nature. For example, the mouse 
aromatic hydrocarbon-responsive gene battery was 
among the best-characterized examples of gene 
batteries in eukaryotes [34,35]. Furthermore, because 
AHR agonists, such as TCDD, can stimulate the cross 
talk between the AHR/ARNT and NRF2/sMAF 
transcription factor complexes [25-32], the AHR–
NRF2 gene battery was defined. 

However, both AHR–ARNT and NRF2–sMAF 
complexes were found to bind different cis-elements 
in the AHR promoter to trigger the AHR transcription 
in a spatiotemporal manner in mouse embryonic 
fibroblasts (MEFs) in response to TCDD or dimethyl 
sulfoxide as the ligands [21,23]. These phase I and II 
nuclear transcriptional factor complexes were 
associated with Jun dimerization protein 2 (JDP2), 
which was a chromatin modifier and histone 
chaperone [36,37]. The coordinated activation of the 
AHR promoter and allele by the AHR–NRF2 axis, 
facilitated by the chromatin modifier JDP2 to open 
chromatin for activating RNA transcription and then 
close chromatin for terminating the RNA 
transcription of the AHR locus in a time- and 
space-dependent manner, was termed the AHR–
NRF2–JDP2 gene battery. The chromatin regulation of 
the AHR–NRF2–JDP2 axis is summarized in Table 1. 
This new dogma indicates novel therapeutic targets 
for regulating oxidative stress-induced cell death, cell 
spreading, cellular metastasis, and inflammatory 
regulation against endogenous and exogenous 
stressors. 
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Table 1. Summary of chromatin regulation of AHR and AHR target gene products  

Modification Details Reference 
[DNA methylation and 
demethylation] 

  

(AHR promoter)   
DNA methylation in CpG island  Low levels of DNMT1, 3a, 3b & MBP2 and SP1 recruitment in AHR promoter in ALL enhances AHR promoter 

activation.  
 [20] 

 DNMT inhibitor (Zebularine) induces DNMT1, 3a, 3b reduction and AHR upregulation (in ALL cells; ReH cells; Jurkat 
cells). 

 [46] 

 AHR promoter -- SP1 in CpG islands are active in MCF7. DNA adduct (2-amino-1-methyl-6-phenylimidazo[4,5-b] 
pyridine) mediated H3K27me3 reduction in CpG of AHR promoter is critical in long term estrogen exposed (LTEE) 
MCF7 breast cancer cells. 

 [47] 

DNA methylation  Rheumatoid arthritis associated hypermethylation of Ahr promoter in mice -- DNMT inhibitor (5-AzaC) induced 
AICDa reduction – thus, it reduces class-switch recombination. This process leads to diminished IgG1 production and 
amelioration of autoimmune arthritis.  

 [55] 

(BRCA promoter) 
DNA methylation  

In TNBC, overexpressed AHR induces epigenetic silencing of BRCA1 promoter by transcriptional activation of estrogen 
receptor (ER)α.  
GEN (Genistein) suppressed AHR dependent BRCA1 promoter hypermethylation (CpG islands), and the restoration of 
ERα-mediated response in HCC38 cells (TNBC with hypermethylated BRCA1 locus). 
ERα in HCC38 cells or MCF7 cells -- BRCA activation is induced by decreased CpG methylation and then AHR 
recruitment to BRCA locus.  

 [48] 

DNA methylation  Resveratrol committed the reversed epigenetics changes and AHR binding to BRCA promoter in breast cancer cells.   [101] 
DNA methylation TCDD induced BRCA promoter-hypermethylation/silencing by methyl marks included MDB2, H3K9me3, DNMT1, 3a 

and 3b.  
 [49] 

(FOXP3 promoter) (IL-17 promoter) 
DNA methylation  

CpG islands -- decrease FOXP3 Treg function is decreased to CD4+CD25- -- increased Th2 phenotype in mice.  
Activation of T cells from AhR(+/+) but not AhR (-/-) mice, in the presence of TCDD, promots increased differentiation of 
Treg while inhibiting Th17 cells. Analysis of MLN or LP T cells during colitis revealed increased methylation of CpG 
islands of Foxp3 promoter and demethylation of IL-17 promoter, which was reversed following TCDD treatment.  

 [50,51] 

(CYP1A1 promoter) 
DNA methylation 

Dioxin-AHR dependent DNA demethylation in CYP1A1 promoter via Tdg (Thymine DNA glycosylase) in mouse liver.  
AHR, Tdg, Tet2, Tet3 are required for TCDD induced DNA demethylation. 

 [54] 

[Acetylation and deacetylation]   [63,86] 
ARNT moiety  
ARNT - CBP/p300 

p300/CBP induced acetylation of ARNT in mouse 293T cells and Yeast system.  [61,62] 

(AHR promoter)   
HDAC1 inhibitors (TSA, n-Butyrate) HDAC1 inhibitor (TSA, n-Butyrate) activate AHR/ARNT  

transcription in mouse osteoclasts RAW264 cells,  
or rat bone marrow cells.  

[241] 

HDAC1 inhibition & RhoA activation 
(3-Methylcholanthrene, Simvastatin)  

3-Methylcholanthrene (3-MC) induced AHR activation in human renal cell carcinoma -- EMT activation-tumor marker 
expression in human renal epithelial cells (hREC and RCC) cells. Simvastatin inhibits 3MC induce tumor induction by 
reducing HDAC1 and RhoA upregulation in RCC cells 

 [80] 

HDAC8 inhibitor HDAC8 inhibitor (PC1-34051) in allergic asthma model, mouse lung cancer cells Raw 214. 7 cells. Amelioration of AHR 
expression and airway inflammation and macrophage M2 polarization  

 [242] 

HDAC inhibitors (n-Butyrate) Butyrate acts as iHDAC leading to an increase in recruitment of AHR to the target gene promoter in the presence of 
tryptophan-derived AHR agonists. 
The data contribute to a novel understanding of the complex regulation of AHR activation by gut 
microbiota-Tryptophan derived metabolites in mice  

 [77] 

HDAC I/IIb inhibitor (Purinostat 
Mesylate) 

Human Ph+ leukemia cells and CD34+ leukemia from CML patients (leukemia stem cells; LSC) repress c-Myc, 
β-catenin, E2F, EZH2, Alox5, mTOR injectable formulation of PM (PMF)- increased glutamate metabolism in LSCs by 
increasing glutaminolysis inhibition.  
Combination of PMF and glutamate inhibitor (BPTES) synergistically eradicate LSCs by altering multiple key proteins 
and signal pathways of LSC survival and self-renewal.  
A new strategy for eliminating LSCs (by targeting HDAC I/IIb and glutaminolysis) -- potentially provide guidance for 
PMF clinical trials for TKI resistance CML patients 

 [85] 

HDAC inhibitor (SB939; pracinostat) 
plus AHR agonists 

Arresting of mouse experimental autoimmune encephalomyelitis (FAE) through STAT3 acetylation by IL6 in the stable 
transcriptional activation of indoleamine 2,3-dioxygenase 1 (IDO1) gene. The therapeutic effect of SB939 also requires 
the AHR, which is expressed mainly in CD4+ T cells and macrophages in CNS disease lesions. 

 [86] 

Polycyclic Aromatic Hydrocarbons 
(PAHs) AHR agonists 

PAHs treatment in mice; Lactbacillus murinus alleviates lung inflammation (SCFA) induced by PAHs in mice – Gut, 
Lung tissues; IgE, IL-4 and IL-17A in bronchoalveolar lavage fluid (BACF) fluids.  
AHR, Cyp1A1, Foxp3, HDAC activity are increased; AHR increasing causes Th17/Treg imbalance--- IA/IA2a in serum 

 [87] 

HDAC inhibitors (Na-butyrate and 
curcumin) 

Na-butyrate and curcumin result in reduction of asthma severity via HDAC1 inhibition in mice.  
HDAC1, HIF-1a, VEGF, p-AKP, p-PI3K are reduced by treatment with curcumin and Na-butyrate. p-p38, IL5, GATA3 
are also reduced. p-AKT/p-PI3K/HIF-1a/VEGF axis is critical for air inflammation in mice. 

 [89] 

AHR agonist (Indoxyl sulfate =IS) IS induces AHR synthesis and oxidate DNA damage by reduction of AHRR, Cyp1a, SIRT3, SIRT7-- affects bone mineral 
production in rat. 

 [90] 

AHR agonist (Cinnabarinic acid = 
CA) 

CA results the stanniocalcin 2 (STC2) upregulation as AHR target gene-- cytoprotection--- ER, ROS stress induces 
apoptosis in mice. CA but not TCDD induce STC2 induced MTA2 (metastasis-associated protein 2) = CA dependent 
MTA2 to STC2 promoter to induce H4K acetylation (H4Kac) and cytoprotection 

 [243] 

(Cyp1a1 promoter)  Bap induction-Cyp1a1 promoter bound HDAC1 is released in mouse Hepa1 cells-Cyp1a1 activation-H3K4me over 
H3K27me, H3S10 phosphorylation - Cyp1a1 transcription activation.  
Cyp1a1 induction by the AHR/ARNT is associated with modification of specific chromatin marks, hyperacetylation of 
H3K14ac and H4K16ac, H3K4me3, and H3S10 phosphorylation. HDAC1 and DNMT1 form complexes on the Cyp1a1 
promoter of uninduced cells but HDAC1 inhibition alone is not sufficient to induce Cyp1a1 expression, although it 

 [244] 
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Modification Details Reference 
allows for the hyperacetylation of H3K14ac and H4K16ac to levels similar to those found in BaP-induced cells.  

Phase I enzyme ligands in Cyp1a1 
promoter  

AHR-NFκB p65 interaction induce pCY1A1 histone epigenetic changes in mouse hepa1c1c7 cells, African green 
monkey kidney fibroblast-like Cos 7 cells. 
H4K5ac and demethylation of H4K3 marks.  

 [245,246] 

(LTBP-1 gene promoter) 
HDAC2 and pCREB (S133-P) 

Latent TGFβ-binding protein-1 (LTBP-1) as the TGFβ target is critical for the activation in the extracellular matrix of 
mice--AHR regulates Ltbp-1 transcription by a mechanism involving recruitment of co-activators such as CREB1 and 
co-repressors such as HDAC2 to the Ltbp-1 promoter. AHR expression is repressed Ltbp-1 promoter activation by 
HDAC2 binding in WT MEFs but in AHR-/- MEF HDAC2 and pCREB (Ser 133-P) are decreased and Ltbp-1 
transcription is reduced.  

 [88] 

[Chromatin Modifiers]   
Med220-Cyp1a1 promoter 
TRAP/DRIP/ARC/Mediator 
complex 

TCDD induces Cyp1a1 gene activation by Med220.  
CDK8 and TRAP/DRIP/ARC/Mediator,  
P300 and p/CIP are required in Hepa1 cells  

 [110] 

Med1, CTCF and AHR Liver biopsy specimens of patients with acute liver failure (ALF). 
Liver specific miR-122 knockout (LKO) mice in acetoaminophen induced Cyp2e1 and Cyp1a2 genes; acetoaminophen 
or N-acetyl-p-benzoquinone in mice.  
In miR-122 knockout LKO mice, Cyp1a2 gene is upregulated-- AHR and CTCF, and Med 1 are upregulated  
Human Hepa RG cells--miR122 depletion induces differentiation.  
miR-122 plays a role for acetoaminophen induced detoxification  

 [111] 
 

BRG1-AHR/ARNT promoter BRG-AHR-ARNT promoter to increase Cyp1A1 gene activation  
TCDD induces AHR-ARNT activation to CYp1a1 gene activation-- BRG1 potentiates AHR/ARNT reporter genes in 
TCDD induced Hepa1c1c7 cell. BRG1 induces AHR/ARNT reporter genes upregulation in SW13 and C33A cells.  
Glutamine rich domain of AHR interacts with BRG1 mediator molecule. 

