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Abstract 

Tumor heterogeneity and the dynamic evolution of tumor immune microenvironment (TIME) contribute 
to therapeutic resistance and poor clinical prognosis. To elucidate this mechanism, we first established a 
murine tumor evolution model (TEM) and systematically identified evolutionary core genes 
demonstrating progressive alterations during evolution. Subsequently, we developed a single-cell TEM 
through integrative analysis of hepatocellular carcinoma (HCC) clinical specimens (n=10) with external 
cohorts (n=11), enabling dynamic characterization of tumor-immune interactions during evolution, while 
addressing ethical challenges associated with obtaining tumor tissues from multiple stages in a single 
patient. Through TEMs analyses, we identified a contrasting glucose metabolism pattern between 
malignant cells and CD8+ T cells during tumor evolution. Mechanistically, glucose metabolic dominance 
triggers NSUN2 upregulation in tumor cells, where this functional RNA methyltransferase stabilizes key 
glycolytic transcripts (GLUT1, HK2, PFKM) through mRNA methylation. The NSUN2-mediated GLUT1 
stabilization enhances the competitive advantage of tumor cells in glucose acquisition, creating a positive 
feedback loop that accelerates malignancy and exacerbates CD8+ T cell dysfunction. Building on these 
insights, we designed a dual-targeting strategy combining GLUT1/NSUN2 axis inhibitor WZB117 with 
PD-L1 blockade, which synergistically suppressed tumor evolution and reversed immunosuppression in 
preclinical models, suggesting a novel synergistic therapeutic strategy for treatment-resistant HCC. 

Keywords: tumor evolution, metabolic reprogramming, tumor immune microenvironment, single-cell sequencing, 
5-methylcytosine modification 

Introduction 
Hepatocellular carcinoma (HCC) ranks as the 

sixth most common cancer worldwide and is the 
second leading cause of cancer-related deaths [1]. Due 
to its subtle symptoms and aggressive progression, 
the majority of patients are diagnosed at advanced 

stages [2]. Immunotherapy has emerged as one of the 
most promising strategies for combating tumors [3]. 
However, only 15–20% of HCC patients respond to 
immunotherapy, with limited improvements in 
overall survival observed in most cases [4, 5]. A key 
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challenge lies in the remarkable plasticity and 
adaptability of tumors within the tumor immune 
microenvironment (TIME) and under various 
therapeutic pressures. This phenomenon, known as 
tumor evolution, significantly undermines the 
efficacy of single-agent treatments [6-8]. 

Within the TIME, intricate interactions and 
regulatory relationships occur among its diverse 
components [9]. A key aspect of these interactions is 
the intense metabolic competition between malignant 
cells and immune cells for shared nutrients, which 
plays a crucial role in shaping tumor initiation and 
progression [10, 11]. For instance, glutamine 
competition has been shown to drive the 
immunosuppressive reprogramming of intratumoral 
GPR109A+ myeloid cells in HCC, facilitating immune 
evasion and promoting tumor growth [12]. Similarly, 
the Warburg effect drives tumor cells within the TIME 
to consume large amounts of glucose for rapid 
proliferation. This intense metabolic competition 
deprives T cells, which also rely on glucose for 
activation and function, potentially impairing CAR-T 
cell efficacy and promoting immune evasion [13]. 
Emerging evidence reveals that metabolic 
reprogramming in the TIME orchestrates antitumor 
immunity through multilayered regulatory 
mechanisms. For example, succinyl-CoA, 
traditionally viewed as merely a metabolic 
intermediate, actively regulates immune checkpoints 
to limit tumor immune evasion [14]. Furthermore, 
tumor cells can directly disrupt T cell-mediated 
immune surveillance through transfer of 
mitochondria containing pathogenic mtDNA 
mutations [15]. These findings reveal the multifaceted 
nature of metabolic crosstalk in the TIME, while the 
specific role of metabolic-immune signaling in HCC 
evolution warrants further investigation. 

In many cases, nutrients or metabolites within 
the TIME exert their effects by acting as direct 
substrates for biochemical reactions [16, 17]. 
Methionine, through its metabolite S-adenosyl-
methionine (SAM), contributes to DNA and protein 
methylation while activating tumor-associated 
macrophages (TAMs) to suppress tumor progression 
[18]. Glucose fuels the glycolysis pathway, where it is 
broken down into pyruvate while generating ATP 
and NADH. This pathway is preferentially utilized by 
tumor cells to support their rapid growth and 
metabolic demands [19]. Interestingly, recent studies 
have revealed that leucine can directly activate 
mTORC1 signaling by binding to its specific receptor, 
the SAR1B protein [20]. Furthermore, glucose has 
been found to interact with DDX21, promoting the 
dissociation of DDX21 dimers and thereby regulating 
mRNA splicing and tissue differentiation [21]. These 

findings suggest that beyond their conventional roles 
in metabolic pathways, nutrients can act as 
independent signaling molecules, mediating diverse 
cellular processes crucial for tumor development and 
cellular adaptation within the TIME. 

According to our tumor evolution model (TEM), 
the competition for glucose between malignant cells 
and CD8+ T cells is a critical driver of HCC evolution. 
Excessive glucose uptake by malignant cells markedly 
increases NSUN2 expression, which in turn stabilizes 
the mRNA of GLUT1, HK2, and PFKM in an 
m5C-dependent manner, facilitating metabolic 
reprogramming. This process establishes a positive 
feedback loop, wherein the upregulation of GLUT1 
further enhances the glucose uptake capacity of 
malignant cells, promoting tumor evolution while 
suppressing the anti-tumor activity of CD8+ T cells. 
Furthermore, we propose a novel immunometabolic 
therapy targeting the glucose-competition/NSUN2 
axis using WZB117 in combination with anti-PD-L1 
treatment. This strategy not only overcomes 
resistance to immune checkpoint blockade but also 
synergistically attenuates tumor evolution, thereby 
bridging the interplay between immunometabolic 
therapy and tumor evolution. 

Materials and Methods 
Patients 

A cohort of 10 HCC patients was established, 
who underwent surgical treatment at the Sir Run Run 
Shaw Hospital. All patients signing Informed Consent 
before surgery for the use of their tissues for scientific 
research. This study conformed to the principles of 
the Declaration of Helsinki and was approved by the 
Ethics Committee of Sir Run Run Shaw Hospital 
(SRRSHLS2022Y0312). 

Animal studies 
C57BL/6 mice were purchased from Qizhen 

Experimental Animal Technology (Hangzhou, CN). 
C57BL/6JGpt-H11em1Cin(Tcra&Tcrb)/Gpt (OT-1) mice were 
purchased from GemPharmatech (Nanjing, CN). In 
the in vivo syngeneic tumorigenesis assays, 2 × 10⁶ 
cells suspended in 50 μL were subcutaneously 
injected into 4-week-old male C57BL/6 mice (n = 6 
per group). For experiments involving glucose 
supplementation (15% glucose in drinking water), the 
injected cell number was uniformly reduced to 2 × 10⁵ 
cells (also in 50 μL) for all mice in that experiment to 
minimize tumor burden and comply with ethical 
guidelines, as suggested by preliminary data. The 
dosing regimen for the anti-mouse PD-L1 antibody 
(Clone 10F.9G2) or rat IgG2b isotype control 
antibodies was 10 mg/kg administered 
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intraperitoneally twice a week [22]. For WZB117 
(dissolved in PBS/DMSO solution) or the PBS/DMSO 
vehicle, daily intraperitoneal injections at a dose of 10 
mg/kg were employed [23]. Tumor dimensions were 
measured using calipers to determine length and 
width, and tumor volume was calculated using the 
formula: V = (Length × Width × Width)/2. These mice 
were singly-housed with environmental enrichment. 
All animals were maintained on a 12-hour light/dark 
cycle, in a humidity- and temperature-controlled 
room with water and food available ad libitum. All 
mouse procedures were conducted under the 
guidelines and the institutional animal care protocol 
approved by the Experimental Animal Committee at 
Zhejiang University (ZJU20240983). 

Cell culture 
Hepa1-6, Huh7, HCCLM3, and Jurkat cell lines 

were maintained under physiological glucose 
conditions (5.5 mM D-glucose) in their respective 
media supplemented with 10% fetal bovine serum at 
37 °C with 5% CO2. Hepa1-6 and HCCLM3 cells were 
cultured in Dulbecco’s Modified Eagle Medium 
(DMEM). Huh7 cells were maintained in Minimum 
Essential Medium (MEM). In the process of T 
cell-related experiments, T cells were cultured in the 
RPMI-1640 medium supplemented with 25 µL/mL 
ImmunoCult™ CD3/CD28 T cell activator and 10 
ng/mL recombinant interleukin-2 (rIL-2). 

Reagents (e.g. antibodies, drugs, proteins, 
primers, vectors etc.) 