 [224] 
 

BRG1-AHR-Cyp1a1 promoter  
 

BRG1 is an AHR coactivator to recruit to CYP1A1 promoter in mouse hepatocytes and human retinal pigment epithelial 
cells (ARPE-19 cells) --CYP1A1 gene promoter -12 kb upstream enhancer is the target of BRG1-AHR complex 
recruitment.  

 [225]  

BRG1-AHR-IL6 promoter  Head & neck squamous cell carcinoma (HNSCC) lines -- cytokine producing tumor with IL6, constitutively bound 
AHR at IL6 promoter, allowing for higher inducible IL6 transcription.  
AHR antagonist led to dismissal of the AHR from the IL6 promoter and recruitment of corepressor complexes, thus 
diminishing cytokine expression. siBRG1 shows the similar activities.  

 [227] 

SMARCA6/HELL-AHR promoter  BaP exposure induces SMARCA6 (SWI/SNF2-Related, Matrix-Associated, Actin-Dependent Regulator of Chromatin, 
Subfamily A, Member 6) expression in NSCLC (Non-small-cell lung carcinoma) to activate AHR signaling and DNA 
methylation and chromosomal remodeling.  

 [227] 

(TCDD- SRC/NCoA-2, p/CIP –
interacted with AHR– CYP1a1 
enhancer)  
 

TCDD activates AHR-ARNT luciferase by coupling the cofactor SRC-1/NCoA-1, NCoA-2/GRIP-1/TIF-2, and 
p/CIP/AIB/ACTR which is interacted with AHR to enhance the CYP1a1 enhancer in mouse Hepa1c1c7 cells. SRC-1 
and NCoA-2 but not p/CIP are capable of interacting with ARNT in vivo after transient transfection into mammalian 
cells, while AHR is capable of interacting with all three coactivators SRC-1, NCoA-2, p/CIP.  
Interactions of ARNT and AHR with SRC-1 with immunocytochemical techniques. Furthermore, SRC-1, NCoA-2, and 
p/CIP all associate with the CYP1A1 enhancer region in a TCDD-dependent fashion, as demonstrated by chromatin 
immunoprecipitation assays. 

 [229] 

(SRC1-AHR or PIP140 with AHR in 
response to TCDD)  

SRC1 in mouse Hep1c1c7 cells (hepa-1 cells) proximal of p300/CBP interaction dimer -- SRC1-p300/CBP interaction. 
SRC-1 Q rich domain interacts with AHR (TA domain), but not ARNT  
AhR transactivation domain is sufficient for enhanced coactivation mediated by SRC-1 in the presence of a 
transactivation domain deleted ARNT protein. 

 [230] 

TCDD-AHR-CPS1 to H1 
citrullination  

TCDD-AHR recruited CPS1 to NC-XRE of PAI-1 promoter to generate HIK34hcit. H1.4K34 acetylation by GCN5 in 
spermatogenesis is critical. 

 [102] 

(NRF2 acetylation) 
NRF2-CBP/p300 

CBP (C/H3 domain) interacts with NRF2 Neh4 and Neh5 domain and acetylates NRF2, NRF2 18K site might be crucial 
for p300 acetylation mainly. Clinical-grade CBP/p300 inhibitor CCS1477 represses the global NRF2-dependent 
cytoprotective transcription program. 

 [67-76, 225] 

NRF2-Med16 NRF2-Med16 complex is detected.  [112] 
(JDP2- HAT/HDAC) JDP2 is INHAT of p300/ CBP coactivator   [36] 
 JDP2 recruits HDAC3, and HDAC1, 2, 4-6,10  [114,121,122] 
JDP2-PRMT5  JDP2-PRMT5 elicit H3R2me1/H3R2me2 induced transactivation via TCF independent pathway by recruitment of WD 

repeat domain 5 (WDR5)/myeloid/lymphoid or mixed-lineage leukemia protein (MLL) methyltransferase complexes.  
 [247] 

JDP2-Sall4-NuRD Sall4, Jdp2, Glis1 and Esrrb (JGES) can reprogram MEFs to iPSCs efficiently, but only Sall4 is indispensable capable of 
recruiting endogenous components of NuRD. Sall4 recruits NuRD complex to open chromatin in MEFs to ensure the 
closure of somatic loci. This recruitment is dependent on the N-terminal motif of Sall4 and can be transferred to an 
unrelated factor such as Jdp2. 

 
[145,236,237] 

TIP60-UHRF 4K acetylation- JDP2 Acetylation of UHRF1 4K residues by TIP60 is important for colon cancer cell growth. Furthermore, upregulated JDP2 
expression by acetylation-deficient mutant of UHRF1 might be an important epigenetic target for colon cancer cell 
proliferation. 

 [108] 

SUMOylation-JDP2   JDP2 is a candidate for SUMOylation and SUMOylation affects JDP2-mediated Mc2r transcriptional activity in mice.  [248] 

 
 

2. Genomic canonical pathway of AHR 
transcription 

AHR is expressed in all tissues in humans and 
mice, with particularly high levels in the placenta, 
lung, kidney, liver, and thymus [38,39]. The ligand- 
and nonligand-dependent pathways of AHR 
activation are independent. Nonligand-bound AHR 

was found to be present in the cytoplasm and formed 
an integrated complex with the heat shock protein 90 
dimer, AHR-interacting protein (also named hepatitis 
B virus X-associated protein 2), cochaperone 
prostaglandin E synthase 3 (also known as p23), and 
the nonreceptor protein tyrosine kinase c-SRC (SRC) 
[40]. On exposure to ligands, phase I ligand-induced 
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AHR activation triggered the conformational change 
of the AHR complex in the cytoplasm and the release 
of AHR-interacting protein/hepatitis B virus 
X-associated protein 2 that exposed the nuclear 
localization signal, resulting in the translocation of 
this complex into the nucleus [41-43]. In the nucleus, 
the heat shock protein 90 dimer, AHR-interacting 
protein, p23, and SRC dissociated from the AHR 
complex and the PAS domain of the AHR molecule 
and subsequently formed a transcription-competent 
complex with ARNT [44]. The AHR–ARNT 
heterodimer initiated the expression of genes 
involved in xenobiotic metabolism, including phase I 
and II genes by recruiting RNA Pol II complexes to 
the DRE/XRE motifs in the promoters of these target 
genes [14-16,22]. The phase I ligand bound to AHR via 
the PAS-B domain, and the ligand–AHR complex 
translocated into the nucleus to generate a 
transcription-competent complex with ARNT. This 
AHR/ARNT axis affects several biological processes, 
including inflammation, allergic responses, 
metabolism, genetic expression, infectious disease 
responses, neuronal diseases, cancer, and aging. 

3. DNA methylation of the AHR locus 
Methylation of the 5′-cytosine residues in CpG 

islands results in transcriptional repression [45]. 
Methylation of the CpG islands (−33 to +174) of the 
AHR promoter in human ALL is responsible for AHR 
expression in a cell type-specific manner [20]. The 
AHR promoter is hypermethylated and inactivated in 
ALL compared with normal cells [46]. Demethylation 
and activation of the AHR promoter contribute to 
restoring the normal phenotype and blocking ALL 
induction. AHR expression is coordinated with the 
epigenetic regulation of DNA methylation enzymes, 
such as DNA methyltransferase 1 (DNMT1), 
DNMT3A, DNMT3B, and methyl binding protein 2. 
These molecules altered the histone methylation 
status of trimethylation of lysine 9 on the histone H3 
protein (H3K9me3) in the breast cancer gene 1 
(BRCA1) promoter, whereas the AHR inhibitor 
blocked the cross talk of AHR with 
methylation-associated signaling to activate BRCA1 
expression [47-49]. The cell type conversion is also 
dependent on ligand specificity and the expression of 
forkhead box P3 (FOXP3) on methylated CpG islands. 
Inhibition of AHR resulted in higher expression of 
FOXP3 and decreased methylation of CpG islands in 
the FOXP3 locus, where the binding of both DNMT1 
and DNMT3B was reduced [50,51]. 

Thus, AHR activation is suggested to decrease 
the level of DNMT expression, indicating that AHR 
expression is correlated with the demethylation 
mediated by DNMTs. 

The ten-eleven translocation 2 (TET2) promoter 
region contains cis-elements that can bind AHR 
complexed with ligands such as L-kynurenine (Kyn) 
[52]. The AHR ligand promoted TET activation by 
inducing the promoter demethylation of 
ecto-5′-nucleotidase gene (also known as CD73), 
which converted adenosine monophosphate to 
adenosine. The repression of AHR was due to DNA 
methylation of the ecto-5′-nucleotidase gene 
promoter. This finding indicated that AHR 
contributed to the reduction of adenosine production 
in regulatory T cells or the B cells of systemic lupus 
erythematosus patients [53]. AHR affected the histone 
modifications mediated by HDACs and promoted 
DNA demethylation through TET2 activation. Further 
studies are needed to investigate how AHR directly 
interacts with and alters epigenetic modifications and 
how these changes affect AHR and its target genes. 

In liver cancer cells, AHR was found to be critical 
in base excision repair where methylated cytosine was 
replaced by nonmethylated cytosine in the CYP1A1 
promoter, leading to increased CYP1A1 RNA 
expression [54]. Moreover, activation-induced 
cytosine deaminase (AICDA=AID) was involved in 
the mRNA editing required for switching of the 
immunoglobulin isotype and somatic hypermutation 
in B cells. Deficiency in the AICDA gene led to a pure 
B-cell defect characterized by the absence of 
high-affinity antibodies and a significantly increased 
risk of infections [55]. The targeting of DNMTs and 
CpG islands in the AHR promoter might aid the 
development of potential therapies for autoimmune 
arthritis. 

4. Histone modifications of the AHR locus 
Histone modifications, including acetylation, 

methylation, phosphorylation, ubiquitination, 
adenosine diphosphate ribosylation, and 
sumoylation, are regulators of gene expression [56]. In 
addition, histone variants contribute to chromatin 
alterations [57] and epigenetic changes [58,59]. 
Histone methyltransferases (HMTs) and protein 
arginine N-methyltransferases catalyze histone 
methylation, whereas histone demethylases mediate 
demethylation [60]. HAT catalyzes the attachment of 
acetyl molecules to lysine residues on histones, 
whereas HDAC removes the acetyl groups on 
histones. The histone modification process is 
dynamic, and thus epigenetic transcription is 
regulated [56]. 