Detail of these reagents were included in 
Supplementary Materials. 

Murine tumor evolution model 
To establish the orthotopic syngeneic model, 2 × 

106 Hepa1-6 cells were resuspended in 50 μL of 
serum-free DMEM; 50 μL of this mixture was injected 
into the left lobe of the liver in C57BL/6 mice. Mice 
injected with Hepa1-6 cells were sacrificed at 2, 4, and 
6 weeks post-injection, and samples were collected for 
subsequent analyses. 

Identification of evolutionary core genes 
Differential expression analysis was performed 

using the DESeq2 package, and differentially 
expressed genes (DEGs) were identified based on an 
adjusted p-value < 0.05 (with Benjamini-Hochberg 
correction) and |log2(Fold Change)| ≥ 1. Weighted 
gene co-expression network analysis (WGCNA) was 
conducted using UMI counts, with a soft-thresholding 
power of 3 determined by the pickSoftThreshold 
function [24]. Modules were detected using the "tree" 
method with a minimum size of 10 genes and the 

deepSplit parameter enabled. By intersecting DEGs 
with characteristic WGCNA modules, candidate 
features were refined and further selected using 
support vector machine—recursive feature 
elimination (SVM-RFE) [25]. The svmRFE function 
incorporated feature elimination into a ten-fold 
cross-validation framework, with k = 10 controlling 
the number of features removed per iteration. We 
performed fuzzy c-means clustering using the R 
package Mfuzz to identify genes with similar 
expression patterns during tumor evolution [26]. For 
each time point, expression values were averaged 
across biological replicates and standardized (mean = 
0, standard deviation = 1) to facilitate clustering in 
Euclidean space. Soft clustering assigned membership 
scores (0–1) to each gene across four clusters, and core 
genes were identified using a membership score 
cutoff of 0.5, yielding 21–67 genes per cluster. 

Survival analysis 
Survival analysis was conducted using the R 

packages survival (v3.5.5) and survminer (v0.4.9). 
Patients from the TCGA and ICGC Japan cohorts 
were stratified into high- and low-risk groups based 
on the expression levels of evolutionary core genes. 
Kaplan-Meier survival curves were generated using 
the ggsurvplot function and compared using the 
log-rank test. Additionally, associations between 
clinical variables and risk groups were assessed using 
one-way ANOVA. 

Enrichment analysis 
 Gene set variation analysis (GSVA) was 

performed using the R package GSVA. This 
non-parametric and unsupervised method transforms 
a gene-by-sample expression matrix into a gene 
set-by-sample matrix, calculating enrichment scores 
for each sample and pathway. Overrepresented Gene 
Ontology (GO) terms were identified using the 
clusterProfiler package (v4.2.2) [27]. Adjusted p-values 
were computed using the Benjamini-Hochberg (BH) 
method, with a significance threshold of < 0.05. 

Single-nucleus RNA-sequencing data 
collection and quality control  

Nuclei were isolated from tumor samples of 10 
HCC patients using Nuclei EZ Lysis Buffer 
supplemented with protease and RNase inhibitors. 
cDNA synthesis and library preparation were 
performed following the manufacturer’s standard 
protocol, and sequencing was conducted on an 
Illumina NovaSeq 6000 platform (paired-end, 150 bp 
reads) by LC-Bio Technology Co. Ltd. (Hangzhou, 
China), targeting a minimum of 20,000 reads per 
nucleus. Raw FASTQ files were processed using Cell 
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Ranger (v7.1.0, 10X Genomics), aligned to the GRCh38 
human reference genome (GENCODE v32 / Ensembl 
98), and gene-by-cell count matrices were generated 
for downstream analysis in R. Quality control was 
conducted using the `runScStatistics` function from 
the **scCancer** package (v2.2.1). Nuclei were 
retained only if they had >400 UMIs, >500 detected 
genes, and <4% mitochondrial gene expression. In 
addition, publicly available single-cell RNA-seq data 
of HCC tumors (GEO: GSE151530) were included for 
comparative and integrative analyses. To correct for 
batch effects between snRNA-seq data and external 
scRNA-seq data, we employed the LIGER package 
using integrative non-negative matrix factorization 
(iNMF) with 30 factors (k = 30) and a regularization 
parameter λ = 5, followed by joint clustering and 
quantile normalization. 

Construction of tumor evolution model (TEM) 
Highly variable genes (HVGs) were identified 

using the Seurat FindVariableFeatures function with 
variance-stabilizing transformation (selection.method 
= "vst"), and the top 2,000 most variable features were 
selected for downstream analysis. Principal 
component analysis (PCA) was performed on these 
HVGs using the RunPCA function. For 
dimensionality reduction and visualization, the top 20 
principal components were used to construct a shared 
nearest neighbor (SNN) graph via the FindNeighbors 
function, followed by cell clustering using 
FindClusters at a resolution of 0.8. Cell types were 
annotated based on canonical marker gene 
expression, resulting in the identification of distinct 
clusters including malignant cells, epithelial cells, 
endothelial cells, hepatic stellate cells (HSCs), 
macrophages, B cells, CD8+ T cells, CD4+ T cells, and 
NK cells. To build the TEM, malignant cells were 
further stratified into three evolutionary stages 
("early," "mid," and "advanced") using k-means 
clustering (k = 3), with the optimal number of clusters 
determined by the maximum silhouette coefficient. 
Finally, unsupervised hierarchical clustering was 
applied to the samples to characterize the 
evolutionary phases of the TIME. 

Trajectory analysis 
To reconstruct cellular trajectories and order 

cells along a pseudotemporal axis, we used the 
Slingshot package, a widely adopted tool for lineage 
inference [28]. Slingshot leverages pre-defined cell 
clusters to construct lineage relationships by 
generating a minimum spanning tree (MST). 
Applying this approach enabled us to delineate the 
dynamic progression of cellular states within the 
dataset, thereby supporting a comprehensive analysis 

of HCC evolution. 

Metabolism analysis 
Signature score of metabolism pathways in 

single-cell resolution was quantified by scMetabolism 
(v0.2.1) against REACTOME gene sets [29]. 

Tissue preparation and 
immunohistochemistry 

Formalin-fixed, paraffin-embedded tumor 
tissues were sectioned at 4 μm. Following 
deparaffinization and rehydration, antigen retrieval 
was performed by heating the sections at 95 °C in 
citrate buffer (pH 6.0), followed by treatment with 
hydrogen peroxide to block endogenous peroxidase 
activity. To reduce nonspecific antibody binding, 
sections were incubated in blocking buffer (10% 
normal goat serum in PBST) at room temperature for 
1 hour. Primary antibodies were applied overnight at 
4 °C, including rabbit anti-Ki-67 (1:400), 
anti-N-cadherin (1:5,000), anti-VEGFα (1:500), and 
anti-CD8 (1:2,000). Sections were then incubated with 
secondary antibodies for 2 hours at room 
temperature. Finally, slides were counterstained with 
acid hematoxylin solution (12 min) and Scott’s bluing 
reagent (5 min), dehydrated through a graded ethanol 
series to 100%, cleared in xylene (5 min), and 
coverslipped using Tissue-Tek Glas mounting 
medium. 

Glucose starvation and restoration 
For glucose deprivation, cells were washed twice 

with PBS and then cultured in glucose-free DMEM or 
RPMI-1640 supplemented with dialyzed FBS for the 
indicated duration. Glucose restoration was 
performed by adding DMEM containing glucose, 
2-deoxy-D-glucose (2-DG), 2-NBDG, BAY-876, or 
WZB117 for the specified time period. 

Cell counting kit-8 assay 
Cell proliferation was assessed using the Cell 

Counting Kit-8 (CCK-8) assay. Briefly, cells were 
seeded in 96-well plates at a density of 1 × 10⁴ cells per 
well. At 24, 48, and 72 hours, 10 μL of CCK-8 reagent 
was added to each well containing 100 μL of medium 
and incubated for 1 hour at 37 °C in a 5% CO2 
atmosphere. Absorbance at 450 nm was measured 
using a spectrophotometer (Thermo, Grand Island, 
NY, USA) every 24 hours over a period of 3 days to 
generate cell growth curves, following the 
manufacturer’s instructions. 

Cell migration assay 
For the transwell migration assay, HCC cells 

were seeded into the upper chambers of transwell 
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inserts in serum-free medium at a density of 0.2–
1 × 10⁵ cells per well. The lower chambers were filled 
with culture medium containing 10% FBS as a 
chemoattractant. Cells were incubated at 37 °C for 
24 hours. After incubation, cells that had migrated to 
the lower surface of the membrane were fixed with 
4% paraformaldehyde and stained with 0.1% crystal 
violet for visualization. 

Colony formation assay 
For the colony formation assay, 500 cells per well 

were seeded into 24-well plates and cultured for 
14 days. Cells were then washed twice with PBS, fixed 
with 4% paraformaldehyde for 15 min, and stained 
with 0.5% crystal violet for 30 min at room 
temperature. 

Extracellular acidification rate (ECAR) assay 
Extracellular acidification rate (ECAR) was 

measured using the XF96 Extracellular Flux Analyzer 
(Seahorse Bioscience). Malignant cells were seeded at 
a density of 1.0 × 10⁵ cells per well in XF96 plates and 
incubated overnight. OT-1 CD8+ T cells or Jurkat cells 
were seeded at 1.0 × 10⁴ cells per well in XF96 plates 
pre-coated with Cell-Tak adhesive. Plates were briefly 
centrifuged to immobilize the cells. One hour prior to 
the assay, the culture medium was replaced with XF 
assay medium. The XF Glycolysis Stress Test Kit was 
used to assess glycolytic function. Glucose, 
oligomycin, and 2-DG were diluted in XF assay 
medium to final concentrations of 10 mM, 1 μM, and 
50 mM, respectively, and loaded into the reagent 
cartridge. ECAR was measured according to the 
manufacturer’s instructions. 

Quantitative real-time PCR 
Total RNA was extracted using TRIzol reagent 

(Invitrogen). One microgram of total RNA was 
reverse-transcribed using SuperScript III reverse 
transcriptase (Invitrogen). Quantitative real-time PCR 
(RT-qPCR) was performed on a Bio-Rad CFX96 
system (Bio-Rad) using SYBR Green Master Mix to 
quantify target gene expression. Expression levels 
were normalized to β-actin (ACTB) mRNA. 

Glucose Uptake (2-NDBG incorporation) 
assays 

Cells were washed twice with PBS for 5 min 
each. Following washing, 200 μM 2-NBDG was added 
to the cell suspension and incubated for 1 h at 37 °C. 
After incubation, cells were trypsinized, collected by 

centrifugation, and the supernatant was discarded. 
Cells were then washed twice more with PBS for 
5 min each, resuspended in PBS, and analyzed by flow 
cytometry to evaluate 2-NBDG incorporation as a 
quantitative measure of glucose uptake. 

Intracellular cytokine production analysis 
Primary CD8+ T cells were cultured in 

RPMI-1640 medium supplemented with 10% FBS, 
10 ng/mL recombinant IL-2, and 50 μM 
β-mercaptoethanol. OVA-specific TCR transgenic 
OT-1 T cells were isolated from OT-1 mice and 
activated with the OVA-derived peptide SIINFEKL 
for 5 days. After activation, cells were washed twice 
with PBS for 5 min each and resuspended in PBS. 
Fixable Viability Stain (1:100) was added, and cells 
were incubated on ice for 10 min. After washing with 
PBS, cells were stained with surface antibodies 
including CD45 (1:200), CD3 (1:200), and CD8 (1:200) 
at 4 °C for 30 min. Following surface staining, cells 
were fixed with Fixation Buffer for 20 min at room 
temperature in the dark, then permeabilized using 
Intracellular Staining Permeabilization Wash Buffer. 
After centrifugation and removal of the supernatant, 
cells were resuspended in the same buffer and stained 
with intracellular antibodies including GZMB (1:30), 
perforin (1:50), IFN-γ (1:100), and TNF-α (1:100) for 
1 h at room temperature in the dark. After washing to 
remove unbound antibodies, cells were resuspended 
in PBS and analyzed by flow cytometry. 

In vitro cytotoxicity assay 
OVA-specific TCR transgenic OT-1 T cells were 

isolated from OT-1 mice and activated using the 
OVA-derived peptide SIINFEKL. OVA-expressing 
Hepa1-6 cells (referred to as OVA-Hepa1-6) were 
generated via lentiviral transduction. Tumor cells 
were labeled with carboxyfluorescein succinimidyl 
ester (CFSE) according to the manufacturer’s protocol 
and seeded at a density of 1 × 10⁵ cells per well. 
Effector cells (purified OT-1 T cells) were then added 
to each well, and co-cultures were incubated for 24 h 
at 37 °C in a humidified 5% CO2 incubator using 
medium containing 5.5 mM glucose. Following 
incubation, cells were stained with propidium iodide 
(PI) to identify dead cells. Samples were analyzed by 
flow cytometry. CFSE-positive tumor cells and 
PI-positive dead cells were quantified to determine 
the percentage of tumor cell lysis. 

 

cytotoxicity % =
Experimental PI/CFSE positive cells − Spontaneous PI/CFSE positive cells

Total CFSE positive cells
× 100% 
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Immunoblotting 
Total proteins were extracted using RIPA lysis 

buffer. Protein samples were separated by sodium 
dodecyl sulfate-polyacrylamide gel electrophoresis 
(SDS–PAGE) and transferred onto a PVDF membrane. 
Membranes were incubated overnight at 4 °C with 
primary antibodies, followed by incubation with 
appropriate secondary antibodies at room 
temperature for 1 hour. Protein bands were visualized 
using enhanced chemiluminescence (ECL) reagents to 
detect antigen–antibody complexes. 

m5C dot blot assay 
Equal amounts of RNA were spotted onto a 

positively charged nylon membrane (GE Healthcare). 
After UV crosslinking using a Stratalinker UV 
Crosslinker 1800 (254 nm, 3 minutes), the membrane 
was blocked with 5% non-fat milk in PBS containing 
0.1% Tween-20 (PBST). The membrane was then 
incubated with a rabbit anti-m⁵C primary antibody 
(1:1000), followed by a peroxidase-conjugated 
AffiniPure goat anti-rabbit IgG (H+L) secondary 
antibody (1:2000). m⁵C RNA levels were detected 
using enhanced chemiluminescence (ECL) reagents. 
Equal RNA loading was confirmed by methylene blue 
staining. 

Methylated RNA immunoprecipitation 
(MeRIP) and RNA immunoprecipitation (RIP) 
assays 

Real-time quantitative PCR (qPCR) was used to 
assess the relative abundance of selected mRNAs in 
m⁵C antibody immunoprecipitation (IP) and 
corresponding input samples. Total RNA was 
extracted using Trizol reagent (Invitrogen). A total of 
500 ng RNA was reserved as input, while the 
remaining RNA was used for m⁵C-IP. For each IP 
reaction, 100 μg of RNA was diluted into 500 μL IP 
buffer (150 mM NaCl, 0.1% NP-40, 10 mM Tris, 
pH 7.4) supplemented with 100 U RNase inhibitor, 
and incubated with an anti-m⁵C antibody at 4 °C for 2 
hours. BSA-coated Dynabeads Protein A were then 
added and rotated for an additional 2 hours at 4 °C. 
After four washes with IP buffer containing RNase 
inhibitors, the m⁵C-enriched RNA was eluted using 
elution buffer (5 mM Tris-HCl [pH 7.5], 1 mM EDTA, 
0.05% SDS, and 4 μL Proteinase K [20 mg/mL]). Equal 
amounts of IP RNA and input RNA were used for 
cDNA synthesis. mRNA expression was determined 
by quantification cycle (Cq) values, and relative m⁵C 
enrichment for each gene was calculated by 
normalizing IP values to corresponding input values. 

RIP assays for NSUN2–mRNA interactions were 
performed using an anti-NSUN2 antibody following 

the same procedure as described for MeRIP. 
Immunoprecipitated RNAs were subsequently 
analyzed by qPCR to identify NSUN2-bound 
transcripts. 

RNA decay assay 
Cells were seeded in 6-well plates and incubated 

overnight at 37 °C. Subsequently, cells were treated 
with actinomycin D (5 μg/mL) for varying durations, 
after which RNA was extracted for analysis. mRNA 
levels were quantified by real-time quantitative PCR 
(qPCR). The half-lives of GLUT1, HK2, and PFKM 
mRNAs were normalized to β-actin, with expression 
levels at time zero (t = 0) set to 100%, consistent with 
previously published protocols [30]. 

ATP measurement 
Cellular ATP levels were measured using an 

ATP assay kit (Beyotime Biotechnology) following the 
manufacturer’s instructions. Briefly, cell lysates were 
centrifuged at 12,000 × g for 10 min to remove debris, 
and the supernatant was mixed with the substrate 
solution. Luminescence was measured using a 
microplate luminometer with an integration time of 
10 s per well. 

Quantification and statistical analysis 
GraphPad Prism v.9.5.1 was used to calculate 

statistical significance. All experiments were 
independently performed at least three times. Results 
are presented as mean ± standard deviation (SD). 
Comparisons were conducted using paired or 
unpaired Student’s t test, one-way ANOVA, or 
two-way ANOVA, as indicated in the respective 
figure legends. 