4.1. Acetylation and deacetylation of 
AHR/ARNT and NRF2 

Regarding the acetylation of the AHR/ARNT 
complex, cyclic adenosine monophosphate response 
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element-binding protein (CREB)-binding protein 
(CBP)/p300 interacted with ARNT or ARNT2 but not 
with AHR [61]. Lysine acetyltransferases, including 
nuclear receptor coactivator 1 (NCOA1), NCOA3, and 
CBP/p300, were necessary for AHR-induced 
transcription of the CYP1A1 gene [62]. Weinert et al. 
demonstrated that AHR expression was repressed at 
both the transcript and protein levels in CBP/p300 
knockout (KO) and acetyltransferase or bromodomain 
inhibitor-treated cells [63]. Under normal conditions, 
CYP1A1 gene repression in MEFs was mediated by 
Aryl hydrocarbon receptor repressor (AHRR)/ARNT 
heterodimers, not by AHR/ARNT, and involved 
ankyrin repeat family A member 2, HDAC4, and 
HDAC5 as corepressors [64]. 

Epigenetic regulation of AHR transcriptional 
activation has been reported elsewhere [62,65]. Tumor 
suppressor gene products can suppress AHR 
promoter activity. TCDD exposure induced the 
methylation of the promoter of the tumor suppressor 
genes p16INK4a and p53 and subsequently repressed 
their transcription [66], indicating that the consensus 
sequences of DRE were important for ligand-bound 
AHR/ARNT complex. Moreover, other coactivators, 
such as CBP/p300 and TIP60, might play crucial roles 
in AHR/ARNT target gene expression via ARNT 
activity [62,65]. Thus, the requirement for 
CBP/p300-catalyzed acetylation in the 
AHR-dependent pathway is still unclear. Further 
studies are required to address this issue. 

Regarding epigenetic modulation by NRF2, 
CBP/p300 directly acetylated NRF2 in response to 
arsenic exposure, and several acetylated lysine 
residues within the Neh1 domain (DNA-binding 
domain) of NRF2 interacted with CBP/p300 [67]. 
Thus, the acetylation of NRF2 by CBP increased the 
promoter-specific DNA-binding activity of NRF2 and 
enhanced NRF2-mediated antioxidant responses [68]. 
Both HATs and HDACs regulated the acetylation 
levels of NRF2. Acetylation was found in multiple 
functional domains of NRF2, particularly within the 
transactivation domain and other critical structural 
domains [69]. The overexpression of 
N-α-acetyltransferase 10 in colorectal cancer and the 
histone acetyltransferase (males absent on the first; 
MOF =KAT8) in non-small cell lung cancer enhanced 
NRF2 acetylation and nuclear localization to induce 
the respective NRF2 target genes for cancer 
progression [70,71]. By contrast, HDAC3 was 
involved in NRF2-mediated pulmonary fibrosis [72]. 
HDAC5 inhibited NRF2-dependent antioxidant genes 
in cardiomyocytes [73]. Inhibition of HDAC6 
protected mice from experimental stroke-induced 
brain injury [74]. Moreover, the epigenetic 

modification of NRF2 was summarized recently in 
separate reviews [75,76]. 

4.2. Acetylation and deacetylation of AHR 
target genes  

Inhibitors of HATs and HDACs can block 
specific histone codes for transcription, including that 
of AHR. For example, butyrate as an HDAC inhibitor 
increased AHR recruitment to the target gene 
promoter in response to a tryptophan-derived AHR 
agonist [77].  

4.2.1. HDAC1/RHO-A/HIF/pRB2/p53 

The effects of the inhibitor of 
3-hydroxy-3-methylglutaryl coenzyme A reductase, 
simvastatin, on tumor induction mediated by 
3-methylcholanthrene (3MC) were examined in 
human renal epithelial cells. The increased expression 
of HDAC1 and decreased expression of RAS homolog 
family member A (RHO-A) were found through 
hypoxia-inducible factor- and AHR-dependent 
pathway [78]. 3MC reduced the cell growth by the 
epigenetic modification of histones through an 
AhR/RhoA-dependent mechanism that could be 
reversed using statins (or HMG-CoA reductase 
inhibitors), which can inhibit Rho. Thus, Statins 
reversed the effect of 3MC to inhibit DNA synthesis 
by decreasing the nuclear translocation of the 
pRb2/HDAC1 complex, leading to a recovery of the 
levels of cell-cycle regulatory proteins [79,80]. AHR 
upregulated Rb2 and HDAC1, which inhibited the 
growth of 3MC-treated vascular endothelial cells [79]. 
Overexpression of HDAC1 led to poor survival in 
tumor cells [81], whereas HDAC1 knockdown 
inhibited progression through the G2/M checkpoint 
of the cell cycle and suppressed the proliferation of 
cancer cells, resulting in p53 deacetylation, which 
inhibited p53-mediated cell death [82]. 

4.2.2 HDAC8/pRB1 

 Deletion of HDAC8 has been shown to increase 
Structural maintenance of chromosomes 3 (SMC3) 
acetylation and the inefficient dissolution of cohesin 
complexes [83]. In addition, the mechanism linking 
AHR and hepatocellular carcinomas via HDAC8, 
which promoted tumor cell growth and may restrain 
the expression of retinoblastoma 1 (RB1) tumor 
suppressor [84].  

4.2.3. HDAC2/LTBP-1  

Moreover, gut-microbiota infection and HDAC 
inhibition by butyrate or valproic acid both regulated 
AHR expression during immune surveillance and 
inflammation reactions [77,85-87]. Furthermore, 
HDAC2 bound to the latent transforming growth 
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factor-β-binding protein 1 (LTBP-1) promoter, leading 
to the inhibition of its expression in wild-type MEFs, 
whereas the HDAC2 deficiency and the binding of 
phosphorylated CREB (Ser133) enabled the activation 
of LTBP-1 transcription in AHR−/− MEFs. Thus, epi-
genetic regulation can contribute to inhibiting consti-
tutive LTBP-1 expression mediated by AHR [88]. 

4.2.4. HDAC1/PI3K/AKT/HIF1α 

HDAC inhibitors, including sodium butyrate 
and curcumin, reduced oxidative stress production 
and airway inflammation in asthmatic mice by 
inhibiting HDAC1 through phosphoinositide 3-kinase 
(PI3K)/AKT/hypoxia-inducible factor-1α/vascular 
endothelial growth factor signaling [89].  

4.2.5. AHRR/CYP1A2/SIRT3/SIRT7  

Moreover, indoxyl sulfate, which was an AHR 
agonist/L-tryptophan metabolite, regulated the 
expression of AHRR, CYP1A2, sirtuin-3 (SIRT3), and 
SIRT7 to induce DNA damage and affect bone 
mineral status [90]. In addition, butyrate acted as an 
HDAC inhibitor leading to increased AHR 
recruitment to the target gene promoters in response 
to tryptophan-derived AHR agonists. These findings 
suggested a novel understanding of AHR regulation 
mediated by an interaction between the gut and 
microbiota-derived metabolites [77]. 

4.3. Histone modifications of AHR target 
epigenetic landmarks 

H3K4me1 is a hallmark of transcriptional 
enhancers [91], whereas H3K4me3 is highly enriched 
at TSSs [78]. In addition, the modification H3K36me3 
mediated by the Histone methyltransferases (HMT) 
Su(var)3-9, Enhancer-of-zeste and Trithorax (SET) 
domain containing two proteins suppressed cryptic 
transcription, regulated splicing reactions, and served 
as a binding site for transcriptional elongation factors 
[92]. H3K79me2 positively correlated with the genetic 
program of male germ cells throughout 
spermatogenesis. The HMT Disruptor of telomeric 
silencing 1-like (DOT1L), which generates the 
H3K79me2 modification, predominantly mediated 
gene repression rather than activation [93]. H3K79me 
is associated with active chromatin and 
transcriptional regulation, whereas H3K9me2 and 
H3K27me3 are typically found in closed, silenced 
chromatin regions [94]. By contrast, H3K9ac and 
H3K27ac are often associated with enhancers and 
promoters of active genes [95]. Both H3K14ac and 
H4K16ac promote chromatin opening, which 
facilitates the recruitment of transcriptional 
machinery to DNA [96]. Phosphorylation of H3S10, 

H3S28, and H2AT120 is involved in regulating 
chromatin status during mitosis [97]. Moreover, the 
phosphorylation of H2AXS139 (γ-H2AX) acts as a 
signal for the recruitment of DNA repair proteins 
[98]. 

The histone modification and acetylation modes 
of each histone of the AHR–NRF2–JDP2 complex have 
not been reported in detail, except the finding that 
JDP2 as a histone chaperone interacted with all 
histone species and inhibited p300-mediated histone 
acetylation at H4K8ac and H4K16ac, but not at 
H4K5ac and H4K12ac [36]. Thus, further studies are 
required to define the interaction of histones with this 
complex. One key question is how these histone 
modifications specifically relate to AHR expression 
and function. Therefore, we describe below the series 
of histone changes in the context of specific ligands in 
AHR regulation. AHR affects local histone 
acetylation/methylation by interacting with 
coactivators or displacing HDAC complexes or 
corepressors [99]. 

4.3.1. H3KK9ac, H3K14ac, H3K27ac, H3K4me1/2/3, 
H3K9me1/2/3, and H3K27me, HDAC2, HDAC4  

Environmental toxicants have been reported to 
induce neurological anomalies and cancers through 
histone modifications, because investigating the 
underlying key physiological and pathological 
pathways is important regarding human health [100]. 
Most prominent toxicants, such as bisphenol A, heavy 
metals, pesticides, and phthalates, are responsible for 
neurological impairments caused by epigenetic 
modifications via the alteration of histone-modifying 
enzymes, such as HATs, HDACs, and HMTs. These 
enzymes mediated chromatin remodeling; HATs and 
HMTs attenuated the expression of certain histone 
modifications, including H3K9ac, H3K14ac, H3K27ac, 
H3K4me1/2/3, H3K9me1/2/3, and H3K27me, 
whereas the amplification of HDAC2 and HDAC4 
collectively altered the gene expression of certain 
proteins that regulated vital molecular pathways, 
including AHR.  

4.3.2. H3K9me2 and H3K9me3 

Exposure to arsenic and benzo[a]pyrene (BaP) 
synergistically induced cellular transformation and 
tumorigenesis to promote lung tumorigenesis [88]. 
The histone-lysine N-methyltransferase SUV39H1 
trimethylated lysine 9 of histone H3 (H3K9me3). 
H3K9me2 levels were regulated by SUV39H1 and 
enriched in the promoter of the suppressor of 
cytokine signaling 3 gene in cells with arsenic and BaP 
co-exposure compared with those in cells with BaP 
exposure alone.  
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4.3.3. H3K4me2 

Depletion of an orphan nuclear receptor NR2E3 
promoted the recruitment of lysine-specific histone 
demethylase-1, which decreased H3K4me2 levels and 
subsequently decreased AHR transcription [89]. Ahr 
and H3K4me2 levels were reduced significantly in the 
livers of Nr2e3rd7/rd7 mice with a loss of NR2E3. 
Treatment with lysine-specific histone demethylase-1 
inhibitors led to an increase in AhR and H3K4me2 
levels in Rd7 mice. In addition, the AhR-depleted 
mice showed an increased frequency of 
diethylnitrosamine-induced liver tumors.  

4.3.4. MALT1/EZH2/H3K27me3 

TCDD exposure induced a long noncoding RNA, 
metastasis associated in lung adenocarcinoma 
transcript-1 (MALAT1) in AsPC-1 and PANC-1 cancer 
cells [90]. AhR transcriptionally upregulated 
MALAT1, which concomitantly increased the level of 
EZH2 to increase the levels of H3K27me3. TCDD 
exposure resulted in a significant increase in 
MALAT1, EZH2, and H3K27me3 levels but exposure 
to AhR antagonists exhibited the reversed functions of 
MALAT1, EZH2, and H3K27me3 in 
AhR-overexpressing pancreatic cancer cells. 

4.3.5. H4K5ac, H4K8ac, H4K12ac, H4K16ac, MAT2 

The tryptophan metabolite cinnabarinic acid 
(CA) was an endogenous activator of AhR that failed 
to induce hepatic Cyp1a1 but upregulated a novel 
AhR target gene, a peptide hormone called 
stanniocalcin 2 (Stc2) in the liver [91]. CA-dependent 
AhR-XRE-mediated Stc2 upregulation was 
responsible for cytoprotection against endoplasmic 
reticulum/oxidative stress-induced apoptosis. This 
AHR activation was mediated by CA but not by 
TCDD. In this selective response mechanism, the 
complex between AHR/ARNT and metastasis 
tumor-associated protein 2 (MTA2) was a component 
of the nucleosome remodeling and deacetylase 
(NURD) complex. MTA2 recruitment was required 
for the acetylation of H4K5, H4K8, H4K12, and 
H4K16. This finding is interesting because MTA2 is a 
chromatin-modifying protein and a component of the 
NURD complex. Thus, MTA2 may regulate both the 
repression and activation of gene expression [92]. 

4.3.6. H3K4me4 and H4K20me3 

Dioxin induced AHR-dependent DNA 
demethylation of the CYP1A1 promoter in the mouse 
liver, which led to an increase in H3K4me3 levels and 
a significant decrease in H4K20me3 levels [54]. 

4.3.7. H4K4ac, H3K9ac, and H3K9me 

Resveratrol mediated the reverse epigenetic 

changes associated with AHR activation and its 
binding to the BRCA1 promoter in breast cancer cells 
[48,49,101]. The activation and recruitment of AHR to 
the BRCA1 promoter hampered 17β-estradiol-induced 
activation of BRCA1 transcription. These inhibitory 
effects were accompanied by a reduction in estrogen 
receptor alpha occupancy and histone H4K4Ac and 
H3K9Ac levels. Conversely, TCDD increased the 
association of H3K9me, DNMT1, and methyl-CpG 
binding domain protein 2 with the BRCA1 promoter 
and promoted the accumulation of DNA strand 
breaks. The AHR-dependent repression of BRCA1 
expression was reversed by the silencing of AHR and 
DNMT1 by small interfering RNAs or pretreatment 
with resveratrol, which inhibited the DNA 
double-strand breaks induced by TCDD. 

4.3.8. H3K14ac, H4K16ac, H3K4me3, and H3S10p 

CYP1A1 activation by AHR/ARNT was 
concerned with specific chromatin marks, including 
H3K14ac, H4K16ac, H3K4me3, and phosphorylation 
of H3S10. The complex of HDAC1 and DNMT1 was 
formed on the CYP1A1 promoter of uninduced cells. 
However, HDAC1 inhibition alone was not sufficient 
to induce CYP1A1 expression, although it enabled the 
hyperacetylation of H3K14 and H4K16 to levels 
similar to those found in BaP-treated cells. These 
findings indicated that HDAC1 inhibition was 
necessary but insufficient for CYP1A1 induction [94]. 

4.3.9. H1K34hcit 

TCDD-activated AHR dimerized with KLF6 and 
carbamoyl phosphate synthetase 1 and bound to the 
non-consensus XRE. The recruitment of carbamoyl 
phosphate synthetase 1 resulted in the localized 
synthesis of carbamoyl phosphate and histone H1 
homo-citrullination (H1K34hcit) in an enzyme- 
independent manner. H1K34hcit represents a hitherto 
unknown epigenetic mark implicated in enhanced 
gene expression of the peptidyl arginine deiminase 2 
gene, which itself is a chromatin-modifying protein 
[102]. 

5. Nongenomic pathways of AHR 
transcription 

The nongenomic pathways of AHR transcription 
have been summarized previously [103-105]. AHR 
can interact with signaling pathways involving 
epidermal growth factor receptor kinase, focal 
adhesion kinase, mitogen-activated protein kinase 
(RAS/RAF/MEK1/2/ERK1/2 and PI3K/AKT/ 
mTOR pathways), protein kinase C, signal transducer 
and activator of transcription, SRC, and NF-κB.  
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5. AHR–NRF2 gene battery 
5.1. Mechanism of TCDD-induced AHR 
promoter activation 

Induction of the AHR–JDP2–NRF2 axis by 
TCDD is a time-ordered process, with the following 
three key stages: DRE response, ARE response, and 
AP-1 response. This time-dependent regulation of the 
AHR–NRF2–JDP2 complex occurs by exposure to 
phase I enzyme ligands, such as TCDD, 
6-formylindolo[3,2-b] carbazole, BaP, and Kyn. By 
contrast, this ligand-specific promoter activity was 
repressed in Jdp2−/− MEFs [21]. Thus, these regulatory 
mechanisms appeared to be dependent on the phase I 
ligands. In addition, the time course of TCDD 
exposure in MEFs containing DRE-, ARE-, and 
AHR-luciferase constructs as well as each cis-element 
mutant DRE2/3, ARE1 and AP-1 of AHR-luciferase 
confirmed that the regulation of TCDD-induced AHR 
promoter activation was time- and space-dependent 
(Fig. 1). 

In wild-type MEFs treated with TCDD, the 
response of AHR promoter activation was typically 
initiated at 2–6 h after TCDD stimulation. 
Furthermore, TCDD-bound AHR can associate with 
JDP2-associated chromatin modulators, such as the 
cohesion complex and switch/sucrose 
nonfermentable (SWI/SNF2) complex including 
brahma-related gene 1 (BRG1) through mediators 
(MEDs) to open the closed chromatin and direct the 
Pol II transcription initiation complex to the DREs 
(unpublished data). 

Subsequently, the NRF2–JDP2 in the complex 
can associate with AREs at 6–18 h as a mode of spatial 
regulation. This time- and space-dependent 
regulation of the AHR–NRF2–JDP2 complex was due 
to its binding preference first for DRE2/3 (AHR in the 
complex binds to DRE first) and later for ARE1 (NRF2 

in the complex subsequently binds to ARE). This type 
of sequential and spatial selection occurred by the 
interaction of phase I ligand with AHR in this 
complex because exposure to phase II ligands did not 
stimulate the AHR promoter at 2–6 h [21]. This key 
spatiotemporal regulation initially might be 
performed by the chromatin remodeling activities of 
ligand-bound AHR and histone chaperone JDP2, 
because JDP2 deletion did not stimulate AHR 
promoter activation even at 2–6 h after binding [21]. 
Thus, JDP2 might affect the order of cis-element 
binding via its histone chaperone function. Moreover, 
initial binding of the AHR–NRF2–JDP2 complex to 
the DRE was determined by chromatin opening 
facilitated by JDP2–brahma-related gene 1 (BRG1) or 
JDP2-cohesin or the TCDD bound AHR–ARNT with 
CBP/p300 acetylase, leading to subsequent 
recruitment of the complex to the DRE2/3 (Fig. 2). 

Later, the AHR–NRF2–JDP2 complex was 
directed to the AREs at 6–18 h. Subsequently, the 
degradation of nuclear AHR by AHR degradation 
machinery might start at 18–24 h gradually because 
AHR was not detected in the nucleus at this time 
point [21]. Thus, the NRF2–JDP2 complex appeared to 
predominantly mediate ARE-dependent recruitment. 
Indeed, the expression of AHR promoter-luciferase 
and reactive oxygen species (ROS) production 
gradually decreased after 6–24 h [21]. AHR promoter 
activity, which initially depended on various factors, 
became dependent on the AP-1 element after 24 h. In 
addition, JDP2 on AP-1 site might recruit the HDAC 
complex to induce the histone deacetylation, and 
INHAT induced by JDP2 to close the chromatin 
[36,37]. Concurrently, the overall AHR promoter 
activity itself began to decline gradually after this 
point [21].  

Ubiquitin-related events also regulated the 
degradation of AHR. Ubiquitin-like with prolyl 
hydroxylase domain and RING finger domains 1 

 
Figure 1. Time course of promoter activity of DRE-, ARE-, and AP-1 luciferase in wild-type MEFs in response to TCDD. Wild-type MEFs were incubated with 
10 nM TCDD, a phase I enzyme ligand, and the luciferase activity was measured at each time point using DRE-luciferase (red line), ARE-luciferase (blue line), AP-1 luciferase 
(brown line), and AHR-luciferase (light green) as described elsewhere [21]. The schematic model represents the time course of each cis-element mutated luciferase as described 
elsewhere [21].  
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(UHRF1) is a multidomain protein originally defined 
as being involved in the maintenance of DNA 
methylation. It was found to bind hemimethylated 
DNA and recruit DNMT1 to the DNA replication foci 
[106]. Furthermore, UHRF1/DNMT1 was involved in 
the hypermethylation of promoters in tumor 
suppressor genes to downregulate their expression 
and inhibit cellular apoptosis [107]. Moreover, UHRF1 
acetylated by Tat-interactive protein-60 inhibited 
colon cancer cell growth through the re-expression of 
JDP2 [108]. 

 Jdp2 was also involved in antioxidation function 
with Nrf2–MafK complex by suppressing ROS 
generation and increasing ARE response gene 
promoter activity after long-term exposure of 
12-O-tetradecanoylphorbol-13-acetate (TPA) [109]. 
Thus, at this stage, JDP2 played a critical role in 
suppressing the AHR response by NRF2 dependent 
anti-ROS reaction to maintain the ROS homeostasis.  

 As describe above, the spatiotemporal 
regulation of the AHR promoter by the AHR–NRF2–

JDP2 complex was supported by the following 
evidence using wild-type MEFs [21,23]. (i) This 
dogma was verified using ChIP and 
co-immunoprecipitation/western blotting of AHR, 
NRF2, and JDP2 in the nuclear and cytoplasmic 
fractions, which was time-dependent after TCDD 
exposure, and by mutations of the DRE2/3, ARE1, 
and AP-1 sites in the AHR promoter to demonstrate 
the time- and space-dependent activation of 
AHR-luciferase [21] (Fig. 1). (ii) Preliminary studies 
were performed using JDP2 mutants in which amino 
acids that interacted with either AHR or NRF2 were 
mutated. We identified FL34R zipper region (amino 
acid positions 114 and 121) and N91A basic region 
(amino acid position 91) mutants of JDP2, in which 
the respective AHR promoter and NRF2 promoter 
luciferase activities were lost [21,36,37]. Regarding the 
JDP2/AHR signaling pathway, JDP2 loss inhibited 
cytoskeletal remodeling, cell spreading, and cell 
migration [21].  