Results 
Identification of evolutionary core genes in 
murine tumor evolution model (TEM) 

Research into tumor evolution is heavily 
constrained by clinical ethical limitations on acquiring 
tumor tissues at various stages from the same patient. 
To overcome this challenge, we developed a murine 
TEM through orthotopic implantation of Hepa1-6 
cells into the livers of C57BL/6 mice, effectively 
replicating the in situ microenvironment characteristic 
of HCC. Tumor samples were collected every 14 days, 
and high-throughput transcriptome sequencing was 
conducted to characterize the dynamic changes 
occurring during tumor evolution (Fig. 1A). 

Malignancy-associated biomarker levels showed 
a gradual elevation across time points (Fig. 1B). 
Simultaneously, Gene Set Variation Analysis (GSVA) 
revealed a marked upregulation of 
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malignancy-related pathways as tumor evolution 
progressed (Fig. 1C), further supporting our model’s 
reliability. And significant alterations in 
transcriptomic profiles were observed across tumor 

evolution, suggesting these dynamic changes could 
serve as robust indicators of distinct evolutionary 
stages while providing insights into underlying 
biological processes (Fig. 1D). 

 

 
Figure 1. Identification of evolutionary core genes in murine tumor evolution model (TEM). A. Schematic diagram illustrating the workflow of study design and 
analysis. B. Immunohistochemical staining of Ki67, N-cadherin, and VEGFα in tumor tissues from an orthotopic hepatocellular carcinoma model established by the transplantation 
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of Hepa1-6 cells into the livers of C57BL/6 mice (murine tumor evolution model, murine TEM). Tumor samples were collected at indicated time points post-transplantation, with 
brown signals indicating positive staining. C. Comparison of GSVA scores for pathways associated with tumor malignancy across distinct time points post-transplantation in 
murine TEM. Data are mean ± SD. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, ns, non-significant by two-way ANOVA. D. Heatmap depicting the comparative gene 
expression profiles in tumor tissues harvested from the murine TEM at distinct time points post-transplantation, highlighting transcriptomic changes during tumor evolution. 
Differentially expressed genes (DEGs) were identified based on the criteria of p < 0.05 and |log2(Fold Change)| ≥ 1. E. Weighted Gene Co-Expression Network Analysis 
(WGCNA) identified a total of 12 merged modules. The heat map illustrates the expression level changes of co-expression modules across distinct time points 
post-transplantation in murine TEM. F. The intersection of DEGs with co-expression modules was further analyzed using Support Vector Machine-Recursive Feature Elimination 
(SVM-RFE) algorithm. The UpSet plot indicated this relationship. G. Genes clustered according to their expression patterns along tumor evolution, utilizing Mfuzz clustering 
analysis. H and I. Correlation between angiogenesis and cell migration GSVA enrichment scores with Mfuzz clusters: C1 & C4 (H), C3 (I) in the TCGA-LIHC cohort. 

 
Then, Weighted Gene Co-expression Network 

Analysis (WGCNA) identified key regulatory 
modules associated with tumor evolution. Among 
them, the ME1, ME5, and ME9 modules were 
progressively upregulated, while the ME2 and ME4 
modules showed consistent downregulation over 
time (Fig. 1E and Fig. S1A). To refine this analysis, we 
employed the Support Vector Machine-Recursive 
Feature Elimination (SVM-RFE) algorithm, which 
identified evolutionary signature genes by iteratively 
ranking features based on their temporal relevance in 
the model (Fig. 1F). These genes were subsequently 
grouped into four distinct clusters (C1–C4) using 
fuzzy c-means clustering analysis (Mfuzz), which 
revealed dynamic expression patterns throughout 
tumor evolution. Specifically, genes in clusters C1 and 
C4 exhibited a gradual increase in expression, while 
those in cluster C3 demonstrated progressive 
downregulation from the second to the sixth week 
after orthotopic implantation (Fig. 1G). Based on these 
trends, we propose that genes in clusters C1, C3 and 
C4 represent evolutionary core genes (Supplementary 
Table 1), as their dynamic expression profiles likely 
reflect critical molecular mechanisms underlying 
tumor evolution. 

Crucially, the key genes identified through the 
murine TEM were strongly associated with tumor 
evolution in human HCC. Specifically, these genes 
correlated significantly with various aspects of tumor 
malignancy, including tumor migration and 
angiogenesis (Fig. 1H and I). Furthermore, they 
showed strong associations with TNM staging (Fig. 
S1B and C) and patient prognosis (Fig. S1D and E). 
Taken together, these findings underscore the 
potential of the evolutionary core genes identified 
through the murine TEM as a foundation for 
exploring critical molecular mechanisms of tumor 
evolution and their applicability in advancing 
research on HCC. 

Glucose metabolic reprogramming is a crucial 
event during HCC evolution 

Having identified evolutionary core genes 
through transcriptomic analyses of the murine TEM, 
we next turned to single-nucleus RNA sequencing 
(snRNA-seq) to investigate the complex cellular 
dynamics and molecular pathways within the tumor 

immune microenvironment (TIME) that define tumor 
evolution. To enhance the robustness of our analysis, 
we integrated snRNA-seq data from an HCC patient 
cohort (n = 10) with an external publicly available 
dataset from the GEO database (accession GSE151530; 
n = 11). Prior to integration, rigorous quality control 
was performed, yielding a high-confidence combined 
dataset comprising 78,430 cells and 37,990 genes. To 
mitigate batch effects stemming from technical and 
cohort differences, we employed Liger for batch effect 
correction (Fig. 2A and Fig. S2A-B). Then we classified 
9 major cell types across the dataset (Fig. 2B and Fig. 
S2C). K-means unsupervised clustering was 
employed to define the evolutionary stages of 
malignant cells, focusing specifically on the 
evolutionary core genes. This approach established a 
single-cell TEM, providing a foundational framework 
for understanding how dynamic changes within 
TIME (Fig. 2C). Building upon this analysis, we 
stratified HCC patient samples according to the 
dominant malignant cell evolutionary subpopulation 
identified in each sample. This patient-specific 
stratification revealed distinct patterns of TIME 
remodeling during evolution, enabling its 
classification into “early,” “mid,” and “advanced” 
evolutionary stages (Fig. 2D). These classifications 
offer valuable insights into the progressive 
interactions between malignant cells and their 
surrounding immune landscape, emphasizing a 
timeline of co-evolutionary dynamics. 

At more advanced stages of tumor evolution, we 
observed significant activation of canonical oncogenic 
pathways including Wnt, NF-κB, and PI3K, which 
validates the reliability of our single-cell TEM. Despite 
existing targeted therapies against these pathways, 
their clinical efficacy remains limited due to tumor 
heterogeneity and acquired drug resistance [31-33]. 
Notably, beyond these canonical oncogenic pathways, 
we detected a marked increase in metabolic activity, 
which may suggest the extensive metabolic 
reprogramming that occurs during tumor evolution 
(Fig. 2E). To gain further insight into this 
phenomenon, we conducted a detailed analysis of 
metabolism-associated pathways using single-cell 
TEM, which revealed glucose metabolism as the most 
significantly altered pathway (Fig. 2F-H). 
Consistently, analysis of the TCGA cohort revealed 
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strong correlations among evolutionary core genes, 
HCC malignancy characteristics, and glucose 
metabolism (Fig. S2D-F). To further validate these 
observations, we used the murine TEM to 
demonstrate upregulation of glycolysis-related genes 
(Fig. 2I), accompanied by elevated pyruvic acid and 
lactate levels in advanced-stage HCC tumors (Fig. 2J 
and K). Preliminary data indicated that glucose 
significantly promotes tumor progression. To address 
ethical considerations, we substantially reduced the 
number of tumor cells injected subcutaneously in the 
in vivo assays. These assays demonstrated that 
enhanced flux through glucose metabolic pathways 
directly drives the aggressive behavior of HCC (Fig. 
2L-M). Consistent with this, in vitro experiments 
yielded similar results (Fig. S2G-L). This metabolic 
shift, defined by an increased reliance on aerobic 
glycolysis (the Warburg effect), facilitates critical 
processes such as tumor survival, proliferation and 
migration [34, 35]. These findings underscore that 
glucose metabolic reprogramming serves as a critical 
driver of HCC evolution by promoting glycolytic 
activity. 