 

 
Figure 2. Modes of AHR promoter activation in a spatiotemporal manner. Schematic representation of TCDD-induced AHR activation through the AHR–JDP2, 
NRF2–JDP2, and AHR–NRF2 complexes to increase ROS production, cell spreading, and apoptosis in wild-type MEFs. In Jdp2−/− MEFs, only a residual amount of AHR–ARNT is 
recruited to the DRE2 and DRE3 elements of the AHR promoter. Recruitment to DRE occurs at DRE2 and DRE3 after a 2-h exposure to TCDD. After 6-h exposure, this 
complex moves to ARE1 and ARE2 because AHR degradation starts via ubiquitin complex activity. After 24 h, the AHR activity is due to JDP2 binding to the AP-1 site in the AHR 
promoter. This TCDD-induced AHR promoter activation appears to be performed by the AHR–NRF2–JDP2 battery, as previously described [21].  
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5.2. Epigenetic chromatin regulation of AHR 
and its target gene products 

Regarding the role of JDP2 chaperone in the 
basic RNA transcription machinery, JDP2 might 
promote chromatin-stimulating histone modifications 
to recruit the RNA Pol II transcription initiation 
complex to the AHR promoter with phase I complex 
AHR–ARNT and phase II complex NRF2–sMAF 
bound to CBP/p300 HAT, HDAC family/ 
bromodomain-containing 4, chromatin remodelers, 
such as SWI/SNF complex members and mediators, 
which are associated with the Pol II general 
transcription factors [110-112], and transcription 
elongation factor b complex (cyclin-dependent kinase 
9/cyclin T1) transcriptional machinery [113,114]. 
BRG1 plays a role in chromatin accessibility, Pol II 
complex binding, and nascent RNA generation by 
controlling nucleosome positioning [115].  

Tumor suppressor gene products can suppress 
AHR promoter activity. TCDD exposure induced the 
promoter methylation of the tumor suppressor genes 
p16INK4a and p53, and subsequently repressed their 
transcription in keratinocytes [66], indicating that the 
unmodified sequences of DRE as AHR binding sites 
are important for DNA binding by the ligand-bound 
AHR/ARNT complex. 

DNA methylation alterations at the loci 
cg14647125 and cg23916896 (both located in the AHR 
repressor gene body) are linked to ulcerative colitis 
risk (P = 0.001 and 0.002, respectively). The biological 
pathways underlying the effects of smoking on the 
pathogenesis of inflammatory bowel disease, 
potentially involving the AHR repressor, have been 
identified [116,117]. 

The available miRNA databases miRTarBase 8.0 
to 9.0 (06/27/2024; analyzed using miRNet 2.0 [118] 
and miEAA 2023 [119,120]) showed that almost 100 
miRNAs are potentially involved in the 
posttranscriptional regulation of AHR. Here, we did 
not focus on the miRNA regulation of AHR. 
Furthermore, the specific mechanism and extent of the 
link between AHR and epigenetics warrant further 
investigation. 

5.3. JDP2 functions as a histone chaperone in 
chromatin regulation 

JDP2 functions as a histone chaperone, HAT 
inhibitor for CBP/p300 [36], and a recruiter of HDACs 
(such as 1–6 and 10) for inhibiting histone acetylation 
[114,121,122]. JDP2 bound to the reconstituted 
chromatin and intact chromatin in vitro and showed 
chromatin assembly. JDP2 also bound core histones 
directly through its histone-binding region (amino 
acids 35 to 70), which was distinct from its basic 

zipper region [36]. It also inhibited the p300-induced 
histone acetylation on H3 and H4 (specifically H4K8 
and H4K16), via its inhibitor of HAT (INHAT) activity 
domain (amino acids 35 to 102) [36]. 

This coordinated action might be possible 
through direct protein–protein interactions of JDP2 
with AHR or NRF2 because possibly, it has different 
regions that bind to AHR and NRF2. In addition, the 
knockdown experiments of AHR, ARNT, NRF2, and 
JDP2 showed significantly reduced AHR promoter 
activity, and the addition of JDP2 in Jdp2−/− MEFs 
could rescue the AHR promoter activity [21,23]. Thus, 
the players of the AHR–NRF2–JDP2 axis can interact 
with each other in a time- and space-dependent 
manner to bind the DRE2/3, ARE1, and AP-1 sites in 
the AHR promoter. Thus, JDP2 might function as a 
histone chaperone in DRE and ARE cis-element 
mediated AHR expression. AHR, NRF2, and JDP2 
enhanced the AHR transcription activity in a 
synchronized manner, which was confirmed using 
studies involving mutants of each cis-element in the 
AHR promoter and ChIP assay [21,23,36]. Thus, JDP2 
might regulate the recruitment of CBP/p300 and 
HDACs, which were involved in chromatin 
remodeling to mediate the open–close chromatin 
transition during the transcription of AHR. 

Furthermore, JDP2 is involved in multiple 
processes/functions, including cell growth, cellular 
senescence, cell death, tumor control and 
enhancement, stemness, and pluripotent capacity [36]. 
JDP2 downregulated p53 transcription and promoted 
tumorigenesis in p53 heterozygous conditions. JDP2 
also inhibited ultraviolet-induced apoptosis by 
reduced expression of p53 [123] and by oncogenic 
transformation [124] or tumor suppression in a cell 
type-specific manner [125]. Conversely, Price et al. 
showed that JDP2 was responsible for increasing p53 
transcription by decreasing the expression of murine 
double minute 2 protein in human H1299 non-small 
cell lung cancer (NSCLC) and MCF7 breast cancer cell 
lines, which mutated Ha-Ras/K-Ras and PI3K/AKT 
signaling, respectively [126]. However, in some cases, 
JDP2 was implicated in leukemogenesis and exhibited 
oncogenic potential. Transposon-mediated insertions 
could lead to JDP2 upregulation, while 
simultaneously causing the downregulation of tumor 
protein p53 (Trp53), a tumor suppressor gene [127]. In 
patients with T-cell ALL (T-ALL), JDP2 promoted cell 
survival by upregulating anti-apoptotic myeloid cell 
leukemia-1 (MCL1) protein. The overexpression of 
JDP2 led to MCL1 upregulation and steroid resistance 
in vivo, which may contribute to the poor survival 
rates observed in patients with T-ALL [128].  

Moreover, JDP2 mediated cell cycle arrest 
through cyclin A2 [129]. JDP2-mediated growth 
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suppression was inhibited by downregulating both 
p16Ink4a and adenosine diphosphate-ribosylation 
factor (Arf or p14Arf). Conversely, forced expression 
of p16Ink4a or Arf led to a decrease in the proliferation 
of Jdp2−/− MEFs. Thus, JDP2 induced p16Ink4a and Arf 
during stress conditions, resulting in cell cycle arrest 
through both the p16Ink4a/RB and Arf/p53 pathways 
via alteration of H3K27 methylation [130,131]. 
Therefore, JDP2 played a critical role in 
Ink4-dependent ROS regulation and senescence 
through the AHR‒NRF2 cascade by modulating 
polycomb and trithorax proteins. 

As described above, JDP2 plays a role in both 
chromatin remodeling and HAT inhibition [36], 
whereas activating transcription factor 2 (ATF2), as a 
partner of JDP2, has intrinsic HAT or enhanced HAT 
activity [132-135]. JDP2 suppressed ATF2 function 
through HDACs [121,136]. CBP/p300 could acetylate 
NRF2 [67,68], which enhanced the ARE response by 
increasing the DNA-binding activity of NRF2 and 
promoted the upregulation of ARE-regulated genes 
through its interactions with ARF proteins, such as 
p14Arf (p19Arf in mouse) [137]. 

To identify the JDP2 function at the promoters of 
AHR and NRF2, a genome-wide ChIP study of the 
transcriptional activation domain should be 
conducted. The critical residues of JDP2 that interact 
with CBP/p300, CBP/p300-associated factor (pCAF), 
ATF2, Tat-interactive protein-60, ARF, p16Ink4a, and 
cohesion (or condensing) should be investigated 
using capture Hi-C, 3C, 4C, and 5C assays. Other 
acetylated histone groups of histones H3 and H4 
should also be assessed to identify JDP2’s regulatory 
functions. These investigations might help elucidate 
the molecular mechanisms of the AHR–NRF2–JDP2 
axis (Fig. 3). 

The AHR–NRF2 gene battery was first 
demonstrated in keratinocytes [26-32]. Subsequently, 
this concept was further explored using MEFs [21]. 
This autoregulation of the AHR promoter activation 
was also observed for other phase I enzyme ligands 
besides TCDD, including formylindolo[3,2-b] 
carbazole, BaP, and tryptophan metabolite Kyn, in 
wild-type MEFs. 

6. Pathological significance of the AHR–
NRF2–JDP2 axis at the organismal level 
6.1. KO or knockdown of the AHR, NRF2, and 
JDP2 pathways in mice  

The pathological significance of the AHR–NRF2–
JDP2 axis at the organismal level is the key issue to 

link this gene battery to the development of 
therapeutics for clinical or preclinical application. 
However, detailed studies on double KO (DKO) or 
triple mice of Ahr–Nrf2, Ahr–Jdp2, and Jdp2–Nrf2 
have not been reported. Ahr-deficient mice are viable 
but do not respond to phase I enzyme ligands. These 
mice have a reduced liver weight (reduced by 75%) 
and delayed hematopoiesis ability and hepatic 
microvascular steatosis [138]. Although Ahr-deficient 
mice do not generate spontaneous tumors [139,140], 
several studies indicated that AHR functions as a 
tumor suppressor in a context-dependent manner. 

Shin et al. [25] reported that NRF2-regulated 
AHR signaling affects xenobiotic metabolism, via the 
CYP450 family, and adipogenesis. Yamamoto’s group 
[141] reported that Ahr–Nrf2 DKO mice were viable 
and fertile and had no apparent phenotypic 
alterations. They postulated that the NRF2 pathway 
affected AHR-dependent pathways such as apoptosis 
and development. However, there have been no 
additional reports using Ahr–Nrf2 DKO mice. 
Nrf2-KO mice did not exhibit any obvious phenotype 
[142], except for discolored teeth due to iron transport 
defects [143]. 

JDP2 is a transcription factor with histone 
chaperone activity, which regulates the chromatin 
structure of the AP-1/ATF loci [21,36,37,144]. It 
repressed cell proliferation and regulated the cell 
cycle by targeting cyclin A [129]. In addition, JDP2 
enhanced reprogramming potency in MEFs and could 
replace octamer-binding transcription factor 4 (OCT4) 
among the Yamanaka reprogramming factors. JDP2 
has been shown to anchor five non-Yamanaka factors, 
including inhibitor of DNA binding 1, Jumonji C 
histone demethylase 1B, liver receptor homolog-1, 
Spalt-like transcription factor 4, and Glis family zinc 
finger 1, to reprogram MEFs into induced pluripotent 
stem cells (iPSCs) [145]. JDP2 and OCT4 reprogram 
cancer cells into iPSC-like cells [146,147]. Jdp2 KO 
mice were small and had short tail but exhibited no 
other obvious phenotype (Yokoyama unpublished 
data). JDP2 plays a key role in bone homeostasis and 
host defense by regulating osteoclast and neutrophil 
differentiation [148]. Ahr-Jdp2 DKO mice are 
embryonic lethal (unpublished data); however, 
knockdown of Jdp2 in Ahr KO mice has been used to 
demonstrate enhanced tumorigenesis of 
LSL-kRASG12Dp53lox/lox pancreatic adenocarcinoma 
[21]. Thus, JDP2 is the upstream gene of AHR. 
Conditional KO or knockdown mice should be 
generated for further assessment of the AHR–NRF2–
JDP2 gene battery as described below. 
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Figure 3. Hypothetical modeling of the AHR–NRF2–JDP2 axis. Chromatin remodeling and epigenetic regulation of the AHR locus were involved in the function of 
histone acetylation and deacetylation of the AHR–NRF2 complex and the histone chaperone JDP2. In TCDD-induced MEFs, TCDD-bound AHR enters the nucleus and binds to 
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ARNT within 2 h of exposure to TCDD. Then, AHR–ARNT recruits NRF2/sMAF and JDP2, which interact with SWI/SNF complexes, such as BRG1 and cohesin SM3, which in 
turn open the closed chromatin. Subsequently, AHR–ARNT with coactivator CBP/p300 binds to DRE2/3 of the AHR promoter. Then, RNA polymerase complexes are recruited 
to the transcription start site. After 6-h exposure to TCDD, the AHR–ARNT complex moves to the ARE1 site through the NRF2–sMAF complex, and recruits coactivator 
complexes, such as p160/SRE1/2/NCOA, pCIP/AIB/ACTR, and CBP/p300, with Pol II, mediator complex including MED16 [112], and cyclin-dependent kinase 9/cyclin T1, to 
mediate mRNA elongation with C-terminal domain phosphorylation in cooperation with positive transcription elongation factor b [113]. After 24-h exposure, nuclear AHR is 
degraded, and the AP-1 site remains active for AHR transcription to maintain the coactivator complex. After greater than 24-h exposure to TCDD, JDP2 at the AP-1 site can 
recruit corepressors, such as nuclear receptor corepressor/silencing mediator for retinoic acid and thyroid hormone receptors and HDACs 1−6 and 10 and inhibit the histone 
demethylase activity mediated by lysine demethylase 6A and the coactivator CBP/p300 to terminate AHR RNA transcription and close the chromatin at the AHR locus. This Figure 
was published in Biochemical Pharmacology, Vol. 233, Wuputra K, Hsu WH, Ku CC, Yang YH, Kuo KK, Yu FJ, Yu HS, Nagata K, Wu DC, Kuo CH, Yokoyama KK, The 
AHR-NRF2-JDP2 gene battery: Ligand-induced AHR transcriptional activation., 116761, Copyright Elsevier B.V., 2025, and we were permitted to reuse and modify from 
Elsevier B.V.  

 
Studies using conditional KO or knock-in mice 

targeting the skin or related cells have demonstrated 
that AHR–ARNT and the NRF2/Keap1 pathway play 
a crucial role in regulating the skin barrier and 
epidermal barrier function. Ahrflox::K14-Cre mice 
demonstrated increased trans-epidermal water loss 
after tape stripping in the upper layers of the stratum 
corneum, indicating that AHR plays a role in 
maintaining skin barrier function [149]. In the case of 
the AHR-interacting partner ARNT, these mice 
showed an impaired epidermal barrier, increased 
trans-epidermal water loss, severe dehydration, and 
body weight loss. They died within 24 h after birth 
[150,151]. Transgenic mice with a constitutively active 
Nrf2 mutant (caNrf2) gene in keratinocytes showed 
scaling and dry skin [152]. The caNrf2 (lacking NehN2 
domain)::K5-Cre mice showed epithelium thickening 
(acanthosis) and severe hyperkeratosis in the skin 
[153]. Loricrin (Lor) is a structural protein in the 
cornified cell envelope present on the surface of 
terminally differentiated epidermal cells, which is 
composed of a complex network of cross-linked 
proteins, primarily held together by 
disulfide/ε-(γ-glutamyl) lysine cross-linkages. In mice 
where NRF2 activity was inhibited (Lor-KO::dnNrf2 
mice), a critical skin barrier component was affected, 
leading to severe barrier dysfunction and death 
within 24 h [154]. 

The crosstalk between AHR and NRF2 also plays 
a role in immune and inflammatory responses. The 
forced expression of NRF2 caused the upregulation of 
IL-17A and IL-22 in CD4+ T cells polarized to Th17 
cells in Nrf2−/− and AhrCD4 KO mice. However, the 
IL-22 response in CD4+ T cells, not IL-17A, was 
regulated by NRF2 via the AHR pathway. 
Specifically, NRF2 activation promoted IL-22 
production in CD4+ T cells in an AHR-dependent 
manner [155]. Foxn1-Cre-induced Ahr KO (Ahr KO) 
mice exhibited a significant reduction in the 
regenerative ability of thymus cells. For example, the 
Ahr agonist 6-formylindolo [3,2-b] carbazole and 
AHR inhibitor CH-223191 accelerated and blocked 
regeneration of the mouse thymus, respectively, and 
this could not be reversed by the introduction of 
exogenous IL-22. Ahr KO mice exhibited a decreased 
IL-22 receptor alpha 1 (IL-22RA1) expression. Thus, 

both AHR and IL-22RA1 were critical for thymus 
regeneration and implicated in the pathogenesis of 
chronic graft-versus-host disease [156]. 

Experiments involving colitis in vivo in mice or in 
vitro colon organoid models were performed to 
determine how the expression of mucin 2 protein was 
altered with or without AHR in intestinal epithelial 
cells (IECs) in response to indole-3-carbinol. On 
comparing wild-type mice to IEC-specific Ahr KO 
mice (Ahr∆IEC), AHR expression was found to be 
essential in IECs for indole-3-carbinol-mediated 
protection during colitis. The loss of AHR impaired 
the expression of mucin protein 2 independently of 
IL-22 [157]. 

6.2. Tumor suppression of AHR-p53 in cancer 
Next, we were interested in determining 

whether one or both alleles of Trp53 can affect 
tumorigenesis. The p53 transcription factor is a 
multifunctional protein with key roles in regulating 
the cell cycle, apoptosis, senescence, reprogramming, 
cell migration, and genome maintenance [158]. 
Homozygous mutations in the p53 gene were 
detected in approximately 50%–60% of human 
cancers, of which 90% were missense mutations in 
approximately 190 different codons localized in the 
DNA-binding region [158-167]. Inheritance of the p53 
mutations was the primary cause of Li–Fraumeni 
syndrome, which significantly increases the risk of 
cancer [161]. In cancer, mutations in one p53 allele 
were frequently accompanied by the deletion or 
inactivating mutations in the remaining p53 allele 
[162]. 

The role of AHR signaling in tumorigenesis in 
the case of p53 loss has not yet been established. Thus, 
the lifespan and tumor spectrum of Ahr-depleted 
mice in p53 heterozygous and p53 KO backgrounds 
were assessed [163-167]. Ahr and p53 DKO mice had a 
short lifespan with reduced embryo survival and 
developed tumorigenesis compared with control p53 
null mice. Taken together, the findings showed that 
AHR functions as a tumor suppressor in p53-depleted 
mice; thus, developing anticancer drugs that promote 
this tumor-suppressive activity is a promising 
therapeutic strategy [165]. Ahr-depleted mice 
developed more aggressive tumors than their 
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wild-type counterparts in the transgenic 
adenocarcinoma of the mouse prostate model [166] 
and showed increased liver tumors induced by 
diethylnitrosamine in male mice compared with their 
wild-type AHR littermates [167]. 

6.3. Dual role of AHR in oncogenic and tumor 
suppressor functions 

IECs-specific knockdown of Ahr led to the 
expansion of clonogenic progenitor cells in mice with 
mutations in adenomatous polyposis coli (APC) and 
Kras genes (ApcS580/+; KrasG12D/+) and promoted cell 
growth in the gut epithelium to increase cecum and 
colon cancer in mice [168]. Intestinal-specific Ahr KO 
mice showed increased basal stem cells and crypt 
injury-induced cell growth in a colitis-associated 
tumor model [169]. Moreover, Ahr suppressed 
intestinal tumorigenesis in APCMin/+ mice [170] and 
high AHR expression was associated with improved 
patient survival in some cancers, indicating that Ahr 
can be targeted for the inhibition of cancer cell 
proliferation [171-175]. In other multiple cancer 
models, Ahr deletion promoted increased 
tumorigenesis, but the precise genetic and molecular 
mechanisms remain unclear [176]. 

Ahr linked to wingless-related integration site 
(Wnt)/β-catenin signaling played a critical role in 
tumor suppression, particularly in intestinal and liver 
cancers. AHR loss, coupled with Wnt/β-catenin 
signaling activation, was speculated to promote 
tumorigenesis in cancer models. This hypothesis is 
supported by studies in models where AHR was 
deleted or suppressed, resulting in increased Wnt 
activity and enhanced tumor development. 
Specifically, mutations in APC and AhR deletion have 
been observed in Wnt/β-catenin-driven cancer 
models [172-175,177-179]. 

In some cancers, such as colon cancer, AHR had 
dual roles in tumor oncogenesis and tumor 
suppression by promoting the integrity of the 
epithelial barrier, inhibiting inflammation, and 
antagonizing signals downstream of Wnt/β-catenin 
during the regenerative process. AHR restricted the 
proliferation of stem cells by inhibiting the expression 
of OCT4, SOX2, c-Myc, and NANOG factors [180], 
and AHR activation could increase the differentiation 
capacity in multiple cancer types [181]. Furthermore, 
AHR could antagonize oncogenic signaling, such as 
PI3K/AKT-dependent growth factor [182], sonic 
hedgehog, and transforming growth factor-β 
signaling [183]. AHR was normally enriched on 
several oncogenic genes, such as those in the 
transforming growth factor-β and NRF2 signaling 
pathways [184]. Therefore, AHR functioned as a 
tumor suppressor or an oncogene in a cell 

type-specific manner or depending on the status of 
p53 mutation or deletion, or p16Ink4a methylation. 

6.4. AHR–NRF2 in gut microbiota 
Polycyclic aromatic hydrocarbons (PAHs) 

induced carcinogenesis by activating AHR in gut 
microbiota, which metabolized PAHs to highly 
reactive carcinogenic intermediate compounds [185]. 
The gut microbiome secreted many metabolites in the 
tumor microenvironment, such as short-chain fatty 
acids (SCFAs), formate, and tryptophan-derived 
indoles, which promoted immune tolerance and 
metastasis via AHR signaling. For example, the 
production of TNF-α and IL-6 in tumor-associated 
macrophages and dendritic cells was observed in 
response to lipopolysaccharide (LPS). Indoleamine 
2,3-dioxygenase (IDO) activity was stimulated by LPS 
in resident antigen-presenting cells and tumor cells, 
leading to the increased production of Kyn from 
tryptophan, which activated AHR and subsequently 
led to increased immune tolerance. 

AHR was found to play a crucial role in 
microbe-mediated oncogenesis as a sensor molecule 
for several microbial metabolites in the gut. Because 
most studies have investigated Fusobacterium 
nucleatum, additional studies are needed to 
understand fully the possible cross talk between AHR 
and other bacterial species in colorectal cancer, such 
as Staphylococcus gallolyticus, Bacteroides fragilis, 
Escherichia coli B2, Enterococcus faecalis, and 
Peptostreptococcus anaerobius. Furthermore, the role of 
microbiota in stimulating immune responses and 
modulating responsiveness to immunotherapy, 
including via AHR signals, required further 
examination [185]. 