Malignant cells suppress CD8+ T Cell glucose 
metabolism to promote immune evasion 

The TIME is a complex ecosystem where 
malignant, stromal, and immune cells interact to drive 
tumor evolution [36]. Metabolic reprogramming in 
malignant cells potentially impairs the metabolism 
and functionality of surrounding cells [37, 38]. To 
unravel these intricate interdependencies, we 
employed the single-cell TEM to map the dynamic 
landscape of the TIME. In the early stage of tumor 
evolution, there was a pronounced increase in 
immune cell infiltration, which may represent an 
initial “activation” phase. However, in advanced 
stage HCC, we observed a significant reduction in 
several key immune populations, including B cells, 
CD4+ T cells, CD8+ T cells, and macrophages (Fig. 
3A-B and Fig. S3A). Analysis of cell-cell interactions 
demonstrated that inhibitory signaling from 
malignant cells targeting CD8+ T cells was markedly 
amplified during the advanced stage (Fig. 3C and Fig. 
S3B). Enrichment analysis further revealed significant 
impairments in CD8+ T cell activation, proliferation, 
and differentiation, indicating a progressive 
disruption of their effector functionality (Fig. 3D). 
Given the well-established critical role of CD8+ T cells 
in mediating cytotoxic responses against tumor cells 
[39, 40], we propose that this suppression by 
malignant cells likely plays a pivotal role in 
facilitating tumor evolution. 

In addition to functional impairments, CD8+ T 
cells exhibited significant metabolic changes during 

tumor evolution, with the most prominent being a 
marked downregulation of glycolytic activity during 
the advanced stage (Fig. 3D-E and Fig. S3C). 
Trajectory analysis also revealed that glycolytic 
activity, consistent with trends in CD8+ T cells’ 
functionality and infiltration levels, initially increased 
but later declined as the tumor evolved (Fig. 3F-G). 
Notably, this decline in CD8+ T cells glucose 
metabolism stands in stark contrast to the increased 
metabolic activity observed in malignant cells during 
tumor evolution, as previously highlighted. 

Based on these observations, we hypothesized 
that metabolic competition for glucose might occur 
between malignant cells and CD8+ T cells. We 
established a co-culture system using OVA-specific 
TCR transgenic OT-1 CD8+ T cells and Hepa1-6 cells 
engineered to express the ovalbumin (OVA) antigen 
(OVA-Hepa1-6), simulating interactions between 
malignant cells and CD8+ T cells in the TIME. The 
results revealed that co-culture with malignant cells 
led to a significant reduction in intracellular glucose 
levels within CD8+ T cells (Fig. 3H), accompanied by 
marked downregulation of key glycolytic genes (Fig. 
3I), indicating impaired glycolytic function. 
Consistent with these findings, 2-NBDG uptake 
assays demonstrated a significant decrease in glucose 
uptake capacity (Fig. 3J), while extracellular 
acidification rate (ECAR) analysis further confirmed 
reductions in both basal glycolytic activity and 
maximum glycolytic capacity (Fig. 3K and L). We also 
employed activated Jurkat cells as an independent 
model co-cultured with HCC cells, which exhibited 
similar metabolic disruptions, further supporting the 
hypothesis that interactions with malignant cells 
impair T cell glycolysis (Fig. 3H and Fig. S3D-G). 

To assess the impact of impaired glucose 
metabolism on CD8+ T cell functionality, we treated 
cells with 2-DG, a glucose analog, and BAY-876 [41], a 
glucose transporters (GLUTs) inhibitor. This 
metabolic inhibition resulted in a significant reduction 
in the proportion of CD8+ T cells expressing key 
effector molecules, including TNF-α, IFN-γ, GZMB, 
and perforin (Fig. 3M-N and Fig. S3H-I). GLUT1 
serves as the predominant glucose transporter in 
tumor cells, while CD8+ T cells primarily utilize 
GLUT3 for glucose uptake (Fig. S3J and K) [42]. So we 
employed WZB117 [43], a selective GLUT1 inhibitor, 
to disrupt glucose metabolism in malignant cells. This 
inhibition significantly increased the sensitivity of 
tumor cells to the cytotoxic effects of CD8+ T cells (Fig. 
3O). Collectively, these findings demonstrate that 
malignant cells actively drive T cell dysfunction by 
suppressing glycolytic metabolism, thereby 
facilitating immune evasion and advancing tumor 
evolution. 
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Figure 2. Glucose metabolic reprogramming is a crucial event during HCC evolution. A. Schematic diagram illustrating the workflow and study design for the TEM 
at single-cell resolution, including analytical strategies implemented in this research. B. Uniform Manifold Approximation and Projection (UMAP) plot showing cell type 
annotations within the HCC TIME, with corresponding color codes. C. Heatmap displaying the clustering of malignant cells based on the expression levels of evolutionary core 
genes in clusters C1 & C4 and C3. D. Heatmap presenting the clustering of HCC patient samples based on the proportions of tumor cells from different evolutionary stages 
(early, mid, and advanced) identified by the single-cell TEM. Samples labeled with “H” represent patients from the HCC cohort (n = 10), and those labeled with “G” are from the 
GEO dataset GSE151530 (n = 11). E. Gene Ontology (GO) enrichment analysis of characteristic genes associated with advanced stage malignant cells. F. Heatmap illustrating 
GSVA scores of metabolism-related pathways in malignant cells across early, mid, and advanced stages of HCC evolution. G. UMAP plot depicting the reconstructed evolutionary 
trajectory of malignant cells using the Slingshot algorithm. Cells from early, mid, and advanced stages are classified based on the TEM at single-cell resolution. H. UMAP plot 
demonstrating the GSVA scores for the glycolysis pathway along the Slingshot-inferred trajectory of malignant cells. I. Heatmap showing the expression levels of glycolysis 
pathway genes during HCC evolution in the murine TEM. J and K. The content of pyruvic acid (J) and lactate (K) in tumor cells or tissues derived from murine TEM at the 
indicated time after transplantation. L and M. Tumor weight (L) and volumes (M) were measured in an in vivo syngeneic tumorigenesis assay by subcutaneously injecting Hepa1-6 
cells into C57BL/6 mice. The experimental group received drinking water supplemented with 15% glucose, while the control group received regular drinking water (n = 6 
animals/group). Data are mean ± SD. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, ns, non-significant by Student’s t test (L and M) or by two-way ANOVA (J and K). 
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Figure 3. Malignant cells suppress CD8+ T cells glucose metabolism to promote immune evasion. A. Immunohistochemical staining of CD8 in the tumor samples 
from murine TEM, with brown signals indicating positive staining. M01-M03 represent three independent biological replicates (n=3). B. Quantification of CD8-positive areas was 
performed in the tumor samples from murine TEM. C. The heatmap illustrates the changes in cell-cell interaction strength between advanced and early/mid samples as assessed 
by CellChat analysis. Cell type annotations are indicated along the axes, with colors representing the relative strength of interactions. D. Gene Ontology (GO) enrichment 
analysis of characteristic genes associated with advanced stage CD8+ T cells. E. Heatmap depicting GSVA scores of metabolism-related pathways in CD8+ T cells across early, mid, 
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and advanced stages of HCC evolution. F. UMAP plot showing the reconstructed evolutionary trajectory of CD8+ T cells using the Slingshot algorithm. Cells from early, mid, and 
advanced stages are classified according to the single-cell TEM. G. UMAP plot demonstrating GSVA scores for the glycolysis pathway along the Slingshot-inferred trajectory of 
CD8+ T cells. H. OT-1 CD8+ T cells were co-cultured with OVA-Hepa1-6 cells, while Jurkat cells were co-cultured with Huh7 cells (all at 1:1 ratio) for 48 hours in medium 
containing 5.5 mM glucose. Subsequently, intracellular glucose levels were measured separately in CD8+ T cells (left) and Jurkat cells (right). I. Glycolysis-related gene 
expression in OT-1 CD8+ T cells was compared between control (isolated) and OVA-Hepa1-6 co-cultured groups (1:1 ratio in 5.5 mM glucose medium). All expression levels 
were normalized to β-actin. J. Changes in glucose uptake capacity in OT-1 CD8+ T cells following 48 hours of co-culture with OVA-Hepa1-6 cells at a 1:1 ratio in the medium 
containing 5.5 mM glucose, measured using flow cytometry to detect fluorescence intensity of 2-NBDG. K and L. Following co-culture with OVA-Hepa1-6 cells at 1:1 or 1:10 
ratios in 5.5 mM glucose medium for 48 hours, CD8+ T cells were analyzed for extracellular acidification rate (ECAR) using sequential exposure to 10 mM glucose, 1 μM 
oligomycin, and 50 mM 2-DG (K). Three replicate measurements were performed per condition. Glycolysis was calculated as ECAR increase post-glucose addition, while 
glycolytic capacity represented the difference between maximal ECAR (post-oligomycin) and ECAR following 2-DG inhibition (L). M and N. OT-1 CD8+ T cells were activated 
with the OVA-derived peptide SIINFEKL for five days. The culture medium was supplemented with either 10 mM or 20 mM of 2-DG and either 10 µM or 20 µM of BAY-876. 
Expression levels of TNF-α and IFN-γ were analyzed by flow cytometry, with percentages of TNF-α+ (M) and IFN-γ+ (N) cells represented as bar graphs. O. The upper panel 
shows basal death of OVA-Hepa1-6 cells cultured in 5.5 mM glucose medium ±10 µM WZB117 (without CD8+ T cells) as control. The lower panel demonstrates cytotoxic 
activity of activated OT-1 CD8+ T cells against OVA-Hepa1-6 cells after 24 hours co-culture in 5.5 mM glucose medium. Data are mean ± SD. *p < 0.05, **p < 0.01, ***p < 0.001, 
****p < 0.0001, ns, non-significant by Student’s t test (H and J) or by two-way ANOVA (B and L-N). 