The AHR/NRF2 pathway was activated in the 
colon as described above, whereas the 
nucleotide-binding oligomerization domain 
(NOD)-like receptor family pyrin domain containing 
3 pathway was downregulated. Indole-3-lactic acid, 
which was an AHR ligand produced by 
Bifidobacterium bifidum FL-276.1 and FL-228.1, 
regulated the AHR/NRF2/NOD-like receptor family 
pyrin domain containing 3 pathway in Caco-2 cells to 
upregulate the tight junction proteins and protected 
the integrity of the epithelial barrier. Such studies 
were conducive to promoting clinical trials and 
developing probiotics for alleviating colitis [182]. 

Lactobacillus rhamnosus GG (LGG)-derived 
exosome-like nanoparticles (LDNPs) were released by 
the probiotic LGG, activating the AHR–NRF2 axis in 
the intestine, which can be blocked using LDNP 
inhibitors. The LDNPs were found to protect 
intestinal barrier function. These nanoparticles also 
protected against experimental alcohol-associated 
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liver disease via intestinal AHR/IL22/Reg 3-related 
and NRF2 signaling pathways, leading to decreased 
bacterial translocation and LPS release [186]. 

6.5. AHR/NRF2 in the gut–liver axis 
Hepatic sinusoidal obstruction syndrome 

(HSOS) was a well-known serious syndrome that can 
arise after autologous and allogeneic hematopoietic 
stem cell transplantation, and during treatment of 
certain cancers, such as Wilms tumor, 
rhabdomyosarcoma, and ALL. Replenishing 
glutathione with N-acetyl cysteine may be a 
reasonable approach to decreasing the risk of HSOS 
after cytotoxic therapy and myeloablation, but it may 
also decrease the efficacy of the chemotherapy for 
malignancies. Lower levels of tryptophan were 
produced and AHR stimulation was significantly 
reduced in the rat HSOS model. However, when 
injured HSOS rats were exposed to AHR ligands, the 
liver phenotype recovered by activation of AHR and 
NRF2 pathways in the liver [187]. 

In a mouse hepatic steatosis model, treatment 
with sulforaphane (SFN), which was an NRF2 agonist, 
reversed the steatosis by NRF2 activation. Thus, SFN 
treatment during a high-fat diet modulated lipid 
metabolism via the AHR–sterol regulatory 
element-binding protein 1 pathway by changing the 
gut microbiota, leading to the conversion of 
tryptophan to indole-3-acetic acid, which was a potent 
ligand for AHR [188]. Lansoprazole, which was a 
drug for treating gastric ulcers, activated the 
antioxidant stress response in rat hepatocytes, 
potentially treating oxidative hepatic damage via 
cross talk between AHR and NRF2 [189]. 

In addition, the carotenoid lycopene can act as an 
antioxidant drug to inhibit oxidative stress by 
modulating the AHR–NRF2 axis in the liver [190]. In 
addition, S-allylmercaptocysteine, which was an 
antioxidant drug, ameliorated metabolic 
dysfunction-associated steatotic liver disease by 
modulating the AHR–NRF2 axis in the liver. This 
drug targeted antioxidation-related genes, such as 
NQO-1, and potentially inhibited the inflammasome 
of NOD-like receptor protein 3/6 [191]. 

Many studies have shown that AHR–NRF2 cross 
talk occurs in the gut, liver, and gut–liver axis 
[192,193]. This study encompassed various 
pathologies that were involved in the AHR–NRF2 
axis. This cascade may provide valuable insights into 
future preclinical therapy. New ongoing clinical trials 
are investigating the potential of food compounds 
that interact with NRF2 or AHR pathways in 
inflammatory diseases. Curcumin has been studied 
for its potential benefits in treating patients with 
chronic kidney disease (CKD). The findings 

confirmed the anti-inflammatory properties of 
curcumin, which acted via the NRF2 axis [194]. 

However, more precise investigations are 
needed regarding the AHR–NRF2 cross talk in the gut 
or liver. Recently, it was shown that quercetin could 
improve gut barrier function in dextran sulfate 
sodium-induced colitis (ulcerative colitis) by 
regulating neutrophil extracellular traps and it could 
activate AHR and subsequently upregulate ARNT in 
neutrophils to regulate these extracellular traps [195]. 

The phase I enzyme ligand TCDD can induce 
expression of the phase II enzyme pyruvate kinase 
muscle isoform 2 (PKM2) in normal differentiated 
hepatocytes. PKM2 was a key enzyme in aerobic 
glycolysis, which contributed to cancer cell 
metabolism. The cooperative regulation between 
NRF2 and AHR inducing PKM2 was assessed in mice 
treated with TCDD. Approximately 579 genes among 
842 NRF2-enriched regions showed both NRF2 and 
AHR enrichment. Sequence analysis of regions 
showed overlapping NRF2 and AHR enrichment in 
the respective ARE or DRE sites. Although 18 regions 
possessed both motifs, which were responsible for 
either AHR or NRF2 signaling, NRF2 showed 
negligible enrichment within a closed PKM2 
chromatin region, whereas AHR was enriched 
29-fold. In addition, TCDD activated PKM2 in 
primary hepatocytes from wild-type and 
NRF2-deleted mice. Although both NRF2 and AHR 
can cooperate to regulate antioxidant gene expression, 
the induction of PKM2 by TCDD was independent of 
NRF2 activation [196]. PKM2 was a coactivator for 
AHR [194] and PKM2 promoter was found to contain 
DRE sites to which AHR could bind. 

6.6. AHR–NRF2 in the skin 
Atopic dermatitis (AD) is a chronic 

inflammatory skin disorder characterized by 
extensive skin barrier dysfunction and increased 
expressions of IL-4 and IL-13. The barrier dysfunction 
of AD correlated with the downregulation of 
barrier-related molecules such as filaggrin, Lor, and 
involucrin. Natural or medicinal ligands for AHR 
were considered potent upregulators of filaggrin, Lor, 
and involucrin. IL-4, IL-13, IL-22, and IL-17A can 
induce oxidative stress; hence, antioxidative AHR 
agonists, such as coal tar, glyteer, and tapinarof 
showed therapeutic efficacy for AD [197,198]. 

6.7. AHR–NRF2 in the lung 
The PAH–AHR signaling pathway was a critical 

axis in promoting lung inflammation and impairing 
lung function in many lung diseases [199]. The levels 
of hydroxynaphthalene, hydroxyphenanthrene, and 
hydroxyl PAHs were significantly elevated in the 
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urine of patients with lung cancer compared with 
healthy controls [200]. Activation of the PAH–AHR 
pathway promoted systemic inflammation and 
exacerbated the progression of lung diseases, such as 
chronic obstructive pulmonary disease and lung 
cancer. 

In the lung–gut axis, PAH exposure induced 
intestinal flora dysbiosis, leading to impaired 
intestinal barrier function and increased 
inflammation. As a therapeutic strategy, diet-derived 
AHR ligands, probiotics, and SCFAs may ameliorate 
PAH-mediated chronic inflammation and lung 
disease. Thus, the regulation of inflammation and 
intestinal dysfunction mediated by AhR signaling can 
inhibit systemic inflammation in patients with 
inflammatory lung diseases [201]. 

Regarding the AHR–NRF2 axis in lung disease 
or injury, hyperoxia (>95% O2) led to the induction of 
CYP1A1, NQO1, and GSTs [202-204]. By contrast, the 
hyperoxia-induced CYP1A2 upregulation did not 
involve AHR signaling [204]. AHR loss increased ROS 
generation in fetal primary lung cells in response to 
hyperoxia and resulted in higher susceptibility to 
hyperoxia lung injury in adult and newborn mice. 
Wang et al. demonstrated that Cyp1a2 KO (which is 
predominantly expressed in the liver) increased 
susceptibility for hyperoxia lung injury. Thus, the 
Cyp1a2-mediated metabolism of F2-isoprostanes 
PGF2α, might be the target for protection against 
hypertoxic lung injury [205]. 

Another possibility is the AHR–NF-κB–RelB 
interaction. AHR was shown to interact with RelB and 
modulate its expression [206,207]. AhR-deficient fetal 
human pulmonary microvascular endothelial cells 
showed higher hyperoxia-induced ROS generation, 
cleavage of poly (adenine dinucleotide 
phosphate-ribose) polymerase, and cell death than 
AhR-sufficient fetal human pulmonary microvascular 
endothelial cells [202]. The expression of CYP1A1, 
NQO1, SOD1, and nuclear RelB decreased in 
AHR-deficient cells. These findings supported the 
hypothesis that decreased antioxidant enzymes and 
RelB activation in AhR-deficient cells were associated 
with increased hyperoxic injury compared with 
AhR-sufficient cells. RelB acted as a negative 
regulator of the proinflammatory NF-κB pathway, 
possibly by its interaction with p50, thereby reducing 
the amount of p50 to form active dimers with p65 in 
the NF-κB complex [208]. 3,3′-Diindolylmethane 
(DIM), which was an active phytochemical derivative, 
induced ferroptosis in NSCLC cells. This treatment 
resulted in increased cellular Fe2+, ROS, and 
malondialdehyde levels; decreased cellular 
glutathione, AHR, NRF2, and glutathione peroxidase 
4 (GPX4), and inhibition of the mitochondrial 

membrane potential. These findings provided useful 
knowledge on DIM treatment and clinical research in 
patients with NSCLC [209]. The effects of 
DIM-induced ferroptosis can be reversed using the 
AHR receptor antagonist CH-223191, ferroptosis 
inhibitor Fer-1, and ROS scavenger NAC. 
Overexpression of NRF2 reversed DIM-induced 
ferroptosis. Thus, DIM induced cancer cell ferroptosis 
through the AHR/NRF2/GPX4 axis. 

7. Association of JDP2 with AHR–NRF2 

The function of JDP2 with AHR-NRF2 at the 
organismal level has not yet been reported. The 
oxidation and antioxidation stresses including 
metabolic stress, replication stress to control the 
oxygen, ATP, NAD(H), NADP(H) or peroxides might 
be possible to maintain inflammation, allergy, aging, 
disease, or cancers. The following functions of JDP2 
might be involved in regulating the AHR–NRF2 gene 
battery to regulate the ROS balance: (i) regulation of 
expression of solute carrier family 7 member 11 
(SLC7A11) through the AHR–NRF2 axis to regulate 
ferroptosis and cell death; (ii) control of cardiac 
remodeling and function; (iii) control of oncogenicity 
in T-cell lymphoma, which can lead to the 
development of cancer; (iv) control of in vivo bone 
homeostasis and host defense by regulating 
neutrophil differentiation; and (v) chromatin 
remodeling and epigenetic regulation of AHR, NRF2, 
and JDP2. 