 
NSUN2-mediated m5C modification regulates 
metabolic reprogramming in a 
glucose-dependent manner 

 Nutrients within the TIME are known as direct 
substrates in metabolic pathways [44]. However, 
emerging evidence suggests that some nutrients may 
also function as independent signaling molecules, 
modulating cellular signaling through mechanisms 
distinct from conventional metabolism. For example, 
leucine has been demonstrated to directly activate 
mTORC1 signaling by binding to its specific receptor 
protein, SAR1B [45]. Building on these findings, we 
propose whether glucose acquired by malignant cells 
might similarly serve as a signaling molecule, 
potentially contributing to HCC evolution. To support 
this hypothesis, we analyzed findings from previous 
studies. Weili Miao et al. employed affinity 
purification and chemical crosslinking strategies to 
identify 91 glucose-binding proteins [21]. Tingjin 
Chen et al. identified 40 potential glucose-interacting 
proteins using a biotin-based pull-down approach 
followed by mass spectrometry analysis [46]. Notably, 
only three proteins were consistently detected in both 
studies: NSUN2, ADAR, and IGF2BP3 (Fig. 4A). 
Among these, NSUN2 emerges as the only transcript 
consistently upregulated in both murine and 
single-cell TEMs (Fig. 4B-C and Fig. S4A-D). 
Moreover, NSUN2 exhibited significant expression 
changes in response to glucose deprivation and 
restoration at both the mRNA and protein levels (Fig. 
4D-F and Fig. S4E). Similarly, in vivo, tumors from 
mice supplied with glucose-supplemented drinking 
water exhibited increased NSUN2 expression (Fig. 
4G), supporting its role as a glucose-responsive 
regulator in HCC. Functional assays further 
confirmed the oncogenic properties of NSUN2, 
demonstrating its ability to promote tumorigenesis, 
accelerate cellular proliferation, and enhance 
migratory capacity (Fig. 4H-J and Fig. S4F-H). 
Collectively, these findings identify NSUN2 as a 
potential glucose sensor, highlighting its critical role 
in driving tumor evolution. 

As NSUN2 is the key enzyme mediating global 
m5C RNA methylation in various cancer cell lines [47, 
48], we further found that both glucose deprivation 
and NSUN2 deficiency resulted in a marked decrease 
in global m5C RNA methylation levels (Fig. 4K-L and 
Fig. S4I-K). Analysis of methylated RNA 
immunoprecipitation sequencing (MeRIP-seq) data 
from shNC and shNSUN2 cells revealed that 
NSUN2-mediated mRNA methylation regulates key 
pathways associated with glucose metabolism, such 
as pyruvate metabolism and cellular responses to 
glucose starvation (Fig. 4M and Fig. S4L; 
Supplementary Table 2). Moreover, in the 
TCGA-LIHC cohort, we observed a significant 
positive correlation between m5C modification 
abundance and NSUN2 RNA expression levels, both 
of which were closely associated with glucose 
metabolism (Fig. S4M and N). Supporting these 
findings, MeRIP experiment confirmed that NSUN2 
facilitates the m5C modification of multiple glycolytic 
enzyme mRNAs (Fig. 4N). Given NSUN2's binding to 
target mRNAs (GLUT1, HK2, and PFKM; Fig. 4O) and 
the extensively characterized role of m5C 
modifications in mRNA stabilization [49, 50], our 
results demonstrate that both glucose deprivation and 
NSUN2 depletion markedly decrease the stability of 
these key glycolytic enzyme transcripts (Fig. 4P-Q and 
Fig. S4O). Notably, malignant cells possess an 
inherent advantage in the competition for glucose, as 
NSUN2-mediated m5C modifications of GLUT1 
enhance this advantage by facilitating efficient 
glucose acquisition, thereby establishing a positive 
feedback loop that further enables tumor cells to 
outcompete surrounding cells for available resources. 
The stability of GLUT1, HK2, and PFKM mRNAs 
likely drives the widespread alterations in protein 
expression across the glycolytic pathway (Fig. 4R and 
Fig. S4P). Meanwhile, NSUN2 depletion led to 
reduced glucose uptake and consumption (Fig. 4S-T 
and Fig. S4Q-R), accompanied by a diminished 
extracellular acidification rate (ECAR) (Fig. 4U-V and 
Fig. S4S-T) and decreased production of pyruvate and 
lactate (Fig. 4W-X and Fig. S4U-V). While ATP content 
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alone may not fully capture the complexity of 
metabolic reprogramming, its correlation with 
NSUN2 expression reveals corresponding alterations 
in energy metabolism (Fig. S4W). Collectively, these 

findings suggest that NSUN2-mediated m5C 
modification plays a pivotal role in regulating 
metabolic reprogramming. 

 

 
Figure 4. NSUN2-mediated m5C modification regulates metabolic reprogramming in a glucose-dependent manner. A. Through the intersection of publicly 
available data from biotin-labeled glucose pull-down, affinity chromatography, and click chemistry analyses, NSUN2, ADAR and IGF2BP3 were identified as candidate proteins 
that directly interact with glucose. B. The expression level of NSUN2 in the murine TEM. C. UMAP plot demonstrating the expression level of NSUN2 in the single-cell TEM. 
D. Real-time qPCR analysis of Huh7 and HCCLM3 cells starved with glucose and restoration at indicated concentrations (25, 11, and 5.5 mM) (n = 3 biological replicates). E and 
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F. Immunoblotting analysis of Huh7 (E) and HCCLM3 (F) cells after 6 hours of glucose starvation followed by 2 hours of glucose restoration at indicated concentrations (25, 11, 
and 5.5 mM). G. Immunoblot analysis from subcutaneous tumor models established using Hepa1-6 cells in C57BL/6 mice. The experimental group was provided with drinking 
water containing 15% glucose, while the control group received regular drinking water (n = 6 animals per group). H. Transwell migration assays assessing the migratory capacity 
of shNC and shNSUN2 Huh7 cells (n = 3 biological replicates). I and J. Tumor weight (I) and volumes (J) were measured in the in vivo syngeneic tumorigenesis assay of shNC 
and shNSUN2 Hepa1-6 cells subcutaneously inoculated in C57BL/6 mice (n = 6 animals/group). K. Huh7 cells without or with glucose starvation for 4 hours and restored with 
glucose (5.5 mM) 2 hours before dot blot assay of m5C levels (total RNA) (n = 3 biological replicates). L. shNC and shNSUN2 Huh7 cells were glucose starved for 4 hours and 
restored with glucose (5.5 mM) 2 hours for dot blot assay (n = 3 biological replicates). M. GO enrichment analysis of the genes with differential m5C methylation levels between 
shNC and shNSUN2 cells. N. RNA-IP using anti-m5C antibody, followed by real-time qPCR analysis in shNC and shNSUN2 Huh7 cells with glucose (5.5 mM) (n = 3 biological 
replicates). O. RT-qPCR was applied for detection of endogenous GLUT1, HK2, PFKM mRNA immunoprecipitated with NSUN2 (1:100, 4 °C, overnight). P and Q. RNA decay 
assay in shNC and shNSUN2 Huh7 cells treated with actinomycin D (Act. D, 5 μg/mL), glucose starved and restored with glucose. Real-time qPCR against β-actin was performed 
to assess the half-life of GLUT1 (P) and HK2 (Q) mRNA (n = 3 biological replicates). R. Immunoblotting analysis of shNC and shNSUN2 Huh7 cells after 6 hours of glucose 
starvation and subsequent 2 hours of restoration with 5.5 mM glucose. S. The glucose uptake capacity in shNC and shNSUN2 Huh7 cells, measured using flow cytometry to 
detect fluorescence intensity of 2-NBDG (n = 3 biological replicates). T. Glucose content in the supernatant of shNC and shNSUN2 Huh7 cells after 48 hours of treatment with 
or without 5.5 mM 2-DG. U and V. Measurements were recorded over time, with exposure to glucose, oligomycin, and 2-DG for ECAR assessment. ECAR in shNC and 
shNSUN2 Huh7 cells was recorded three times per condition (U). Glycolysis (ECAR following glucose addition) and glycolytic capacity (maximal ECAR after subtracting the 
ECAR following 2-DG exposure) were calculated (V). W and X. Comparison of the relative pyruvic acid (W) and lactate (X) production between shNC and shNSUN2 Huh7 
cells. Data are mean ± SD. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, ns, non-significant by Student’s t test (I-J, N-O, S and V-X) or by two-way ANOVA (B, D, P-Q and 
T). 

 
The glucose-competition/NSUN2 axis drives 
tumor evolution and CD8+ T cell dysfunction 

Building on the glucose-competition/NSUN2 
axis's role in enhancing the nutrient acquisition 
advantage of tumor cells, we explored whether this 
mechanism could influence HCC evolutionary fate 
and contribute to CD8+ T cell functional activity 
within the TIME. In vitro, NSUN2 deficiency 
significantly impaired the proliferation, survival, and 
invasiveness of cancer cells, effects that were fully 
reversed by exogenous glucose supplementation (Fig. 
5A-B and Fig. S5A-C). Similarly, in vivo subcutaneous 
tumor formation assays revealed concordant results 
(Fig. 5C and D). Notably, the regulatory effect of 
glucose on NSUN2 expression and its downstream 
modulation of glycolytic enzymes, initially observed 
in vitro, was further validated in tumor tissues (Fig. 5E 
and Fig. S5D). Furthermore, both glucose deprivation 
and NSUN2 silencing significantly downregulated the 
expression of malignancy-associated markers (Fig. 5F 
and Fig. S5E-G). These data highlight the critical 
function of the glucose-competition/NSUN2 axis in 
driving HCC evolutionary trajectory. 

And we found that enhancing glucose 
availability or overexpressing NSUN2 significantly 
diminished CD8+ T cell infiltration (Fig. 5F and G). 
Based on these findings, we have proposed that tumor 
cells could boost their glucose metabolism activity via 
the glucose-competition/NSUN2 axis, consequently 
hindering the metabolism and anti-tumor capabilities 
of CD8+ T cells. Then we co-cultured CD8+ T cells with 
malignant cells and found that restricting glucose 
uptake by malignant cells or silencing NSUN2 
effectively alleviated tumor-driven metabolic 
suppression in CD8+ T cells (Fig. 5H and Fig. S5H). 
These interventions notably upregulated the 
expression of key glycolysis-related genes in CD8+ T 
cells (Fig. 5I and Fig. S5I) and significantly increased 
the ECAR (Fig. 5J-K and Fig. S5J-K), reflecting the 
restoration of glycolytic activity. As anticipated, 
metabolically suppressed or NSUN2-deficient tumor 

cells exhibited a markedly diminished capacity to 
inhibit the antitumor functions of CD8+ T cells 
compared to control tumor cells. This was 
demonstrated by a pronounced increase in the 
secretion of pro-inflammatory cytokines (Fig. 5L-M 
and Fig. S5L-M), alongside significantly enhanced 
cytotoxic activity of CD8+ T cells (Fig. 5N). Overall, 
these findings reveal the glucose-competition/ 
NSUN2 axis as a pivotal driver of tumor evolution 
and immune evasion, primarily through disrupting 
CD8+ T cell metabolism and suppressing their 
antitumor activity within the TIME. 

Immunometabolic therapy overcomes HCC 
resistance to immune checkpoint inhibitors 

Immune checkpoint inhibitors (ICIs) have 
revolutionized the treatment landscape for HCC by 
harnessing the immune system—particularly CD8+ T 
cells, which are pivotal in recognizing and destroying 
cancer cells through their cytotoxic activity [51, 52]. 
However, despite the promise of ICIs, many HCC 
patients exhibit primary or acquired resistance, 
significantly limiting their clinical efficacy [53]. 
Consistent with previous studies [54, 55], our findings 
show that glucose promotes PD-L1 expression in 
HCC cells (Fig. 6A and B) as well as in tumor tissues 
of mice provided with glucose-supplemented 
drinking water (Fig. 6C). Furthermore, predictions 
generated by the TIDE (Tumor Immune Dysfunction 
and Exclusion) algorithm [56] suggest that mRNA 
methyltransferase activity and glucose metabolism 
play a pivotal role in shaping the immunotherapy 
response in HCC patients (Figures 6D and E). 
Inhibition of glucose transport by WZB117 
significantly reduces global RNA m5C levels, 
highlighting a direct regulatory link between glucose 
metabolism and RNA methylation (Fig. 6F-H). These 
observations prompted us to explore whether 
targeting the glucose-competition/NSUN2 axis could 
overcome resistance to ICIs and improve therapeutic 
efficacy (Fig. 6I). 
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Figure 5. The glucose-competition/NSUN2 axis drives tumor evolution and CD8+ T cells dysfunction. A. Proliferation of shNC and shNSUN2 Huh7 cells, 
evaluated by CCK-8 (Cell Counting Kit-8) assays (n = 3 biological replicates). Cells were cultured in media containing 5.5 mM or 25 mM glucose. B. Transwell migration assays 
assessing the migratory capacity of shNC and shNSUN2 Huh7 cells (n = 3 biological replicates). Cells were cultured in media containing 5.5 mM or 25 mM glucose. C-E. Tumor 
weight (C) and tumor volumes (D) were measured were measured in the in vivo syngeneic tumorigenesis assay of shNC and shNSUN2 Hepa1-6 cells subcutaneously inoculated 
in C57BL/6 mice (n = 6 animals/group). Immunoblot analysis (E) of key glycolysis proteins in harvested tumor tissues. Mice in the glucose-supplemented group received drinking 
water containing 15% glucose, while the control group was provided with regular drinking water. F. Immunohistochemical staining of Ki67, N-cadherin, VEGFα and CD8 was 



Int. J. Biol. Sci. 2025, Vol. 21 
 

 
https://www.ijbs.com 

4544 

performed on the in vivo syngeneic tumorigenesis assay of shNC and shNSUN2 Hepa1-6 cells subcutaneously inoculated in C57BL/6 mice. Mice in the glucose-supplemented 
group received drinking water containing 15% glucose, while the control group was provided with regular drinking water. Brown signals indicate positive staining for the 
respective markers. G. Quantification of CD8-positive areas in the tumor samples as described in (F). H. Glucose uptake in OT-1 CD8+ T cells was measured by 2-NBDG 
fluorescence (flow cytometry) after 48 hours co-culture with shNC or shNSUN2 OVA-Hepa1-6 cells (1:1 ratio) in 5.5 mM glucose medium. I. Glycolysis-related gene expression 
(normalized to β-actin) in OT-1 CD8+ T cells following 48 hours co-culture with shNC/shNSUN2 OVA-Hepa1-6 cells (1:1 ratio) in 5.5 mM glucose medium ±10 µM WZB117. 
J and K. ECAR analysis of OT-1 CD8+ T cells after 48h co-culture with shNC/shNSUN2 OVA-Hepa1-6 (1:1 ratio) in 5.5 mM glucose medium. Measurements were recorded 
over time, with exposure to glucose, oligomycin, and 2-DG for ECAR assessment. ECAR was recorded three times per condition (J). Glycolysis (ECAR following glucose 
addition) and glycolytic capacity (maximal ECAR after subtracting the ECAR following 2-DG exposure) were calculated (K). L and M. OVA-specific TCR transgenic OT-1 CD8+ 
T cells were activated with the OVA-derived peptide SIINFEKL for five days. Subsequently, these activated OT-1 CD8+ T cells cells were co-cultured with shNC or shNSUN2 
OVA-Hepa1-6 cells at ratios of 1:1 for 48 hours in 5.5 mM glucose medium, in the presence or absence of 10 µM WZB117. The expression levels of TNF-α and IFN-γ in OT-1 
CD8+ T cells were analyzed by flow cytometry. Percentages of TNF-α+ (L) and IFN-γ+ cells (M) are shown as bar graphs. N. The upper panel illustrates the natural cell death of 
shNC and shNSUN2 OVA-Hepa1-6 cells cultured in 5.5 mM glucose medium in the absence of co-culture with OT-1 CD8+ T cells, serving as a control for baseline cell death. 
The lower panel demonstrates the cytotoxic activity of activated OT-1 CD8+ T cells toward shNC and shNSUN2 OVA-Hepa1-6 cells following 24 hours of co-culture in 5.5 mM 
glucose medium. Data are mean ± SD. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, ns, non-significant by two-way ANOVA (A-D, G-H and K-M). 

 
The combination of WZB117 and anti-PD-L1 

treatments exhibited a significant inhibitory effect on 
tumor growth in subcutaneous tumor-bearing mice 
models (Fig. 6J and K). And this dual treatment 
notably suppressed NSUN2 expression (Fig. 6L), 
suggesting that such an immunometabolic strategy 
could potentially alter the evolutionary trajectory of 
HCC. The marked reduction in malignant tumor 
characteristics observed with this approach provides 
strong support for this hypothesis (Fig. 6M). 
Moreover, this treatment strategy significantly 
increased the infiltration of CD8+ T cells into the TIME 
(Fig. 6M and N). These findings suggest that the 
combined WZB117 and anti-PD-L1 therapy effectively 
targets the glucose-competition/NSUN2 axis in HCC, 
enhancing CD8+ T cell anti-tumor activity while 
partially regulating HCC evolution through 
NSUN2-m5C modification. By simultaneously 
targeting metabolic pathways and immune resistance, 
this combinatorial approach provides new insights 
into potential therapeutic interventions for HCC. 