IDO1 is a key enzyme of tryptophan catabolism 
in the Kyn pathway. IDO1 activation inhibited 
ferroptosis in erastin-exposed lung cancer cells and 
decreased lipid peroxidation and ROS production 
[206]. IDO1 stimulated NRF2 expression through 
activation of the AHR axis. It also upregulated the 
expression of the SLC7A11 ion channel, enhanced the 
pentose phosphate pathway via the AHR–NRF2 axis, 
and led to decreased generation of nicotinamide 
adenine dinucleotide phosphate and glutathione, 
thereby inhibiting ferroptosis. Furthermore, 
trans-3-indoleacrylic acid, which was a metabolite 
produced by P. anaerobius, promoted colorectal 
carcinogenesis by inhibiting ferroptosis 
independently of the enzyme GPX4. Instead, it 
mediated this action through the AHR/aldehyde 
dehydrogenase 1 family member A3/ferroptosis 
suppressor protein 1/coenzyme Q10 pathway [207]. 
In fact, JDP2 regulated ROS production and 
glutathione levels through SLC7A11 expression in 
granule cell progenitors [210,211]. In addition, JDP2 
induced the GABR6 subpopulation of mouse granule 
cell progenitors to differentiate into Purkinje cells 
[212]. 
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Indole-2-lactic acid (ILA) as a gut microbiota 
metabolite was found to play a role in mitigating 
doxorubicin-induced cardiotoxicity (DIC). It is a 
ligand for AHR, which activates the NRF2 signaling 
pathway through the AHR–NRF2 axis. The inhibitory 
function of ILA against ferroptosis was abrogated by 
AHR loss. In addition, the beneficial effects of ILA on 
DIC were eliminated in Nrf2-deficient mice. Thus, 
ILA exerted therapeutic functions against DIC by 
blocking ferroptosis via activation of the AHR–NRF2 
axis [213]. The uremic toxin indoxyl sulfate induced 
cardiac fibroblast activation and cardiac fibrosis in 
CKD. It also induced the proinflammation of neonatal 
mouse cardiac fibroblasts partly via the AHR 
pathway [214]. Thus, targeting AHR is a strategy to 
mitigate vascular inflammation and reduce the 
cardiovascular burden in CKD [215]. 

JDP2 played a role in the pathology of 
myocardial hypertrophy. Jdp2/activating 
transcription factor 3 (Atf3) DKO mice showed 
resistance to maladaptive cardiac remodeling 
processes and exhibited preserved cardiac function. 
The expression of both ATF3 and JDP2 was important 
for cardiac function in healthy and diseased hearts 
[216,217]. 

Inorganic arsenic shows cytotoxicity in human 
lymphoblastoid cells. The NRF2/Keap1 pathway was 
not the only cascade that functioned in response to 
acute doses of arsenic in lymphoblastoid cells. Other 
phase II enzymes (e.g., heme oxygenase 1) regulated 
by NRF2 can function as both acute and chronic 
biomarkers of arsenic exposure [218]. 

JDP2 was abnormally expressed in the T-ALL 
subset and associated with poor survival. It was 
required for T-ALL cell survival because its deletion 
led to apoptosis. Mechanistically, JDP2 controlled 
prosurvival signaling through direct transcriptional 
regulation of the anti-apoptotic protein MCL1 
[127,128,219]. 

Treating fine particulate matter with a diameter 
of ≤2.5 µm (PM2.5) with a strong acid at a high 
temperature hydrolyzed any protein content and 
removed trace elements. This reaction of PM2.5 with a 
strong acid at a high temperature terminated the 
AHR-dependent pathway, decreasing the eosinophil 
numbers in bronchoalveolar lavage fluid cells, 
lowering IL-13 and CXCL3, and reducing the 
peribranchial inflammation. By contrast, neutrophil 
numbers in bronchoalveolar lavage fluid cells and 
levels of macrophage inflammatory protein 2 alpha, 
epidermal growth factor receptor, NRF2, Toll-like 
receptor 4, and 4-hydroxy-2-nonenal in the lung were 
increased. PM2.5-bound proteins and acid-soluble 
metals might underlie the pathogenesis of 
PM2.5-induced allergic airway inflammation [220]. In 

addition, diesel exhaust exposure induced 
neutrophilia and lymphocytosis in humans. These 
responses were linked to the activation of key 
intracellular signaling pathways, including NF-κB, 
c-Jun, and mitogen-activated protein kinases, and the 
increased production of inflammatory mediators. 
Diesel exhaust exposure induced CYP1A1 expression 
and AHR activation without a coordinated 
antioxidant response [221]. There is a stronger 
relationship between NRF2 expressions and its 
related antioxidant response with osteoclasts than 
osteoblasts. The inhibition or activation of NRF2 
signaling by ML385 (an NRF2 inhibitor) or curcumin 
(an NRF2 activator), respectively, modulated ROS 
levels, which affected the function of osteoblasts and 
osteoclasts. The inhibition of NRF2 enhanced 
osteoclast genesis, whereas its activation suppressed 
it. By contrast, osteogenesis decreased irrespective of 
whether NRF2 was inhibited or activated. These 
findings highlight the distinct ways in which the 
NRF2-mediated antioxidant response regulated 
osteoclast and osteoblast differentiation [222]. 
Additional studies are required to determine the 
molecular link between bone genesis and the NRF2–
ROS axis. 

Jdp2 KO mice exhibited osteopetrosis resulting 
from impaired osteoclast genesis, and their 
neutrophils were morphologically normal, but 
impaired surface expression of Ly6G, bactericidal 
function, and apoptosis. Jdp2 KO mice were highly 
susceptible to S. aureus and Candida albicans infection. 
Thus, JDP2 plays an important role in bone 
homeostasis and host defense by regulating osteoclast 
and neutrophil differentiation [148,223]. 

Chromatin remodeling and epigenetic regulation 
were evident of AHR-NRF2-JDP2 complex. The 
BRG1/BRM-associated factor complex was identified 
as another complex that interacted with AHR or JDP2 
or NRF2 (data not shown) [224,225]. AHR directly 
interacted with BRG1 [224] but did not associate with 
the enhancer elements in ARNT-deficient cells; thus, 
the AHR–ARNT complex was critical for forming a 
complex with BRG1 [226]. Moreover, IL-6 expression 
was dependent on AHR and BRG1 activity [227]. The 
upregulation of lymphoid-specific helicase/ 
SMARCA6 activated AHR signaling during lung 
cancer progression [228]. BaP increased the expression 
of lymphoid-specific helicase/SMARCA6, which had 
lymphoid-specific helicase activity and played a 
crucial role in epigenetic regulation by modulating 
DNA methylation and chromosomal remodeling. 

Possibly, the AHR–ARNT dimer also activated 
the transcription of target genes by recruiting various 
transcription cofactors, including CBP/p300 [229], 
steroid receptor coactivator 1 (SRC1)/NCOA1, 
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SRC2/p160/bHLH-PAS, NCOA2/glutamate 
receptor-interacting protein 1/transcriptional 
intermediate factor 2, and SRC3/CBP/p300/ 
cointegrator-associated protein 1 (p/CIP)/AIB/ 
ACTR/RAC/GTRAM-1 [230,231]; coactivator- 
associated arginine methyltransferase 1 and protein 
arginine methyltransferase 1; and ATP-dependent 
chromatin remodeling components including BRG1 
[232]. After chromatin opening, the cell cycle initiation 
factor genes were initiated into transcription by the 
recruitment of the Pol II transcriptional initiation 
complex. In the nucleus, AHR synergized with RB to 
repress early region 2 binding factor (E2F)-dependent 
transcription and induced cell cycle arrest [233]. 
Moreover, activated AHR formed AHR–E2F1 protein 
complexes to block E2F1-dependent gene expression 
and apoptosis [234]. 

In addition to the chromatin modifier function of 
JDP2, HDAC inhibitors, such as butyrate or SCFAs, 
promoted the recruitment of AHR to the CYP1A1 
promoter in human Caco-2 cells and HepG2 cells 
[235]. JDP2 was a Myc-interacting and 
TP53-suppressing gene and was activated by the 
induction of HDAC1/2, which was required for the 
survival of JDP2-overexpressing lymphoma [236]. The 
JDP2–ATF3 heterodimer reportedly interacted with a 
series of HDAC members, including HDACs 1–6 and 
10. The association of HDAC3 and HDAC6 with JDP2 
and ATF3 occurred via direct protein–protein 
interactions. Only part of the N-terminal bZIP motif of 
JDP2 and ATF3 basic domain was necessary and 
sufficient for the interaction with HDACs in a manner 
that was independent of coiled-coil dimerization 
[66,114,115,121]. JDP2 was also associated with other 
proteins involved in chromatin regulation, such as 
Jumonji C histone demethylase 1B, mitogen-activated 
protein kinase kinase 6, Glis family zinc finger 1, 
NANOG, estrogen-related receptor beta, and 
Spalt-like transcription factor 4, that reprogram MEFs 
to iPSCs [145,236,237].  

In recent decades, AHR–NRF2 has been 
recognized as a critical modulator of disease because 
of the role of the AHR–NRF2 pathway in the 
regulation of the redox system and inflammatory 
responses for homeostasis [144,192]. Recent studies 
have clarified how the AHR–NRF2 axis coordinates 
with chromatin regulators such as the histone 
chaperone JDP2. Studies on the pathophysiology of 
the AHR–NRF2–JDP2 axis will provide key insights 
into the modulation of the phase I and II enzyme 
systems to maintain ROS homeostasis for cellular 
protection. Here, we propose that JDP2, which is a 
histone chaperone, acts as a bridge between 
chromatin modulators and both open and closed 
chromatin, guiding the RNA polymerase complex to 

the AHR–NRF2 gene battery. An animal-free in vitro 
model, such as organoid-on-a-chip and 
organ-on-a-chip, should be generated to replace 
organoid models for screening therapeutics and 
preclinical studies [238,239]. 

Conclusions 
In the present review, the newly described 

AHR–NRF2–JDP2 gene battery provides evidence 
that JDP2 contributes to the association of the AHR–
NRF2 battery with AHR promoter activation and ROS 
homeostasis. The AHR–NRF2–JDP2 gene battery is 
extremely sensitive and can be activated by phase I 
enzyme ligands, such as TCDD and BaP or 
tryptophan derivatives. Oxidative stress is greater in 
the steady state in JDP2-deficient MEFs than in 
wild-type MEFs. Phase I enzyme ligands induce 
activation of the AHR promoter and play roles in the 
phase II enzyme-encoded promoter through the 
phase II transcription factor NRF2 and the chromatin 
modifier JDP2. The AHR–JDP2 and NRF2–JDP2 
complexes are recruited to the DRE region first and 
then to the ARE region of the AHR promoter to 
activate gene expression. Thus, these proteins are 
critical for modulating the ROS balance, and JDP2 
modulates the balance between detoxification and 
antioxidation responses. The activation of phase I 
enzymes by binding of the AHR–NRF2–JDP2 complex 
to the DRE results in a significant increase in ROS. 
After ROS accumulates to a threshold level, it induces 
the AHR–NRF2–JDP2 complex on the DRE 
cis-element, and then the complex binds to the ARE to 
regulate the maintenance of homeostasis against 
oxidative stress. The newly described AHR–NRF2–
JDP2 gene battery links the AHR–JDP2 and NRF2–
JDP2 axes. Therapeutics are being developed to target 
this new cascade AHR–NRF2–JDP2. As of 2024, 115 
interventional human PSC (hPSC) trials with 
regulatory approval have been performed and 83 
hPSC products have been developed. Most of these 
trials focused on the eye, central nervous system, and 
cancer treatments. To date, more than 1,200 patients 
have been treated using hPSC products, accounting 
for more than 1,011 clinical administrative cells [240]. 
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