Discussion 
Our research established a murine TEM and 

identified genes with significant alterations during 
tumor evolution through a comprehensive approach, 
integrating differential expression analysis, WGCNA, 
machine learning algorithms and Mfuzz clustering. 
To further refine our findings, snRNA-seq data from 
resected tumor tissues of 10 HCC patients, 
supplemented by 11 samples from an external dataset, 
were utilized to construct a single-cell TEM. This 
model enables an in-depth exploration of cellular 
interactions and signaling pathways within the TIME, 
providing valuable insights into the dynamic 
processes driving tumor evolution. 

Through a comprehensive analysis of the TIME 
using our model, we identified metabolic 
reprogramming as the most prominent alteration 
driving tumor evolution, characterized by the 
opposing shifts in glucose metabolism observed 
between tumor cells and CD8+ T cells. Tumor cells 
display a pronounced upregulation of glucose 
metabolism, which drives their growth and survival, 

whereas CD8+ T cells experience a significant 
downregulation, leading to a weakened anti-tumor 
response. This metabolic divergence suggests that 
tumor cells, by imposing metabolic restrictions on 
CD8+ T cells, outcompete them for nutrients within 
the TIME, thereby driving tumor evolution and 
fostering an immunosuppressive microenvironment. 

Advanced-stage HCC exhibits significantly 
enhanced glycolytic activity, also known as the 
Warburg effect, which is strongly associated with 
poor prognosis [57, 58]. While the mechanisms linking 
the Warburg effect to tumor evolution remain poorly 
understood, recent studies have identified a 
non-metabolic role of glucose. Specifically, glucose 
can directly interact with certain proteins, termed 
glucose sensors, to regulate various cellular processes 
independently of classical metabolic pathways [21, 
46]. Among these proteins, the expression level of 
NSUN2 is dynamically upregulated during evolution, 
with its expression regulated by glucose in a 
dose-dependent manner. Furthermore, we 
demonstrate that NSUN2 plays a pivotal role in 
driving the malignant characteristics of HCC cells. 
Consistently, in vivo, NSUN2 overexpression or 
additional glucose supplementation significantly 
enhances tumor growth. These findings highlight the 
critical role of the glucose-competition/NSUN2 axis 
in tumor evolution. 

NSUN2 serves as the primary writer for m5C 
RNA methylation, and its aberrant expression or 
mutation is closely associated with tumor initiation 
and progression [59]. Through MeRIP-seq analysis 
and MeRIP experiments, we found that NSUN2 
deficiency significantly reduces m5C modification 
levels in the mRNAs encoding key glucose 
metabolism enzymes, including GLUT1, HK2, and 
PFKM. Notably, this process involves a positive 
feedback loop initiated by glucose uptake in tumor 
cells, which upregulates NSUN2 expression. In turn, 
NSUN2 enhances the stability of GLUT1 mRNA, the 
primary glucose transporter in tumor cells, thereby 
promoting increased glucose uptake. Further, our 
study demonstrates that targeting the 
glucose-competition/NSUN2 axis in malignant cells 
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not only impacts their evolutionary trajectory but also 
alleviates their metabolic suppression of CD8+ T cells. 

This intervention enhances CD8+ T cell infiltration 
and anti-tumor activity within the TIME. 

 

 
Figure 6. Immunometabolic therapy overcomes HCC resistance to immune checkpoint inhibitors. A and B. Immunoblotting analysis of Huh7 (A) and HCCLM3 
(B) cells starved with glucose and restored with indicated concentrations of glucose (25 ,11 and 5.5 mM) (n = 3 biological replicates). C. Immunoblot analysis from subcutaneous 
tumor models established using Hepa1-6 cells in C57BL/6 mice. The experimental group was provided with drinking water containing 15% glucose, while the control group 
received regular drinking water (n = 6 animals per group). D and E. Comparison of mRNA methyltransferase activity (D) and glucose metabolism activity (E) between immune 
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therapy responders and non-responders, as predicted by the TIDE algorithm in the TCGA-LIHC cohort. F. Intracellular glucose levels in Huh7 and HCCLM3 cells with or 
without 10 μM WZB117 treatment for 8 hours. G and H. m5C levels (total RNA) in Huh7 (G) and HCCLM3 (H) cells treated with or without 10 μM WZB117 for 8 hours, as 
measured by dot blot assay (n = 3 biological replicates). I. Schematic diagram illustrating the combined therapy regimen of WZB117 and anti-PD-L1 in the in vivo syngeneic 
tumorigenesis assay of Hepa1-6 cells subcutaneously inoculated in C57BL/6 mice (n = 6 animals per group). J and K. Tumor weight (J) and tumor volumes (K) were measured 
on the in vivo syngeneic tumorigenesis assay of Hepa1-6 cells subcutaneously inoculated in C57BL/6 mice (n = 6 animals per group). The groups included the control group, 
WZB117 monotherapy, anti-PD-L1 monotherapy, and the combined treatment group. L. Immunoblotting analysis was performed on the in vivo syngeneic tumorigenesis assay of 
Hepa1-6 cells subcutaneously inoculated in C57BL/6 mice. The experimental groups included the control group, WZB117 monotherapy, anti-PD-L1 monotherapy, and the 
combined treatment group. M. Immunohistochemical staining for Ki67, N-cadherin, VEGFα, and CD8 was performed on the in vivo syngeneic tumorigenesis assay of Hepa1-6 
cells subcutaneously inoculated in C57BL/6 mice. The groups included the control group, WZB117 monotherapy, anti-PD-L1 monotherapy, and the combined treatment group. 
Brown staining indicates positive expression of the respective markers. N. Quantification of CD8-positive areas in the tumor samples as described in (M). Data are mean ± SD. 
*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, ns, non-significant by Student’s t test (D-F) or by two-way ANOVA (J-K and N). 

 
The widespread adoption of immune checkpoint 

inhibitors (ICIs) has ushered in a new era of cancer 
therapy [60]. However, most patients still fail to 
benefit from immunotherapy, likely due to the 
immunosuppressive characteristics of the TIME [61, 
62]. Recent advances in understanding tumor 
metabolic reprogramming and the intricate metabolic 
interplay between tumor and immune cells have 
provided new strategies for targeting tumor 
immunometabolism, offering opportunities to 
enhance antitumor immune responses and improve 
therapeutic outcomes [63]. Our research provides a 
novel treatment strategy utilizing WZB117 to disrupt 
the glucose-competition/NSUN2 axis in malignant 
cells. This method tackles the challenge of resistance 
to anti-PD-L1 immunotherapy by hindering metabolic 
reprogramming in malignant cells and activating 
CD8+ T cells. Besides that, we discovered that the 
combined application of these treatments can 
significantly reduce the expression of NSUN2, 
ultimately partially preventing the uncontrolled 
evolution of HCC, suggesting a treatment strategy 
with promising clinical application potential. 

In summary, using murine and single-cell TEMs, 
we reveal that the glucose-competition/NSUN2 axis 
drives metabolic reprogramming in malignant cells 
through an m5C modification-dependent manner, 
serving as a key driver of HCC evolution. 
Furthermore, WZB117 demonstrates potential as a 
sensitizer for ICI therapy by disrupting the ongoing 
evolution of HCC. Our findings provide new insights 
into metabolic reprogramming during tumor 
evolution and offer potential strategies to overcome 
immunotherapy resistance. 

While our study established the critical role of 
the glucose-competition/NSUN2 axis in tumor 
evolution from phenotypic, mechanistic, and 
therapeutic perspectives, a more detailed 
understanding of NSUN2’s downstream targets and 
the functional outcomes of m5C deposition is 
necessary to further refine this regulatory framework. 
Although our findings primarily highlight glucose 
metabolism, m5C modifications may also affect other 
metabolic pathways such as lipid and amino acid 
metabolism, which deserve further investigation to 
clarify their contribution to tumor evolution. 

Conclusion 
This study constructed murine and single-cell 

TEMs to systematically investigate intratumoral 
heterogeneity and the TIME from a dynamic 
evolutionary perspective. The results identify NSUN2 
as a critical glucose sensor that drives tumor-immune 
glucose metabolic reprogramming through m5C 
modification. Beyond elucidating the role of the 
metabolic-immune crosstalk axis in tumor evolution, 
this work also proposed a novel combinatorial 
therapeutic strategy, providing new directions for 
anti-tumor treatment. 
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